16-bit Proprietary Microcontroller

cmos

F²MC-16L MB90620A Series

MB90622A/623A/P623A

- DESCRIPTION

The MB90620A series is a line of general-purpose, 16-bit microcontrollers designed for those applications which require high-speed real-time processing, proving to be suitable for various industrial machines, camera and video devices, OA equipment, and for process control. The CPU used in this series is the $\mathrm{F}^{2} \mathrm{MC}^{*}-16 \mathrm{~L}$. The instruction set for the $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{~L}$ CPU core is designed to be optimized for controller applications while inheriting the AT architecture of the $\mathrm{F}^{2} \mathrm{MC}-16 / 16 \mathrm{H}$ series, allowing a wide range of control tasks to be processed efficiently at high speed.

The peripheral resources integrated in the MB90620A series include: the UART (clock asynchronous/ synchronous transfer) $\times 1$ channel, the extended serial I/O interface $\times 1$ channel, the A/D converter (8/10-bit precision) $\times 4$ channels, the 16 -bit PPG timer (PWM/single-shot function) $\times 2$ channels, the 16 -bit reload timer $\times 3$ channels, the 16 -bit free-run timer (built-in compare register: 2 channels) $\times 2$ channels, the external interrupt $\times 8$ channels, the watch timer $\times 1$ channel, LCD controller/driver 32 segments $\times 4$ commons.
*: F²MC stands for FUJITSU Flexible Microcontroller.

- FEATURES

F²MC-16L CPU

- Minimum execution time: 83.33 ns (at machine clock frequency of 12 MHz)
- Dual-clock control systems
- PLL clock control

PACKAGE

(FPT-100P-M05)
(Continued)

- Instruction set optimized for controller applications

Variety of data types: bit, byte, word, long-word
Expanded addressing modes: 23 types
High coding efficiency
Improvement of high-precision arithmetic operations through use of 32-bit accumulator

- Instruction set supports high-level language (C language) and multitasking

Inclusion of system stack pointer
Enhanced pointer-indirect instructions
Barrel shift instruction

- Improved execution speed: 4-byte instruction queue
- 8-level, 32-factor powerful interrupt service functions
- Automatic transfer function independent of CPU (EI2OS)
- General-purpose ports: max. 59 channels
- 18 -bit timebase timer/15-bit watch timer
- Watchdog timer function
- CPU intermittent operation function
- Various standby modes

Peripheral blocks

- ROM:32 Kbytes (MB90622A)

48 Kbytes (MB90623A)

- One-time PROM: 48 Kbytes (MB90P623A)
- RAM: 1.64 Kbytes (MB90622A)

2 Kbytes (MB90623A/P623A)

- General-purpose ports: max. 59 channels
- Dual-clock control system
- PLL clock multiplication control system
- UART: 1 channel

Can be used for either asynchronous transfer or synchronous transfer with clock

- Extended serial I/O interface: 1 channel

Can be used for 8 -bit synchronous transfer

- A/D converter (8/10-bit resolution): 4 channels
- PPG (Programable pulse generator): 2 channels
- 16-bit reload timer: 3 channels
- 16 -bit free-run timer: 2 channels With compare register 2 channels
- LCD controller/driver 32 segments, 4 commons
- External interrupts: 8 channels
- 18-bit timebase timer
- 15 -bit watch timer
- Watchdog timer function
- CPU intermittent operation function
- Standby mode

