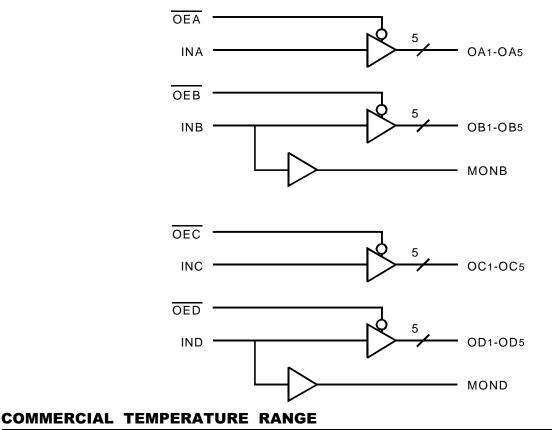
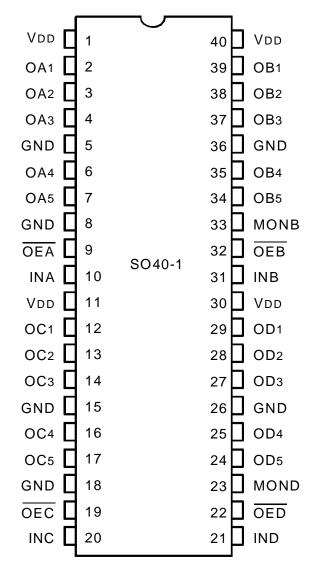


GUARANTEED LOW SKEW CMOS 20 OUTPUT CLOCK DRIVER/BUFFER


FEATURES:

- 20 output, low skew clock signal buffer
- High drive FCT-type outputs
- Reduced swing TTL outputs for low noise
- Input hysteresis for better noise margin
- Monitor output
- Guaranteed low skew
 - -0.5ns output skew
 - 0.7ns pulse skew
 - 1ns part-to-part skew
- Available in 40-pin QVSOP

DESCRIPTION:


The QS5820T clock driver/buffer circuits can be used for clock distribution schemes where low skew, high speed, and small footprint are primary concerns. The QS5820T offers four banks of five non-inverting outputs. Designed in IDT's proprietary QCMOS process, this device provides low propagation delay buffering with on-chip skew of 0.5ns for same-transition, same-bank signals. The QS5820T provides major skew advantages over octal type devices where total part-to-part skew (tsk(t)) of >1ns is unacceptable. Furthermore, board area consumed by the QVSOP package is almost one-third that of the typical SOIC package offered for octal devices. This clock buffer product is designed for use in high performance workstation, multi-board computing and telecommunications systems. The QS5820T is available in the 40-pin QVSOP package which offers the world's smallest logic footprint.

FUNCTIONAL BLOCK DIAGRAM

DECEMBER 2000

PIN CONFIGURATION

QVSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Rating	Max.	Unit
VTERM ⁽²⁾	Supply Voltage to Ground	–0.5 to +7	V
VTERM ⁽³⁾	DC Switch Voltage Vs	–0.5 to +7	V
VTERM ⁽³⁾	DC Input Voltage VIN	–0.5 to +7	V
VAC	AC Input Voltage (pulse width ≤20ns)	-3	V
	DC Input Diode Current with VIN < 0	-20	mA
Ιουτ	DC Output Current Max Sink Current/Pin	120	mA
Рмах	Maximum Power Dissipation	1.2	W
Tstg	Storage Temperature Range	-65 to +150	°C

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. VDD Terminals.

3. All terminals except VDD.

CAPACITANCE (T_A = 25° C, f = 1MHz, V_{IN} = 0V, V_{OUT} = 0V)

•/ / . • / • •	-('
Pins	Тур.	Max.	Unit	

5

8

pF

All Pins

NOTE:

1. Capacitance is characterized but not tested.

PIN DESCRIPTION

Pin Name	Туре	Description
OEA, OEB, OEC, OED	I	Output Enable Inputs
INA, INB, INC, IND	Ι	Clock Inputs
OAn, OBn, OCn, ODn	0	Clock Outputs
MONB, MOND	0	Non-disable Monitor Outputs

RECOMMENDED OPERATING CONDITIONS

Symbol	Description	Min.	Max.	Unit
Vdd	Power Supply Voltage	4.75	5.25	V
VIN	Input Voltage	0	5.5	V
Vout	Voltage Applied to Outputs	0	5.5	۷
Та	Ambient Operating Temperature	0	+70	°C

