

Integrated Low Profile Transceiver Module for Telecom Applications – IrDA Standard

Description

The miniaturized TFDU4201 is an ideal transceiver for applications in telecommunications like mobile phones and pagers. The device is mechanically designed for lowest profile with a height of only 2.8 mm. The infrared transceiver is compatible to the IrDA Telecom standard of IrDA physical layer specification version 1.2 up to a data rate of 115 kbit/s. Package

Features

- Package Dimension: L 7.3 mm x W 4.55 mm x H 2.75 mm
- Compatible to IrDA Telecom Standard
- SMD Side View Soldering
- Lowest Power Consumption 55 μA Receive Mode, 1 μA Shutdown
- Only 30 mA IRED Peak Current During Transmission

- Wide Supply Voltage Range (2.4 V to 5.5 V)
- Operational down to 2.0 V
- Fewest External Components
- Internal Current Control
- High EMI Immunity
- Receiver Output Tri-State

Applications

Mobile Phones, Pagers, Personal Digital Assistants (PDA), Handheld Battery Operated Equipment

TFDU4201

Vishay Telefunken

Vishay Telefunken

Ordering Information

Part Number	Qty / Reel	Description
TFDU4201-TR1	750	Oriented in carrier tape for side view in mounting
TFDU4201–TR3	2250	Oriented in carrier tape for side view in mounting

Functional Block Diagram

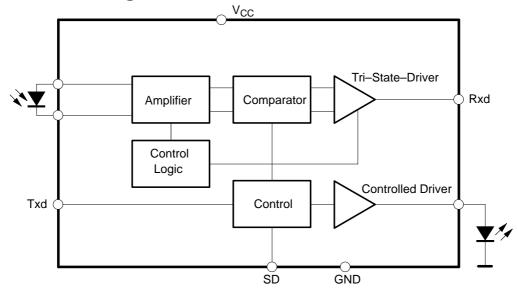


Figure 1. Functional Block Diagram

Pin Description

Pin	Symbol	Description	I/O	Active
1	IRED GND	Ground, IRED cathode		
2	IRED GND	Ground, IRED cathode		
3	Rxd	Received data, tri-state, floating in shutdown mode	0	LOW
4	V _{CC}	Supply voltage		
5	GND	Ground		
6	GND	Ground		
7	Txd	Transmit data	I	HIGH
8	SD	Shutdown		HIGH

Absolute Maximum Ratings

Reference Point Pin 8, unless otherwise noted.

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Unit	Remarks
Supply Voltage Range		V _{CC}	-0.5		6	V	
Input Current					10	mA	All Input Pins
Output Sink Current					25	mA	
Power Dissipation		P _{tot}			200	mW	See Figure 3
Junction Temperature		TJ			125	°C	
Ambient Temperature Range (Operating)		T _{amb}	-25		85	°C	
Storage Temperature Range		T _{stg}	-25		85	°C	
Soldering Temperature	t = 20 s @215°C			215	240	°C	See Vishay Telefunken IrDA Design Guide
Average IRED Current*)		I _{IRED} (DC)			125	mA	
Repetitive Pulsed IRED*) Current		I _{IRED} (RP)			500	mA	<90 µs, t _{on} <20%
Transmitter Data Input Voltage		V _{Txd}	-0.5		V _{CC} +0.5	V	
Receiver Data Output Voltage		V _{Rxd}	-0.5		V _{CC} +0.5	V	
Virtual source size	Method: (1–1/e) encircled energy	d		2		mm	
Compatible to Class 1 operation	ation of IEC 60825 or	EN60825 wi	ith wors	t case I	rDA SIR pu	lse patt	ern, 115.2 kbit/s

*) Note: Maximum values of IRED. Cannot be reached due to implemented current source.

Electrical Characteristics

Tested for the following parameters (V_{CC} = 2.4 V to 5.5 V, 25 °C, unless otherwise stated)

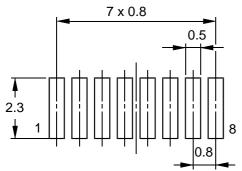
Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Unit	Remarks
Transceiver							
Supported Data Rates	Base band		9.6		115.2	kbit/s	
Supply Voltage Range		V _{CC}	2.4		5.5	V	Operational Down to 2.0 V
Supply Current	$V_{CC} = 2.4 \text{ V to 5.5 V},$ $E_{e} = 0$	۱ _S		50	80	μA	Receive Mode,
	$V_{CC} = 2.4 \text{ V to 5.5 V},$ 10 klx Sunlight	۱ _S		70	90	μA	full Temperature Range
	Shutdown Mode	I _{Sshdown}		0.02	1 10	μA nA	Entire Temperature Range Room Temperature 20°C
IRED Peak Current Transmitting	$V_{CC} = 5.5 V$ $V_{CC} = 2.4 V$	I _{Str}		30 26	36 30	mA mA	SIR transmit
Transceiver "Power On" Settling Time					50	μs	Time from Switching on V_{CC} to Established Specified Operation