Watch mode
Sleep mode
Stop mode

PRODUCT LINEUP

Part number	MB90622A	MB90623A	
Classification	Mass production products (Mask ROM products)		
ROM size	32 Kbytes	48 Kbytes	
RAM size	1.64 Kbytes	2 Kbytes	
CPU functions	Number of instructions: 340Instruction bit length: 8 or 16 bitsInstruction length: 1 to 7 bytesData bit length: $1,4,8,16$, or 32 bitsMinimum execution time: 83.33 ns at 12 MHz (internal)		
Oscillation circuit	Dual-clock system of main clock and sub clock		
Ports	$\begin{gathered} \text { Max. } 59 \text { channels } \\ \text { I/O ports (CMOS): } 17 \\ \text { I/O ports (CMOS) with pull-up resistor available: } 24 \\ \text { I/O ports (open drain): } 18 \end{gathered}$		
UART	Number of channels: 1 Clock synchronous communication (1202 to 9615 bps, full-duplex double buffering) Clock asynchronous communication (62.5 K to 1 M bps , full-duplex double buffering) Supports multiprocessor mode		
Serial	Number of channels: 1 Internal or external clock mode Clock synchronous transfer (62.5 kHz to 1 MHz , "LSB first" or "MSB first" transfer)		
A/D converter	Resolution: 10 or 8 bits, Number of input channels: 4 Single-conversion mode (conversion for a specified input channel) Scan conversion mode (continuous conversion for specified consecutive channels) Continuous conversion mode (repeated conversion for a specified channel) Stop conversion mode (periodical conversion)		
Timer	Number of channels: 3 16-bit reload timer operation (operation clock: SUB/2, $\phi / 2^{3}, \phi / 2^{5}$, external)		
Free-run timer	Number of channels: 2 16-bit up-counter (four types of count clocks) 2 channels on each timer of the compare register (compare matching interrupt available)		
PPG timer	Number of channels: 2 PWM function, single-shot function With external trigger function		
LCD controller /driver	Common output: 4 channels, Segment output: 32 channel Direct driving of the LCD module 16 bytes of data memory for display Operation clock source (main clock/sub clock selective)		
Standby modes	Stop mode, sleep mode, and watch mode		
PLL functions	Main clock multiplication ($\times 1, \times 2, \times 3$ and $\times 4$)		
Package	FPT-100P-M05		

PIN ASSIGNMENT

(Top view)

(FPT-100P-M05)

PIN DESCRIPTION

Pin no.	Pin name	Circuit type	Function
77	X1A X0A	A (Oscillation)	Crystal oscillator pins (32 kHz)
79	Vss	Power supply	Digital circuit power supply (GND) pin
80	X0		
81	X1	A (Oscillation)	Crystal/FAR oscillator pins (4 MHz)
82	Vcc	Power supply	Digital circuit power supply pin

(Continued)

Pin no.	Pin name	Circuit type	Function
6	P27	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS}) \end{gathered}$	General-purpose I/O port At this pin, a pull-up resistor is added in the input mode depending on the settings of the pull-up resistor setting register.
	CKOT		Clock output pin This function is available when clock output is enabled.
7	P30	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}$	General-purpose I/O port
	SIN1		I/O extended serial data input pin This pin, as required, is used for input during input operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
8	P31	$\begin{gathered} \text { D } \\ (\mathrm{CMOS}) \end{gathered}$	General-purpose I/O port
	SOT1		I/O extended serial data output pin This function is available when serial data data output is enabled.
9	Vss	Power supply	Digital circuit power supply (GND) pin
10	P32	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}$	General-purpose I/O port
	SCK1		I/O extended serial clock I/O pins This function is available when clock input is enabled. This pin, as required, is used for input during input operation, and it is necessary to disable output for other functions from this pin unless such output is made intentionally.
11 to 14	P33 to P36	$\begin{gathered} \mathrm{D} \\ \text { (CMOS) } \end{gathered}$	General-purpose I/O ports
15	P37	$\underset{(\mathrm{CMOS} / \mathrm{H})}{\mathrm{E}}$	General-purpose I/O port
	TRG		PPG0 and PPG1 external trigger input pin
	$\overline{\text { ATG }}$		A/D converter trigger input pin During A/D converter input operations, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on these pins, except when using them for output deliberately.
16	P40	$\begin{gathered} \mathrm{D} \\ \text { (CMOS) } \end{gathered}$	General-purpose I/O port This function is available when PPG timer 0 output is disabled.
	PPG0		PPG timer 0 output pin This function is available when the PPG timer 0 waveform output is enabled.
17	P41	$\begin{gathered} \mathrm{D} \\ (\mathrm{CMOS}) \end{gathered}$	General-purpose I/O port This function is available when PPG timer 1 output is disabled.
	PPG1		PPG timer 1 output pin This function is available when the PPG timer 1 waveform output is enabled.

