


# **Product Description**

Sirenza Microdevices' SZA-2044 is a high efficiency class AB Heterojunction Bipolar Transistor (HBT) amplifier housed in a low-cost surface-mountable plastic package. This HBT amplifier is made with InGaP on GaAs device technology and fabricated with MOCVD for an ideal combination of low cost and high reliability.

This product is specifically designed as a final stage for 802.11b/g and 801.16 equipment in the 2.0-2.7 GHz bands. It can run from a 3V to 5V supply. Optimized on-chip impedance matching circuitry provides a  $50\Omega$  nominal RF input impedance. The external output match and bias adjustability allows load line optimization for other applications or over narrower bands. It features an output power detector, on/off power control and high RF overdrive robustness.



#### **Key Specifications**

# SZA-2044 2.0-2.7 GHz 5V 1W Power Amplifier



4mm x 4mm QFN Package

## **Product Features**

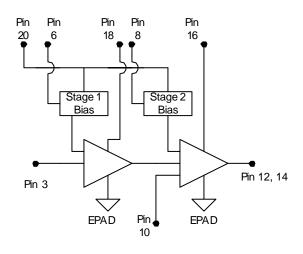
- 802.11g 54Mb/s Class AB Performance Pout = 22.5dBm @ 3% EVM, 5V, 340mA Pout = 18dBm @ 3% EVM, 3.3V, 175mA
- On-chip Output Power Detector
- P1dB = 29.5dBm @ 5V, P1dB = 25dBm @ 3.3V
- Robust Survives RF Input Power = +15dBm
  1000V ESD Class 1C
- Power up/down control < 1µs

# **Applications**

- 802.11b/g WLAN
- 2.4GHz ISM General Purpose Applications
- WiMax 802.16, MMDS and MDS bands

| Symbol               | Parameters: Test Conditions, App circuit page 4 $Z_0 = 50\Omega$ , V <sub>CC</sub> = 5.0V, Iq = 300mA, T <sub>BP</sub> = 30 <sup>o</sup> C | Unit  | Min. | Тур.       | Max. |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------------|------|
| f <sub>O</sub>       | Frequency of Operation                                                                                                                     | MHz   | 2000 |            | 2700 |
| P <sub>1dB</sub>     | Output Power at 1dB Compression – 2.4 GHz                                                                                                  | dBm   |      | 29.5       |      |
|                      | Output Power at 1dB Compression – 2.5 GHz                                                                                                  | UBIII | 28.0 | 29.5       |      |
| S <sub>21</sub>      | Small Signal Gain at 2.4 GHz                                                                                                               | dB    | 23.5 | 25.5       | 27.5 |
|                      | Small Signal Gain at 2.5 GHz                                                                                                               | UB    | 23.5 | 25.5       | 27.5 |
| Pout                 | Output power at 3% EVM 802.11g 54Mb/s - 2.4GHz                                                                                             | dBm   |      | 22.5       |      |
|                      | Output Power at 3% EVM 802.11g 54Mb/s - 2.5GHz                                                                                             | UBIII |      | 22.5       |      |
| NF                   | Noise Figure at 2.5 GHz                                                                                                                    | dB    |      | 6.1        |      |
| IM3                  | Third Order Intermod at 18dBm per tone - 2.5GHz                                                                                            | dBc   |      | -44        | -40  |
| IRL                  | Worst Case Input Return Loss 2.4-2.5GHz                                                                                                    | dB    | 10   | 13         |      |
| ORL                  | Worst Case Output Return Loss 2.4-2.5GHz                                                                                                   | UB    | 9    | 11         |      |
| Vdet Range           | Output Voltage Range for Pout=15dBm to 29dBm                                                                                               | V     |      | 0.9 to 1.7 |      |
| I <sub>cq</sub>      | Quiescent Current (V <sub>cc</sub> = 5V)                                                                                                   | mA    | 255  | 300        | 345  |
| I <sub>VPC</sub>     | Power Up Control Current, Vpc=5V, (I <sub>VPC1</sub> + I <sub>VPC2</sub> )                                                                 | mA    |      | 1.9        |      |
| R <sub>th, j-l</sub> | Thermal Resistance (junction - lead)                                                                                                       | °C/W  |      | 28         |      |

The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or ommisions.


Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems.



