ADJUSTABLE 3-TERMINAL POSITIVE VOLTAGE REGULATOR

■ GENERAL DESCRIPTION

The NJM317 is adjustable 3-terminal positive voltage regulator IC. It is capable of adjustment from typical 1.25V to 37V output voltage range with two resistors. It is capable of supplying in excess of 1.5A

The NJM317 is suitable for the power supply of VCR, CD player and others.

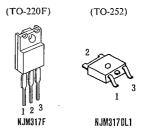
■ FEATURES

- Operating Voltage (+4.25V~+40V)
- Adjustable Output Down to 1.2V
- Guarantee'd 1.5A Output Current

Line Regulation typically

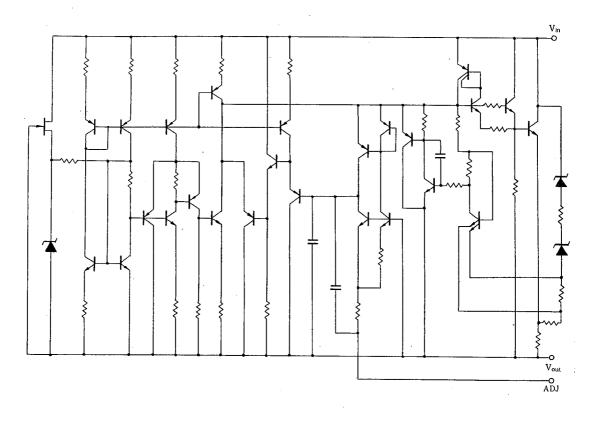
(0.01%/V)

Load Regulation typically


(0.1%)

80dB Ripple Rejection Package Outline

TO-220F


Bipolar Technology

■ PACKAGE OUTLINE

- Adjustment
 Output
 Input

■ EQUIVALENT CIRCUIT

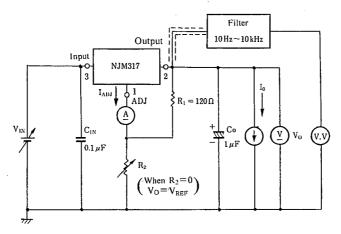
M ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

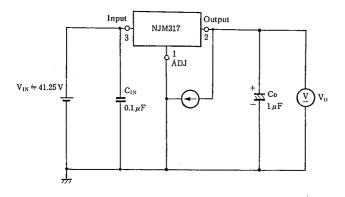
PARAMETER	SYMBOL	RATINGS	UNIT
Input-Output Differential Voltage	V _{IN} Vo	40(Ta=25℃)	V
Power Dissipation	P _D	TO-220F 16(Tc≤70°C) TO-252 10(Tc≤25°C) 1(Ta≤25°C)	w
Operating Temperature Range(Junction) (Ambient)		-40~+150 -40~+85	°C
Storage Temperature Range	Tstg	-50~+150	°C

■ THERMAL CHARACTERISTICS

				TO-252	
Thermal Resistance	Junction-To-Ambient	0 ja	60	125	℃/W
	Junction-To-Case	0 je	5	12.5	

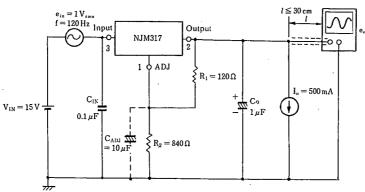

■ ELECTRICAL CHARACTERISTICS (V_{IN}-- V₀=5V, I₀=500mA, C_{IN}=0.1 μ F, C₀=1 μ F, Tj=25°C)

Measurement is to be conducted is pulse testing.


PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Reference Voltage	VREF		1.2	1.25	1.3	
	VREF-VIN	$3V \le (V_{IN} - V_0) \le 40V, I_0 = 100 \text{m} \Lambda$	1.2	1.25	1.3	**
	V _{REF} -Io	10mΛ≦lo≦1.5Λ(TO-220F)	1.2	1.25	1.3	v
		10mA≦lo≦500mA (TO-252)	1.2	1.25	1.3	
Reference Voltage Thermal Change	⊿V _{REF} T	0≦Tj≦125℃	_	5		mV
Adjustment Pin Current	Iadj		_	50	100	μΛ
Adjustment Pin Current	Aladj-Vin	$3V \le (V_{IN} - V_0) \le 40V, lo=100m\Lambda$	_	0.2	` 5	
Change	Alada Io	10mA≦lo≦1.5A (TO-220F)		0.2	5	μΛ
·		10mΛ≤lo≤500mΛ (TO-252)		0.2	5	
Line Regulation	∠IVo - VIN	$3V \le (V_{IN} - V_0) \le 40V, I_0 = 100 \text{m} \Lambda$		0.01	0.04	%/V
Load Regulation		10mA≤lo≤1.5A (TO-220F)				
	∠Vo−lo	10mA≦lo≦500mA (TO-252)				
		Vo≦5V	_	5	25	m V
		Vo>5V	-	0.1	0.5	%
Minimum Load Current	Io(MIN)	(V _{IN} V _O)=40V		8.5	10	mΛ
Peak Output Current	Іо(реак)	$5V \le (V_{IN} - V_0) \le 15V$	1.5	2.2		,
		$(V_{IN} - V_0) = 40V$	0.15	0.4		Λ
RMS Output Noise Voltage	V _{NO}	$1011z \le f \le 10kHz(RMS)$	-	0.001		%/Vo
Ripple Rejection Ratio	RR	Vo=10V,f=120IIz, /VIN=1Vrms				dB
*		C _{ADJ} =0		65		
		C _{ΛDJ} =10 μ F	66	80		