MB90620A Series

Pin no.	Pin name	Circuit type	Function
18	P42	L (CMOS/H)	General-purpose I/O port This function is available when the timer output from timer 0 is disabled.
	INT7		External interrupt request input pin When external interrupts are enabled, these inputs may be used at any time; therefore, it is necessary to stop output by other functions on these pins, except when using them for output deliberately.
	TIO0	Timer input pin The data on this pin is used as event count signal for timer 0. Timer output pin This function is available when the timer output from timer 0 enabled.	
19	P43 is		

(Continued)
(Continued)

Pin no.	Pin name	Circuit type	Function
36 to 39	P50 to P53	$\begin{gathered} 1 \\ (A D) \end{gathered}$	General-purpose I/O ports This function is available when "port" is specified in the analog input enable register.
	AN0 to AN3		A/D converter analog input pins This function is available when the analog input enable register specification is "AD."
40	Vss	Power supply	Digital circuit power supply (GND) pin
41 to 46	$\begin{aligned} & \text { SEG00 to } \\ & \text { SEG05 } \end{aligned}$	K	LCDC segment-only pins
47 to 49	MD0 to MD2	$\begin{gathered} \mathrm{C} \\ (\mathrm{CMOS}) \end{gathered}$	Operating mode selection input pins Connect directly to Vcc or Vss.
50 to 59	$\begin{aligned} & \text { SEG06 to } \\ & \text { SEG15 } \end{aligned}$	K	LCDC segment-only pins
60 to 67	P60 to P67	J	Open-drain I/O ports This is available when enabled by the LCR2.
	$\begin{aligned} & \text { SEG16 to } \\ & \text { SEG23 } \end{aligned}$		LCDC segment pins
68 to 74	P70 to P76	J	Open-drain I/O ports This is available when enabled by the LCR2.
	$\begin{aligned} & \text { SEG24 to } \\ & \text { SEG30 } \end{aligned}$		LCDC segment pins
75	$\overline{\text { RST }}$	$\begin{gathered} \mathrm{B} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	External reset request input pin
76	P77	J	Open-drain I/O port This is available when enabled by the LCR2.
	SEG31		LCDC segment pin

I/O CIRCUIT TYPE

| Type | Remarks |
| :---: | :---: | :---: | :---: |
| A | Oscillation feedback resistor: |
| Approximately $1 \mathrm{M} \Omega$ | |

(Continued)

Type	Circuit	Remarks
F		- With input pull-up resistor control - CMOS level output - Hysteresis input
G		- With input pull-up resistor control - CMOS level input/output
H		- Open-drain type input/output
I		- CMOS level input/output - Analog input

(Continued)

Type	Circuit	Remarks
J		- Open-drain type output - CMOS level input - Combined with the LCD output
K		- LCD output pin
L		- CMOS level output - Hysteresis input
M		- With input pull-up resistor control - CMOS level output - Hysteresis input

HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than V_{cc} or lower than V_{ss} is applied to the input and output pins other than medium- and high voltage pins or if higher than the voltage is applied between $\mathrm{V}_{\text {cc }}$ and $\mathrm{V}_{\text {ss }}$.

When latchup occurs, power supply current increases rapidly and might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.

2. Treatment of Unused Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistors.

3. External Reset Input

To reset the internal circuit by the Low-level input to the RST pin, the Low-level input to the RST pin must be maintained for at least five machine cycles. Pay attention to it if the chip uses external clock input.

4. Vcc and Vss Pins

Apply equal potential to the V_{cc} and $\mathrm{V}_{\text {ss }}$ pins.

5. Precautions when Using an External Clock

When an external clock is used, drive $\mathrm{X0}$ pin.

- Using of External Clock

6. Sequence for Applying A/D Converter Power Supply and Analog Inputs

Be sure to turn on the digital power supply (V cc) before applying the A / D converter power supply (AV cc , AVRH , and AVRL) and the analog inputs (AN0 to AN15).
In addition, when the power is turned off, turn off the A / D converter power supply ($A V_{c c}, A V R H$, and $A V R L$) and the analog inputs (AN0 to AN15) first, and then turn off the digital power supply (AVcc).
Whether applying or cutting off the power, be certain that AVRH does not exceed $A V c c$.

7. Program Mode

In the MB90P623, all of the bits ($48 \mathrm{~K} \times 8$ bits) are set to " 1 " when the IC is shipped from Fujitsu and after erasure. To input data, program the IC by selectively setting the desired bits to " 0 ". Bits cannot be set to " 1 " electrically.

8. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM width microcontroller program.

9. Programming Yield

All bit cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

PROGRAMMING TO THE EPROM ON THE MB90P623A

In EPROM mode, the MB90P623 EPROM functions equivalent to the MBM27C1000. This allows the PROM to be programmed with a general-purpose EPROM programmer by using the dedicated socket adapter.

