Linear IC Converter

CMOS

D/A Converter for Digital Tuning (24-channel, 8 -bit, on-chip OP amp)

MB88345

- DESCRIPTION

The MB88345 incorporates twenty-four 8-bit D/A converter modules.
It also contains an output amplifier, allowing driving at large current.
Since the inputs data in serial mode, it requires only three control lines for data input and can be cascaded.
The MB88345 is suitable for applications such as electronic volume controls and replacement of semi-fixed resistors in tuning systems.

■ FEATURES

- Ultra-low power consumption ($1.1 \mathrm{~mW} / \mathrm{ch}$: typical)
- Compact space-saving package (QFP-32)
- Contains 24 -channel R-2R type 8-bit D/A converter
- On-chip analog output amps (sink current max. 1.0 mA , source current max. 1.0 mA)
- Analog output range : 0 V to Vcc
- Two separate power supply/ground lines for MCU interface block/operational amplifier output buffer block and D/A converter block
- Serial data input : maximum operating speed 2.5 MHz
- CMOS process

PACKAGE

(FPT-32P-M21)

PIN ASSIGNMENT

(TOP VIEW)

(FPT-32P-M21)

PIN DESCRIPTION

Pin No.	Pin name	I/O	Description
27	DI *	I	Serial data input pin. This pin inputs serial data with a data length of 14 bits.
24	DO	O	This pin outputs the MSB data in the 14-bit shift register.
26	CLK *	I	Shift clock input pin. The input signal from the DI pin enters the 14-bit shift register at the rising edge of the shift clock pulse.
25	LD *	I	When the LD pin inputs the High-level signal, shift register value is loaded to the decoder and the D/A output register.
30 to 32 1 to 11 14 to 23	AO1 to AO3 AO4 to AO14 AO15 to AO24	O	8-bit D/A output with OP-amp.
13	Vcc	-	MCU interface and OP-amp power-supply pin
28	GND	-	MCU interface and OP-amp GND pin
12	VDD	-	D/A converter power-supply pin
29	Vss	-	D/A converter GND pin

[^0]
BLOCK DIAGRAM

MB88345

- DATA CONFIGURATION

The MB88345 has a 14-bit shift register for chip control.
The 14-bit shift register must be used to set up data in the configuration shown below.
Note : The data configuration has a total of 14 bits, six for channel selection and eight for D/A data output.

- D/A converter control signals

Input data signal								D/A converter output voltage
D0	D1	D2	D3	D4	D5	D6	D7	
0	0	0	0	0	0	0	0	$\ldots \mathrm{Vss}$
1	0	0	0	0	0	0	0	$\stackrel{\text { V Vef }}{ } / 255 \times 1+$ Vss
2	2	2	2	2	2	2	2	2
0	1	1	1	1	1	1	1	$\stackrel{\text { ¢ VREF }}{ } / 255 \times 254+$ Vss
1	1	1	1	1	1	1	1	\dagger V DD

- Channel selection signals

Input data signal					Channel selection	
D8	D9	D10	D11	D12		
\times	0	0	0	0	0	Deselected
\times	0	0	0	0	1	AO1 Selection
\times	0	0	0	1	0	AO2 Selection
2	2	2	2	2	2	2
\times	1	0	1	1	1	AO23 Selection
\times	1	1	0	0	0	AO24 Selection
\times	1	1	0	0	1	
\times	1	1	0	1	0	
2	2	2	2	2	2	Deselected
\times	1	1	1	1	0	
\times	1	1	1	1	1	

x : Don't Care

TIMING CHART

ANALOG OUTPUT VOLTAGE RANGE

MB88345

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Rating		Unit
			Min.	Max.	
Power supply voltage	Vcc	Based on GND$\mathrm{Ta}=+25^{\circ} \mathrm{C}$	-0.3	+7.0	V
	Vdd		-0.3*	+7.0*	V
Input voltage	Vin		-0.3	$\mathrm{Vcc}+0.3$	V
Output voltage	Vout		-0.3	$\mathrm{Vcc}+0.3$	V
Power consumption	Pd	-	-	250	mW
Operating temperature	Ta		-20	+85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55	+150	${ }^{\circ} \mathrm{C}$

*: Vcc \geq VDD
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Conditions	Value	Unit
Power supply voltage 1	Vcc	-	$5 \mathrm{~V} \pm 10$ \%	V
	GND		0	V
Power supply voltage 2	Vdo	Vdo - Vss $\geq 2.0 \mathrm{~V}$	2.0 to Vcc	V
	Vss		GND to Vcc-2.0	V
Analog output source current	IAL	-	max. 1.0	mA
Analog output sink current	ІАН		max. 1.0	mA
Oscillation limit output capacity	Col		max. 1.0	$\mu \mathrm{F}$
Digital data value range	-		\#00 to \#FF	-
Operating temperature	Ta		-20 to +85	${ }^{\circ} \mathrm{C}$