Vishay Telefunken

Optoelectronic Characteristics

Tested for the following parameters	$(V_{CC} = 2.4 \text{ V to } 5.5 \text{ V}, 25)$	°C, unless otherwise stated)
-------------------------------------	--	------------------------------

Parameter	Test Conditions	Symbol	Min.	Тур	Max.	Unit	Remarks
Receiver	·	-					
Minimum Detection Threshold Irradiance	$ \alpha \le \pm 15^{\circ}$ V _{CC} = 2.0 V - 5.5 V	E _{e, min}		35	70	mW/m ²	
Maximum Detection Threshold Irradiance	$ \alpha \le \pm 90^{\circ}$ V _{CC} = 5 V	E _{e, max}	3300	5000		W/m ²	
	$ \alpha \le \pm 90^{\circ}$ V _{CC} = 3 V	E _{e, max}	8000	15000		W/m ²	
Logic Low Receiver Input Irradiance		E _{e,max,low}			4	mW/m ²	
Output Voltage Rxd	Active	V _{OL}		0.5	0.8	V	C = 15 pF, R = 2.2 kΩ
	Non Active	V _{OH}	V _{CC} -0.5			V	C = 15 pF, R = 2.2 kΩ
Output Current Rxd V _{OL} < 0.8 V					4	mA	
Rise Time @Load: C = 15 pF, R = 2.2k		t _r	20		200	ns	
Fall Time @Load: C = 15 pF, R = 2.2k		t _f	20		200	ns	
Rxd Signal Electrical Output Pulse Width	2.4 kbit/s, Input Pulse Length 1.41 μs to 3/16 of bit Length	t _p	1.4		20	μs	
Rxd Signal Electrical Output Pulse Width	115.2 kbit/s, Input Pulse Length 1.41 μs to 3/16 of bit Length	t _p	1.4		8	μs	
Output Delay Time (Rxd), Leading Edge Optical Input to Electrical Output	Output Level = $0.5 \cdot V_{CC} @$ 40 mW/m^2	t _{dl}		1	2	μs	
Jitter, Leading Edge of Output Signal	Over a Period of 10 bit, 115.2 kbit/s	tj			1	μs	
Output Delay Time (Rxd), Trailing Edge Optical Input to Electrical Output	Output Level = 0.5· V _{CC} 40 mW/m ²	t _{dt}			6.5	μs	
Latency		tL		100	200	μs	


Vishay Telefunken

Optoelectronic Characteristics (continued)

Tested for the following parameters (V_{CC} = 2.4 V to 5.5 V, 25 $^{\circ}$ C, unless otherwise stated)

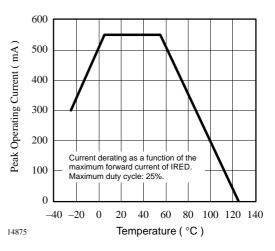
Parameter	Test Conditions	Symbol	Min.	Тур	Max.	Unit	Remarks
Transmitter	·						
Logic Low Transmitter Input Voltage		V _{IL} (Txd)	0		0.8	V	
Logic High Transmitter Input Voltage		V _{IH} (Txd)	2.4		V _{CC}	V	
Controlled Current	$\begin{array}{l} I_e = 4 \text{ mW/sr} - \\ 28 \text{ mW/sr in} \\ \alpha \leq \pm 15^{\circ} \end{array}$	I _{F1}	25	30	35	mA	Voltage Range 2.4 V to 5.5 V
Output Radiant Intensity, $ \alpha \le \pm 15^{\circ}$	I _{F1} = 25 mA to 35 mA	Ι _e	4	8	28	mW/sr	Current Controlled, 20% duty cycle.
Peak Emission Wavelength		λρ	880		900	nm	
Halfwidth of Emission Spectrum				60		nm	
Optical Rise/Falltime	115.2 kHz Square Wave Signal (duty cycle 1:1)				200	ns	
Output Radiant Intensity	Logic Low Level				0.04	μW/sr	
Overshoot, Optical					25	%	
Rising Edge Peak to Peak Jitter	Over a Period of 10 bits, Independent of Information Content	tj			0.2	μs	

