PRELIMINARY DATA

TYPE	V $_{\text {DSS }}$	$\mathbf{R}_{\text {DS(on) }}$	$\mathbf{I}_{\mathbf{D}}$
STD150NH02L	24 V	$<0.0035 \Omega$	150 A
STD150NH02L-1	24 V	$<0.0035 \Omega$	150 A

- TYPICAL R $\mathrm{DS}(\mathrm{on})=0.003 \Omega$ @ 10V
- TYPICAL $R_{D S}(o n)=0.005 \Omega$ @ 5V
- R ${ }_{\text {DS }(O N)}{ }^{*} \mathrm{Q}_{\mathrm{g}}$ INDUSTRY's BENCHMARK
- CONDUCTION LOSSES REDUCED
- SWITCHING LOSSES REDUCED
- LOW THRESHOLD DEVICE
- SURFACE MOUNTING POWER PACKAGE IN TAPE \& REEL (SUFFIX "T4")

ClipPAK ${ }^{\text {tM }}$
Suffix "T4"

IPAK
Suffix "-1"

DESCRIPTION

The STD150NH02L utilizes the latest advanced design rules of ST's proprietary STripFET ${ }^{\text {TM }}$ technology. This novel 0.6μ process utilizes also unique metallization techniques that coupled to a "bondless" assembly technique result in outstanding performance with standard DPAK outline. It is therefore ideal in high performance DC-DC converter applications where efficiency is to be achieved at very high output currents.

INTERNAL SCHEMATIC DIAGRAM

APPLICATIONS

- SPECIFICALLY DESIGNED AND OPTIMISED FOR HIGH EFFICIENCY DC/DC CONVERTERS

ORDERING INFORMATION

SALES TYPE	MARKING	PACKAGE	PACKAGING
STD150NH02LT4	D150NH02L	DPAK	TAPE \& REEL
STD150NH02L-1	D150NH02L	IPAK	TUBE

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {spike }}(1)$	Drain-source Voltage Rating	30	V
$\mathrm{~V}_{\mathrm{DS}}$	Drain-source Voltage $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	24	V
$\mathrm{~V}_{\mathrm{DGR}}$	Drain-gate Voltage $\left(\mathrm{R}_{\mathrm{GS}}=20 \mathrm{k} \Omega\right)$	24	V
$\mathrm{~V}_{\mathrm{GS}}$	Gate-source Voltage	± 20	V
I_{D}	Drain Current (continuous) at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	150	A
ID_{D}	Drain Current (continuous) at $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	95	A
$\mathrm{I}_{\mathrm{DM}}(2)$	Drain Current (pulsed)	600	A
$\mathrm{P}_{\text {TOT }}$	Total Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	125	W
	Derating Factor	0.83	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
$\mathrm{E}_{\text {AS }}(3)$	Single Pulse Avalanche Energy	900	mJ
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-55 to 175	${ }^{\circ} \mathrm{C}$
T_{j}	Max. Operating Junction Temperature		

THERMAL DATA

Rthj-case	Thermal Resistance Junction-case Max	1.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rthj-amb	Thermal Resistance Junction-ambient Max	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
T_{1}	Maximum Lead Temperature for Soldering Purpose	275	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (TCASE $=25^{\circ} \mathrm{C}$ UNLESS OTHERWISE SPECIFIED)
OFF

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	Drain-source Breakdown Voltage	$\mathrm{I}_{\mathrm{D}}=250 \mathrm{~mA}, \mathrm{~V}_{\mathrm{GS}}=0$	24			V
IDSS	Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$			1	$\mu \mathrm{~A}$
IGSS	Gate-body Leakage Current $\left(\mathrm{V}_{\mathrm{DS}}=0\right)$	$\mathrm{V}_{\mathrm{GS}}= \pm 20 \mathrm{~V}$			± 100	nA

ON (4)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}$	1	1.8		V
$\mathrm{R}_{\mathrm{DS}(o n)}$	Static Drain-source On	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{~A}$		0.003	0.0035	Ω
	Resistance	$\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{~A}$		0.005	0.0065	Ω