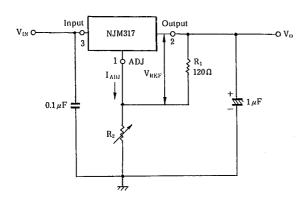
■ TEST CIRCUIT

1) (Reference Voltage Thermal Change), (Adjustment Pin Current Change), (Line Regulation), (Load Regulation), (Peak Output Current), (RMS Output Noise Current)

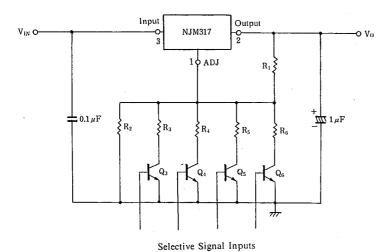


2) Minimum Load Current

I_{OMIN}: Minimum I_O for $V_O = V_{REF}(Typical\ 1.25V)$ $(V_{IN} = 40 + V_{REF})$


3) Ripple Rejection

Ripple Rejection= $20 \log_{10} \left(\frac{e_{IN}}{e_0} \right) (dB)$


■ TYPICAL APPLICATIONS

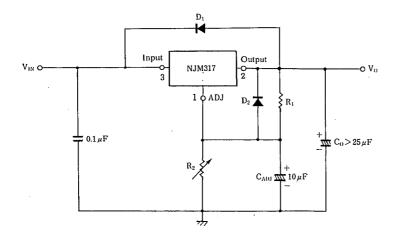
1). $V_0 = 1.25 \text{V} \sim 37 \text{V}$ Adjustable Voltage Regulator

$$V_0 = V_{REF} \times \left(1 + \frac{R_2}{R_1}\right) + R_2 \times I_{ADJ}$$

2) Selected Output Voltage

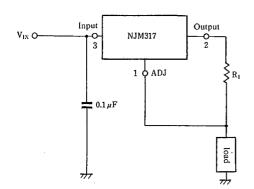
The transistors Q_3 are switched by selective signal inputs and the output voltage V_0 is controlled by the transistor on or off.

(Example)

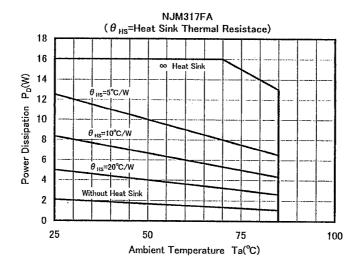

When all transisitor is off,

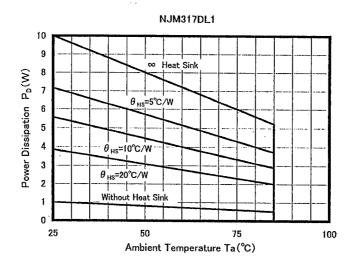
$$V_0 = V_{REF} \times (1 + \frac{R_2}{R_1})$$

When the transistor Q3 is on, and others are off.

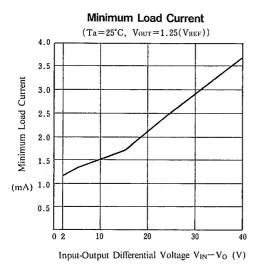

$$V_0 = V_{REF} \times \{1 + \frac{R_2 \times R_3}{(R_2 + R_3) \times R_1}\}$$

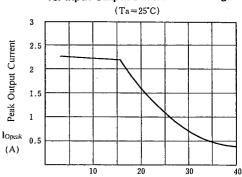
3). Regulater with Protection Diodes




 D_1 protects about C_0 D_2 protects about C_{ADJ}

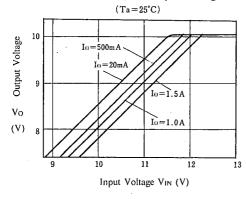
4) Constant Current Regulator


 $R_1 \le 125\Omega$ $10mA \le I_0 \le 1.5A$ $I_0 = \frac{V_{REF}}{R_1}$

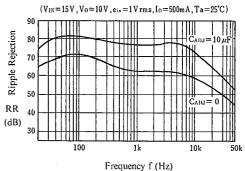


6

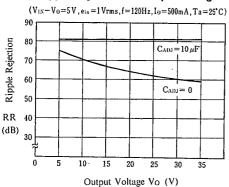
■ TYPICAL CHARACTERISTICS

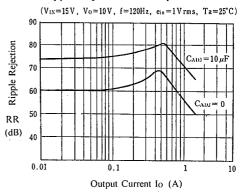


Peak Output Current vs. Input-Output Differential Voltage

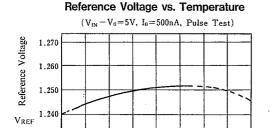


Input-output Differential Voltage VIN-Vo (V)


Output Voltage vs. Input Voltage.


Ripple Rejection vs. Frequency

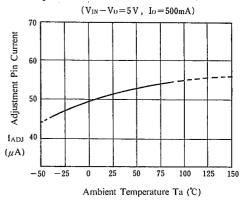
Ripple Rejection vs. Output Voltage



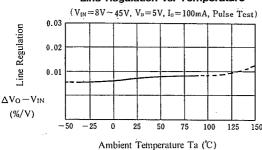
Ripple Rejection vs. Output Current

■ TYPICAL CHARACTERISTICS

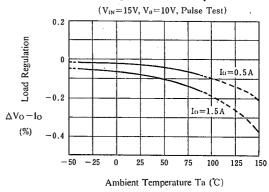
1.240

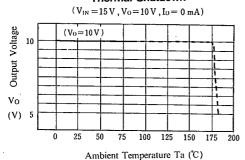


Ambient Temperature Ta (°C)


100

125


Adjustment Pin Current vs. Temperature


Line Regulation vs. Temperature

Load Regulation vs. Temperature

Thermal Shutdown

MEMO

[CAUTION]
The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.