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Vih	Input HIGH Voltage	Guaranteed Logic HIGH for Inputs	2	—	—	V
VIL	Input LOW Voltage	Guaranteed Logic LOW for Inputs	—	—	0.8	V
VIC	Clamp Diode Voltage (3)	V _{DD} = Min., I _{IN} = -18mA	—	- 0.7	- 1.2	V
Vон	Output HIGH Voltage	Vdd = Min., Ioн = -24mA	2.4	—	—	V
Vol	Output LOW Voltage	VDD = Min., IOL = 64mA	—	—	0.55	V
lin	Input Leakage Current	$V_{DD} = Max., V_{IN} = V_{DD} \text{ or } GND$	—	—	±1	μA
loz	Output Leakage Current	VDD = Max., Outputs High-Z	_	_	±1	μA
los	Short Circuit Current ^(2,3)	VDD = Max., VOUT = GND	- 60	_	_	mA

NOTES:

1. Typical values are at VDD = 5.0V, TA = 25° C.

2. Not more than one output should be used to test this high power condition. Duration is ≤ 1 second.

3. Guaranteed by design but not tested.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾	Тур. ⁽³⁾	Max.	Unit
Icc	Quiescent Power Supply Current	VDD = Max., VIN = GND or VDD	0.4	3	mA
Δlcc	Supply Current per Input HIGH	VDD = Max., VIN = 3.4V, fi = 0MHz	0.5	2.5	mA
ICCD	Dynamic Power Supply Current per Output ⁽²⁾	VDD = Max., VIN = GND or VDD Outputs Enabled, 50% duty cycle	0.1	0.2	mA/MHz

NOTES:

1. For conditions shown as Min. or Max., use the appropriate values specified under DC specifications.

2. Guaranteed but not tested.

3. Typical values are for reference only. Conditions are VDD = 5.0V and $T_A = 25^{\circ}C$.

4. IC = ICC + $(\Delta ICC)(DH)(NT)$ + ICCD (fO)(NO)

where:

DH = Input duty cycle

NT = Number of TTL HIGH inputs at DH

fo = Output frequency

No = Number of outputs at fo

SKEW CHARACTERISTICS OVER OPERATING RANGE

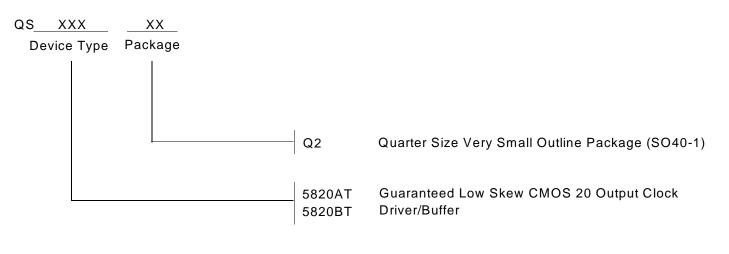
		QS5820AT		QS5820BT		
Symbol	Description ⁽¹⁾	Min.	Max.	Min.	Max.	Unit
tsk(01)	Skew between two outputs, same transition, same bank	-	0.5	-	0.5	ns
tsk(02)	Skew between two outputs, same transition, different bank	-	0.6	_	0.6	ns
tSK(p)	Duty cycle distortion (pulse skew) on a single output opposite transitions (tPHL - tPLH)	-	1	_	0.7	ns
tsk(t)	Part-to-part skew, same transition ⁽²⁾	-	1.5	_	1	ns

NOTES:

1. Skew parameters are guaranteed across temperature range, but not production tested. Skew parameters apply to propagation delays only. 2. tsk(t) only applies to devices of the same transition, same VDD, same temperature, same speed grade, and same loading.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

CLOAD = 50pF, RLOAD = 500Ω unless otherwise noted.


		QS5820AT		QS5820BT		QS5820AT QS5820BT		
Symbol	Description ⁽¹⁾	Min.	Max.	Min.	Max.	Unit		
tplh tphl	Propagation Delay ^(1,2)	1.5	5.8	1.5	5	ns		
tR	Output Rise Time, 0.8V to 2V	—	1.5	_	1.5	ns		
tF	Output Fall Time, 2V to 0.8V	_	1.5	_	1.5	ns		
tpzl tpzн	Output Enable Time	1.5	8	1.5	7	ns		
tplz tphz	Output Disable Time	1.5	7	1.5	6	ns		

NOTES:

1. Minimums guaranteed but not tested.

2. The propagation delay range indicated by Min. and Max. specifications results from process and environmental variables. These propagation delay limits do not imply skew.

ORDERING INFORMATION

CORPORATE HEADQUARTERS 2975 Stender Way Santa Clara, CA 95054 for SALES: 800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com*

*To search for sales office near you, please click the sales button found on our home page or dial the 800# above and press 2. The IDT logo is a registered trademark of Integrated Device Technology, Inc. Turboclock is a registered trademark of Integrated Device Technology, Inc.