DYNAMIC

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{g}_{\mathrm{fs}}(4)$	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=40 \mathrm{~A}$		52		S
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{GS}}=0$		4450		pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance			1126	pF	
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance		141	pF		
R_{g}	Gate Input Resistance	$\mathrm{f}=1 \mathrm{MHz}$ Gate DC Bias $=0$		1.6		Ω
		Test Signal Level=20mV				

ELECTRICAL CHARACTERISTICS (CONTINUED)
SWITCHING ON

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\mathrm{d}(\text { on })}$	Turn-on Delay Time	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{~A}$		14		ns
t_{r}	Rise Time	$\mathrm{R}_{\mathrm{G}}=4.7 \Omega \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$		224		ns
Q_{g}	(see test circuit, Figure 3)		224			
Q_{gs}	Gate-Source Charge	$\mathrm{V}_{\mathrm{DD}}=16 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=150 \mathrm{~A}$,		69	93	nC
Q_{gd}	Gate-Drain Charge	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}$		13	nC	
$\mathrm{Q}_{\text {oss }}(5)$	Output Charge	$\mathrm{V}_{\mathrm{DS}}=16 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}$		27		nC
$\mathrm{Q}_{\mathrm{gls}}(6)$	Third-Quadrant Gate Charge	$\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}$		64		nC

SWITCHING OFF

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit		
$\mathrm{t}_{\mathrm{d} \text { (off) }}$								
tf_{f}							\quad	Turn-off-Delay Time
:---								
Fall Time								

SOURCE DRAIN DIODE

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
ISD	Source-drain Current				150	A
ISDM (2)	Source-drain Current (pulsed)				600	A
$\mathrm{V}_{\text {SD }}$ (4)	Forward On Voltage	$\mathrm{ISD}=75 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=0$			1.3	V
$\begin{gathered} \hline \mathrm{t}_{\mathrm{rr}} \\ \mathrm{Q}_{\mathrm{rr}} \\ \mathrm{I}_{\mathrm{RRM}} \end{gathered}$	Reverse Recovery Time Reverse Recovery Charge Reverse Recovery Current	$\begin{aligned} & \hline \mathrm{ISD}=150 \mathrm{~A}, \mathrm{di} / \mathrm{dt}=100 \mathrm{~A} / \mu \mathrm{s}, \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{j}}=150^{\circ} \mathrm{C} \\ & \text { (see test circuit, Figure 5) } \end{aligned}$		$\begin{aligned} & 47 \\ & 58 \\ & 2.5 \end{aligned}$		$\begin{gathered} \hline \mathrm{ns} \\ \mathrm{nC} \\ \mathrm{~A} \end{gathered}$

1. Garanted when external $R_{g}=4.7 \Omega$ and $t_{f}<t_{f} \max$
2. Pulse width limited by safe operating area
3. Starting $T_{j}=25^{\circ} \mathrm{C}$, $I_{D}=40 \mathrm{~A}, \mathrm{~V}_{D D}=15 \mathrm{~V}$
4. Pulsed: Pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%.
5. $\mathrm{Q}_{\text {oss }}=\mathrm{C}_{\text {oss }}{ }^{*} \Delta \mathrm{~V}_{\text {in }}, \mathrm{C}_{\text {oss }}=\mathrm{C}_{\text {gd }}+\mathrm{C}_{\mathrm{ds}}$. See Appendix A
6. Gate charge for Syncronous Operation

Fig. 1: Unclamped Inductive Load Test Circuit

Fig. 3: Switching Times Test Circuit For
Resistive Load

Fig. 2: Unclamped Inductive Waveform

Fig. 4: Gate Charge test Circuit

Fig. 5: Test Circuit For Inductive Load Switching And Diode Recovery Times

TO-252 (DPAK) MECHANICAL DATA

DIM.	mm				inch	
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	2.20		2.40	0.087		0.094
A1	0.90		1.10	0.035		0.043
A2	0.03		0.23	0.001		0.009
B	0.64		0.90	0.025		0.035
B2	5.20		5.40	0.204		0.213
C	0.45		0.60	0.018		0.024
C2	0.48		0.60	0.019		0.024
D	6.00		6.20	0.236		0.244
E	6.40		4.60	0.173		0.181
G	4.40				0.10	0.368
H	9.35					0.398
L2						
L4	0.60					0.031
V2	0°					