#### **Pin Out Description**

| Pin #                                  | Function | Description                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1,2,4,5,<br>7,9,11,<br>13,<br>15,17,19 | N/C      | These are unused pins and not wired inside the package. They may be grounded or connected to adjacent pins.                                                                                                                                                                                                                                                                                |
| 6                                      | VPC1     | VPC1 is the bias control pin for the stage 1 active bias circuit. An external series resistor is required for proper setting of bias levels. Refer to the evaluation board schematic for resistor value. To prevent potential damage, do not apply voltage to this pin that is +1V greater than voltage applied to pin 20 (Vbias) unless Vpc supply current capability is less than 10 mA. |
| 8                                      | VPC2     | VPC2 is the bias control pin for the stage 2 active bias circuit. An external series resistor is required for proper setting of bias levels. Refer to the evaluation board schematic for resistor value. To prevent potential damage, do not apply voltage to this pin that is +1V greater than voltage applied to pin 20 (Vbias) unless Vpc supply current capability is less than 10 mA. |
| 10                                     | Vdet     | Output power detector voltage. Load with > 10K ohms for best performance                                                                                                                                                                                                                                                                                                                   |
| 3                                      | RFIN     | RF input pin. This is DC grounded internal to the IC. Do not apply voltage to this pin.                                                                                                                                                                                                                                                                                                    |
| 12,14                                  | RFOUT    | RF output pin. This is also another connection to the 2nd stage collector.                                                                                                                                                                                                                                                                                                                 |
| 16                                     | VC2      | 2nd stage collector bias pin. Apply 3.0 to 5.0V to this pin.                                                                                                                                                                                                                                                                                                                               |
| 18                                     | VC1      | 1st stage collector bias pin. Apply 3.0 to 5.0V to this pin.                                                                                                                                                                                                                                                                                                                               |
| 20                                     | Vbias    | Active bias network VCC. Apply 3.0 to 5.0V to this pin.                                                                                                                                                                                                                                                                                                                                    |
| EPAD                                   | Gnd      | Exposed area on the bottom side of the package needs to be soldered to the ground plane of the board for optimum thermal and RF performance. Several vias should be located under the EPAD as shown in the recommended land pattern (page 5).                                                                                                                                              |

#### **Simplified Device Schematic**





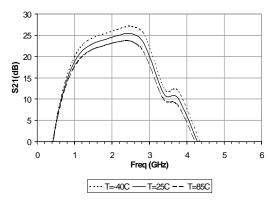
#### **Caution: ESD Sensitive** Appropriate precaution in handling, packaging and testing devices must be observed.

#### **Absolute Maximum Ratings**

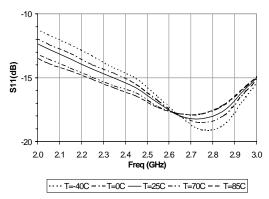
| Parameters                                       | Value       | Unit |  |
|--------------------------------------------------|-------------|------|--|
| VC2 Collector Bias Current (I <sub>VC2</sub> )   | 500         | mA   |  |
| VC1 Collector Bias Current (I <sub>VC1</sub> )   | 150         | mA   |  |
| Device Voltage (V <sub>D</sub> )                 | 7.0         | V    |  |
| Power Dissipation                                | 3           | W    |  |
| Operating Lead Temperature (T <sub>L</sub> )     | -40 to +85  | °C   |  |
| Max RF Input Power for 50 ohm output load        | 15          | dBm  |  |
| Max RF Input Power for 10:1 VSWR RF<br>out load  | 8           | dBm  |  |
| Storage Temperature Range                        | -40 to +150 | °C   |  |
| Operating Junction Temperature (T <sub>J</sub> ) | +150        | °C   |  |
| ESD Human Body Model (Class 1C)                  | >1000       | V    |  |

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation the device voltage and current must not exceed the maximum operating values specified in the table on page one.

Bias conditions should also satisfy the following expression:  $I_D V_D < (T_J - T_L) \, / \, R_{TH'} \, j\text{-}I$ 

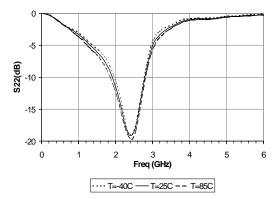



S12 - Isolation

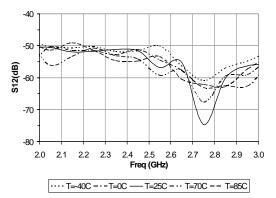

## Performance: 2.3 - 2.7 GHz Evaluation Board Data ( $V_{cc} = V_{pc} = 5.0V$ , $I_q = 300$ mA)

S11 - Input Return Loss 0 -5 S11(dB) -10 -15 -20 0 1 2 4 5 6 3 Freq (GHz) ···· T=-40C --- T=25C -- T=85C