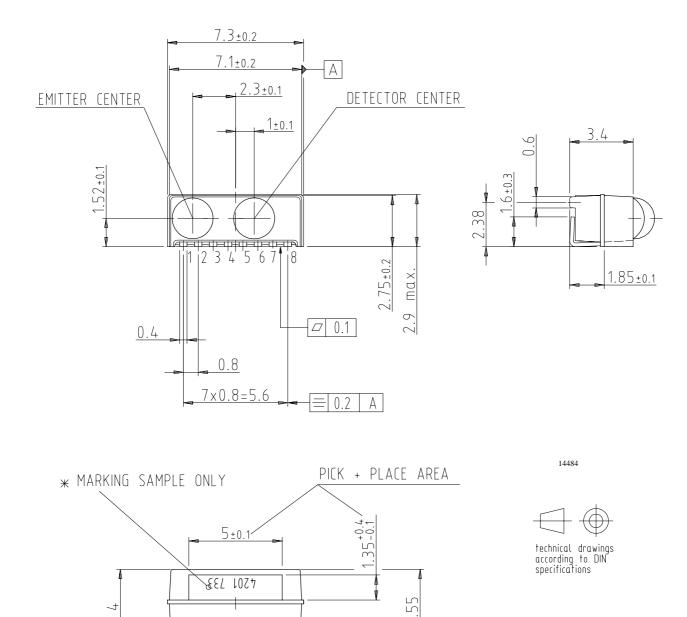
Recommended SMD Pad Layout for the Transceiver TFDU4201

Transceiver leads to be soldered symmetrically on pads

Figure 2. Pad Layout

Figure 3 shows the current derating of the emitter chip as a function of ambient temperature and duty cycle, see absolute maximum ratings. This is for information only. The TFDU4201 has an internal current control. Therefore, most of this curve is not relevant for this device because the higher currents are not intended to be used.



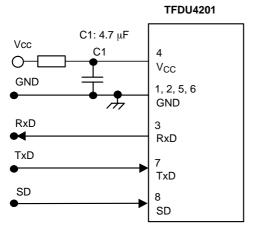

Figure 3. Current Derating Diagram

Document Number 82515 Rev. A1.2, 07-Jul-99

Vishay Telefunken

TFDU4201–(Mechanical Dimensions)

t


^{*} MARKING ORIENTATION180 DEGREES ALLOWED

Appendix **Application Hints**

The TFDU4201 does not need any external components when operated at a "clean" power supply. In a more noisy ambient it is recommended to add a capacitor and a resistor of 1 Ω to 10 Ω for noise suppression. A combination of a tantalum with a ceramics capacitor will be most efficient.

Recommended Circuit Diagram

Shut down

To shut down the TFDU4201 into a standby mode the SD pin has to be set active.

Latency

The receiver is in specified conditions after the defined latency. In a UART related application after that time (typically 50 µs) the receiver buffer of the UART must be cleared. Therefore the transceiver has to wait at least the specified latency after receiving the last bit before starting the transmission to be sure that the corresponding receiver is in a defined state.

For more application circuits, see IrDC Design Guide and TOIM3...-series data.

Table 1. Recommended Application Circuit Components

Component	Recommended Value	Vishay Part Number
C1	4.7 μF	293D 475X9 016B 2T

Telecom (Low Power) IrDA Specification v. 1.2

Physical Parameter	Parameter Value
Distance	Mobile to mobile: 0 to 20 cm
	Mobile to standard IR device: 0 to 30 cm
Angle	+/- 15 degrees
Link Speeds	9.6 kbit/s to 115.2 kbit/s, FIR will require searate discussion
Minimum intensity	3.6 mW/sr
Maximum intensity	28.8 mW/sr
Minimum irradiance	9μW/cm² (90 mW/m²)
Maximum irradiance	500 mW/cm ² (5 kW/m ²)
Receiver latency	500 µ s

This table is a copy out of the IrDA physical layer version 1.2 spec. Italics: changed in Telecom low power standard compared to standard SIR

Vishay Telefunken

Revision History:

A1.2, 07/04/1999: New edition

A1.2, 08/07/1999: Correction of typos: 2.4 V instead of 2.7 V in the full context, and missing measurement conditions added.

TFDU4201 Vishay Telefunken

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Telefunken products for any unintended or unauthorized application, the buyer shall indemnify Vishay Telefunken against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

> Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 (0)7131 67 2831, Fax number: 49 (0)7131 67 2423