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

- ELECTRICAL CHARACTERISTICS

1. DC Characteristics

(1) Digital block

$$
\left(V_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{cc}}=+5 \mathrm{~V} \pm 10 \%\left(\mathrm{~V}_{\mathrm{cc}} \geq \mathrm{V}_{\mathrm{DD}}\right), \mathrm{GND}, \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{Ta}=-20^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value			Unit
				Min.	Typ.	Max.	
Power supply voltage	Vcc	Vcc	-	4.5	5.0	5.5	V
Power supply current	Icc		Operation at CLK = 1 MHz (No load)	-	2.4	5.4	mA
Input leak current	Ilık	$\begin{gathered} \text { CLK } \\ \text { DI } \\ \text { LD } \end{gathered}$	V in $=0$ to Vcc	-10	-	10	$\mu \mathrm{A}$
"L" level input voltage	VIL		-	-	-	0.2 Vcc	V
"H" level input voltage	VIH			0.5 Vcc	-	-	V
"L" level output voltage	Vol	DO	$\mathrm{loL}=2.5 \mathrm{~mA}$	-	-	0.4	V
"H" level output voltage	Vон		$\mathrm{loH}=-400 \mu \mathrm{~A}$	$\begin{gathered} \hline \text { Vcc- } \\ 0.4 \end{gathered}$	-	-	V

(2) Analog block (1)
$\left(V_{d D}, V_{c c}=+5 \mathrm{~V} \pm 10 \%\left(\mathrm{~V}_{\mathrm{cc}} \geq \mathrm{V} \mathrm{DD}\right), \mathrm{GND}, \mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value			Unit
				Min.	Typ.	Max.	
Power consumption	IDD	Vdd	No load	-	3.0	4.5	mA
Analog Voltage	VDD		Vdo - Vss $\geq 2.0 \mathrm{~V}$	2.0	-	Vcc	V
	Vss	Vss		GND	-	$\begin{gathered} \hline \mathrm{Vcc}- \\ 2.0 \end{gathered}$	V
Resolution	Res	$\begin{gathered} \text { AO1 } \\ \text { to } \\ \text { AO24 } \end{gathered}$	-	-	8	-	bit
Monotonic increase	Rem		No load $V_{D D} \leq V_{C C}-0.1 \mathrm{~V}$ Vss $\geq 0.1 \mathrm{~V}$	-	8	-	bit
Non-linearity error	LE			-1.5	-	1.5	LSB
Differential linearity error	DLe			-1.0	-	1.0	LSB

Nonlinearity error :

Differential linearity error :

Deviation (error) in input/ output curves with respect to an ideal straight line connecting output voltage at " 00 " and output voltage at "FF." Deviation (error) in amplification with respect to theoretical increase in amplification per 1-bit increase in digital value.

Note : The value of $V_{A O H}$ and $V_{D D}$, and the value of $V_{A O L}$
and $V_{S S}$ are not necessarily equivalent.