TO-251 (IPAK) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	2.2		2.4	0.086		0.094
A1	0.9		1.1	0.035		0.043
A3	0.7		1.3	0.027		0.051
B	0.64		0.9	0.025		0.031
B2	5.2		5.4	0.204		0.212
B3			0.85		0.033	
B5						0.012
B6			0.35			0.037
C	0.45		0.6	0.019		0.023
C2	0.48		6.2	0.236		0.264
D	6		6.6	0.252		0.181
E	6.4		4.6	0.173		0.641
G	4.4		16.3	0.626		0.370
H	15.9		9.4	0.354		0.047
L	9		1.2	0.031		0.039
L1	0.8					0.031
L2						

DPAK FOOTPRINT

All dimensions are in millimeters

TUBE SHIPMENT (no suffix)*

TAPE AND REEL SHIPMENT (suffix "T4")*

TAPE MECHANICAL DATA

DIM.	mm		inch	
	MIN.	MAX.	MIN.	MAX.
A0	6.8	7	0.267	0.275
B0	10.4	10.6	0.409	0.417
B1		12.1		0.476
D	1.5	1.6	0.059	0.063
D1	1.5		0.059	
E	1.65	1.85	0.065	0.073
F	7.4	7.6	0.291	0.299
K0	2.55	2.75	0.100	0.108
P0	3.9	4.1	0.153	0.161
P1	7.9	8.1	0.311	0.319
P2	1.9	2.1	0.075	0.082
R	40		1.574	
W	15.7	16.3	0.618	0.641

DIM.	mm		inch	
	MIN.	MAX.	MIN.	MAX.
A		330		12.992
B	1.5		0.059	
C	12.8	13.2	0.504	0.520
D	20.2		0.795	
G	16.4	18.4	0.645	0.724
N	50		1.968	
T		22.4		0.881

BASE QTY	BULK QTY
2500	2500

Δr.

Appendix A: Buck Converter Power Losses Estimation

DESCRIPTION

The power losses associated with the FETs in a Synchronous Buck converter can be estimated using the equations shown in the table below. The formulas give a good approximation, for the sake of performance comparison, of how different pairs of devices affect the converter efficiency. However a very important parameter, the working temperature, is not considered. The real device behavior is really dependent on how the heat generated inside the devices is removed to allow for a safer working junction temperature.

The low side (SW2) device requires:

- Very low RDS(on) to reduce conduction losses
- Small $Q_{\text {gls }}$ to reduce the gate charge losses
- Small $\mathrm{C}_{\text {oss }}$ to reduce losses due to output capaci tance
- Small $Q_{r r}$ to reduce losses on SW1 during its turn-on
- The $\mathrm{C}_{\mathrm{gd}} / \mathrm{C}_{\mathrm{gs}}$ ratio lower than $\mathrm{V}_{\mathrm{th}} / \mathrm{V}_{\mathrm{GG}}$ ratio especially with low drain to source voltage to avoid the cross conduction phenomenon

The high side (SW1) device requires:

- Small R_{g} and L_{s} to allow higher gate current peak and to limit the voltage feedback on the gate - Small Q_{g} to have a faster commutation and to reduce gate charge losses
- Low $\mathrm{R}_{\mathrm{DS}(o n)}$ to reduce the conduction losses

Parameter	Meaning
δ	Duty-Cycle
$\mathrm{Q}_{\text {gsth }}$	Post Threshold Gate Charge
$\mathrm{Q}_{\text {gls }}$	Third Quadrant Gate Charge
Pconduction	On State Losses
Pswitching	On-off Transition Losses
Pdiode	Conduction and Reverse Recovery Diode Losses
Pdiode	Gate Drive Losses
PQoss	Output Capacitance Losses

[^0]Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
© http://www.st.com

[^0]: Dissipated by SW1 during turn-on