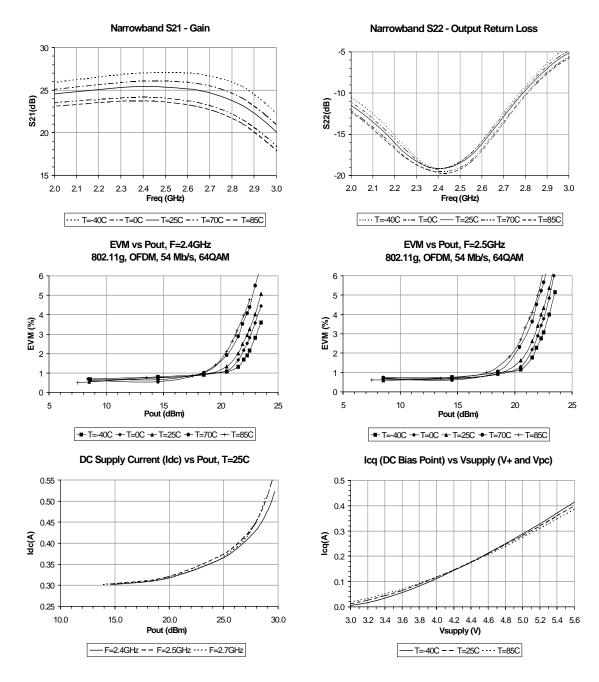




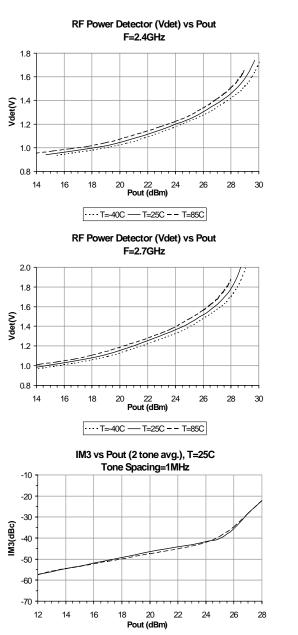

0 -10 -20 -30 S12(dB) -40 -50 -60 -70 -80 0 2 5 6 1 3 4 Freq (GHz) ---- T=-40C -- T=25C - - T=85C