MB88345

(3) Analog block (2)
$\left(V_{d D}, V_{c c}=+5 \mathrm{~V} \pm 10 \%\left(\mathrm{~V}_{\mathrm{cc}} \geq \mathrm{V} \mathrm{Dd}\right), \mathrm{GND}, \mathrm{V}_{\mathrm{ss}}=0 \mathrm{~V}, \mathrm{Ta}=-20^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value			Unit
				Min.	Typ.	Max.	
Output minimum voltage 1	Vaolı	AO1 to AO24	$\begin{aligned} & \mathrm{VDD}=\mathrm{VCC} \\ & \mathrm{VSS}=\mathrm{GND}=0 \mathrm{~V} \\ & \mathrm{IAL}=0 \mu \mathrm{~A} \\ & \text { Digital data }=\# 00 \end{aligned}$	Vss	-	Vss +0.1	V
Output minimum voltage 2	Vaol2		$\begin{aligned} & \mathrm{VDD}=\mathrm{VCC}=5.0 \mathrm{~V} \\ & \mathrm{VSS}=\mathrm{GND}=0 \mathrm{~V} \\ & \mathrm{IAL}=500 \mu \mathrm{~A} \\ & \text { Digital data }=\# 00 \end{aligned}$	Vss - 0.2	Vss	Vss +0.2	V
Output minimum voltage 3	Vaol3		$\begin{aligned} & \mathrm{VDD}=\mathrm{VCC}=5.0 \mathrm{~V} \\ & \mathrm{VSS}=\mathrm{GND}=0 \mathrm{~V} \\ & \text { IAH }=500 \mu \mathrm{~A} \\ & \text { Digital data }=\# 00 \end{aligned}$	Vss	-	Vss +0.2	V
Output minimum voltage 4	Vaol4		$\begin{aligned} & \mathrm{VDD}=\mathrm{VCC}=5.0 \mathrm{~V} \\ & \mathrm{VSS}=\mathrm{GND}=0 \mathrm{~V} \\ & \mathrm{IAL}=1.0 \mathrm{~mA} \\ & \text { Digital data }=\# 00 \end{aligned}$	Vss - 0.3	Vss	Vss +0.3	V
Output minimum voltage 5	Vaols		$\begin{aligned} & \mathrm{VDD}=\mathrm{VCC}=5.0 \mathrm{~V} \\ & \mathrm{~V} \mathrm{VS}=\mathrm{GND}=0 \mathrm{~V} \\ & \mathrm{IAH}=1.0 \mathrm{~mA} \\ & \text { Digital data }=\# 00 \end{aligned}$	Vss	-	Vss +0.3	V
Output maximum voltage 1	VAOH1		$\begin{aligned} & \hline \mathrm{VDD}=\mathrm{VCC} \\ & \mathrm{VSS}=\mathrm{GND}=0 \mathrm{~V} \\ & \mathrm{IAL}=0 \mu \mathrm{~A} \\ & \text { Digital data }=\# \mathrm{FF} \end{aligned}$	Vdd - 0.1	-	Vdd	V
Output maximum voltage 2	Vaон2		$\begin{aligned} & \mathrm{VDD}=\mathrm{VCC}=5.0 \mathrm{~V} \\ & \mathrm{VSS}=\mathrm{GND}=0 \mathrm{~V} \\ & \mathrm{IAL}=500 \mu \mathrm{~A} \\ & \text { Digital data }=\# \mathrm{FF} \end{aligned}$	Vdd - 0.2	-	Vdd	V
Output maximum voltage 3	Vаонз		$\begin{aligned} & \hline \mathrm{VDD}=\mathrm{VCC}=5.0 \mathrm{~V} \\ & \mathrm{VSS}=\mathrm{GND}=0 \mathrm{~V} \\ & \mathrm{I} \mathrm{AH}=500 \mu \mathrm{~A} \\ & \text { Digital data }=\# \mathrm{FF} \end{aligned}$	Vdd - 0.2	Vdd	VdD +0.2	V
Output maximum voltage 4	VaOH4		$\begin{aligned} & \mathrm{VDD}=\mathrm{VCC}=5.0 \mathrm{~V} \\ & \mathrm{VSS}=\mathrm{GND}=0 \mathrm{~V} \\ & \mathrm{IAL}=1.0 \mathrm{~mA} \\ & \text { Digital data }=\# \mathrm{FF} \end{aligned}$	Vdd - 0.3	-	Vdd	V
Output maximum voltage 5	Vaон5		$\begin{aligned} & \mathrm{VDD}=\mathrm{VCC}=5.0 \mathrm{~V} \\ & \mathrm{VSS}=\mathrm{GND}=0 \mathrm{~V} \\ & \mathrm{I} \mathrm{AH}=1.0 \mathrm{~mA} \\ & \text { Digital data }=\# \mathrm{FF} \end{aligned}$	Vdd - 0.3	Vdd	VdD +0.3	V

2. AC Characteristics

Parameter	Symbol	Conditions	Value		Unit
			Min.	Max.	
"L" level clock pulse width	tckı	-	200	-	ns
"H" level clock pulse width	tскн		200	-	ns
Clock rise time Clock fall time	$\begin{aligned} & \text { tcr } \\ & \text { tcf } \end{aligned}$		-	200	ns
Data setup time	tDCH		30	-	ns
Data hold time	tснD		60	-	ns
Load setup time	tchl		200	-	ns
Load hold time	tıDC		100	-	ns
"H" level load pulse width	tıDH		100	-	ns
Data output delay time	too	See "Load conditions (1) "	-	150	ns
D/A output setting time	tLDD	See "Load conditions (2) "	-	100	$\mu \mathrm{S}$

- Load conditions
(1)

MB88345

- Input/output timing

Note : Digital input decision level : 50\% and 20\% of Vcc.
Digital output decision level : 80\% and 20% of Vcc.
Analog output decision level : 90% and 10% of Vcc.

Vao vs. Iao CHARACTERISTICS EXAMPLE

MB88345

■ ORDERING INFORMATION

Part number	Package	Remarks
MB88345PF	32 pin Plastic QFP (FPT-32P-M21)	

PACKAGE DIMENSION

32-pin, Plastic QFP (FPT-32P-M21)

© 1994 FUUITSU LIITED F32032S-1C-2

FUJITSU LIMITED

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

[^0]: *: DI, CLK, LD pins should be fixed with "Low"level while no data are transferred.