S22 - Output Return Loss

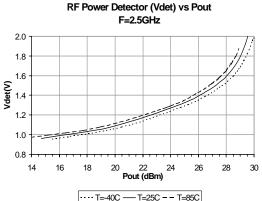



Narrowband S12 - Isolation

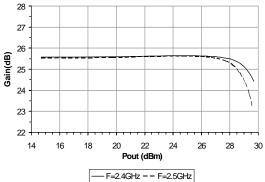





## Performance: 2.3 - 2.7 GHz Evaluation Board Data ( $V_{cc} = V_{pc} = 5.0V$ , $I_q = 300$ mA)



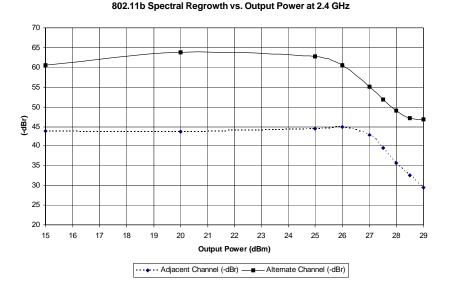

303 South Technology Court Broomfield, CO 80021



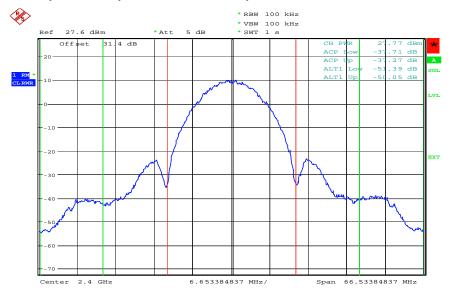



## Performance: 2.3 - 2.7 GHz Evaluation Board Data ( $V_{cc} = V_{pc} = 5.0V$ , $I_q = 300$ mA)




Gain vs Pout, T=25C

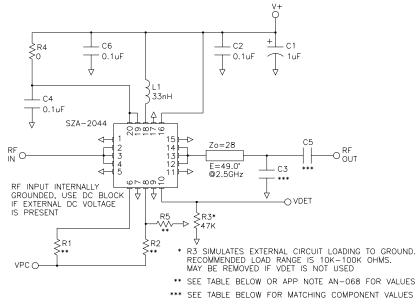



F=2.4GHz - F=2.5GHz



## Performance: 2.3 - 2.7 GHz Evaluation Board Data ( $V_{cc} = V_{pc} = 5.0V$ , $I_q = 300$ mA)








Date: 3.AUG.2004 15:48:28

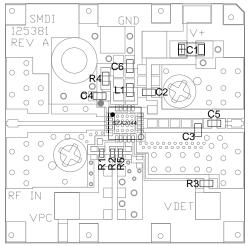


#### 2.0 - 2.7 GHz Evaluation Board Schematic For V+ = Vcc = 5.0V



Important Note:

Pins 1,2,4,5,7,9,11,13,15,17,19 are unwired (N/C) inside the package. Refer to page 2 for detailed pin descriptions. Some of these pins are wired to adjacent pins or grounded as shown in the application circuit. This is to maintain consistency with the evaluation board layout shown below. It is recommended to use this layout and wiring to achieve the specified performance.


#### Note:

Application circuits are available for 2.1-2.4GHz and 2.5-2.7GHz bands. Only the output matching circuit component values change. Contact applications engineering.

For VCC=3.3V application circuit, contact Applications Engineering.

#### 2.0 - 2.7 GHz Evaluation Board Layout For V+ = Vcc = 5.0V

Board material GETEK, 10mil thick, Dk=3.9, 2 oz. copper



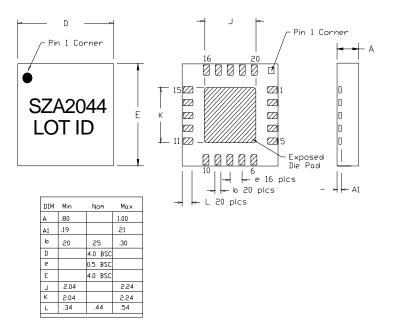
| DESG   | DESCRIPTION                                     |
|--------|-------------------------------------------------|
| Q1     | SZA-2044                                        |
| R1     | See Table 2, 0402 1%                            |
| R2     | See Table 2, 0402 1%                            |
| R3     | 47K OHM, 0603 or 0402                           |
| R4     | 0 OHM, 0603 or 0402                             |
| R5     | See Table 2, 0402 1%                            |
| C1     | 1uF 16V TANTALUM CAP                            |
| C2,4,6 | 0.1uF CAP, 0603 or 0402                         |
| C3     | See Table 1, 0603                               |
| C5     | See Table 1, 0603                               |
| L1     | 33nH IND, 0603<br>(Toko ll1608-FH33NJ OR EQUIV) |

| Freg. Range   | C3    | C5   |
|---------------|-------|------|
| 2.0 - 2.2 GHz | 1.0pF | 15pF |
| 2.3 - 2.7 GHz | 0.5pF | 15pF |
|               |       |      |

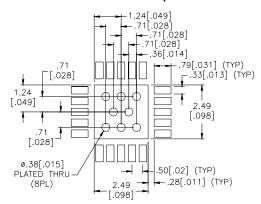
Table 1: Output matching capacitor values (Vcc=5V, Iq=302mA)

| VPC(V) | R1    | R2    | R5    |
|--------|-------|-------|-------|
| 2.9    | 34.8  | 27.4  | OUT   |
| 3.0    | 121   | 105   | OUT   |
| 3.1    | 205   | 182   | OUT   |
| 3.2    | 287   | 261   | OUT   |
| 3.3    | 374   | 332   | OUT   |
| 5.0    | 1.82K | 1.10K | 4.75K |

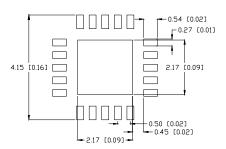
Table 2: Resistor values for Vpc=2.9V to 5V (Vcc=5V, Iq=302mA)




| Part Number | Reel Size | Devices/Reel |  |
|-------------|-----------|--------------|--|
| SZA-2044    | 13"       | 3000         |  |


#### Part Symbolization

The part will be symbolized with an "SZA-2044" marking designator on the top surface of the package.


#### Package Outline Drawing (dimensions in mm):



### Recommended Land Pattern (dimensions in mm[in]):



# Recommended PCB Soldermask (SMBOC) for Land Pattern (dimensions in mm[in]):