1. EPROM Mode Pin Assignments

- MBM27C1000 compatible pins

MBM27C1000		MB90P623A	
Pin no.	Pin name	Pin no.	Pin name
1	VPP $_{\text {PP }}$	49	MD2 (VPP)
2	OE *	10	P32
3	A15	98	P 17
4	A12	95	P 14
5	A07	6	P 27
6	A06	5	P 26
7	A05	4	P 25
8	A04	3	P 24
9	A03	2	P 23
10	A02	1	P 22
11	A01	100	P 21
12	A00	99	P 20
13	D00	83	P 00
14	D01	84	P 01
15	D02	85	P 02
16	GND*	-	-

MBM27C1000		MB90P623A	
Pin no.	Pin name	Pin no.	Pin name
32	Vcc	-	-
31	PGM	11	P33
30	N.C.	-	-
29	A14	97	P16
28	A13	96	P15
27	A08	91	P10
26	A09	92	P11
25	A11	94	P13
24	A16	7	P30
23	A10	93	P12
22	CE	8	P31
21	A07	90	P07
20	D06	89	P06
19	D05	88	P05
18	D04	87	P04
17	D03	86	P03

*: Connect a capacitance of 20 pF across OE (pin no.2) and GND (pin no.16) pins of the MBM27C1000.

- Power supply, GND connection pins

Classification	Pin no.	Pin name
Power supply	$\begin{aligned} & \hline 21 \\ & 82 \end{aligned}$	$V_{c c}$ Vcc
GND	$\begin{aligned} & 9 \\ & 34 \\ & 35 \\ & 40 \\ & 75 \\ & 79 \\ & 12 \\ & 13 \\ & 14 \end{aligned}$	Vss AVRL AVss $\frac{V_{\text {ss }}}{\text { RST }}$ Vss P34 P35 P36

- Non-MBM27C1000 compatible pins

Pin no.	Pin name	Treatment
$\begin{aligned} & 47 \\ & 48 \\ & 80 \\ & 78 \end{aligned}$	MDO MD1 X0 XOA	Connect a pull-up resistor of $4.7 \mathrm{k} \Omega$
$\begin{gathered} 81 \\ 77 \\ 28 \text { to } 31 \\ 41 \text { to } 46 \\ 50 \text { to } 59 \end{gathered}$	X1 X1A COM0 to COM3 SEG00 to SEG05 SEG06 to SEG15	- OPEN
15 16 to 20 22 23 24 to 27 32 33 36 to 39 60 to 74 76	P37 P40 to P44 P45 P46 V0 to V3 AVcc AVRH P50 to P53 P60 to p76 P77	Connect a pull-up resistor of about $1 \mathrm{M} \Omega$ to each pin.

2. EPROM Programmer Socket Adapter

Part no.	Package	Compatible socket adapter Sun Hayato Co., Ltd.
MB90P623APFV	SQFP-100	ROM-100SQF-32DP-16L

Inquiry: Sun Hayato Co., Ltd.: TEL (81)-3-3986-0403
FAX (81)-3-5396-9106

3. Programming Procedure

(1) Set the EPROM programmer to the MBM27C1000.
(2) Load the program data into the EPROM programmer at 14000н to 1FFFFн.

The ROM addresses from FF4000н to FFFFFFF in operating mode of MB90P623A series correspond to 14000 н to 1 FFFFH in EPROM mode.

(3) Insert the MB90P623A in the socket adapter, and mount the socket adapter on the EPROM programmer. Pay attention to the orientation of the device and of the socket adapter when doing so.
(4) Activate the programming.
(5) If programming cannot be performed successfully, connect a $0.1 \mu \mathrm{~F}$ or similar capacitor between V_{cc} and GND and between Vpp and GND.

Note: Because the mask ROM products (MB90623A) do not have an EPROM mode, they cannot read data from the EPROM programmer.

BLOCK DIAGRAM

- P00 to P27 (24 channels): Input pull-up resistor setting enable pins
- P45, P46, P60 to P77 (18 channels): Open-drain pins

MEMORY MAP

Note: While the ROM data image of bank FF can be seen in the upper portion of bank 00, this is done only to permit effective use of the C compiler's small model. Because the lower 16 bits of bank FF address and the lower 16 bits of bank 00 are the same, it is possible to reference tables in ROM without declaring the "far" specification in the pointer.

MB90620A Series

I/O MAP

Address	Register	Register name	Access	Resource name	Initial value
000000н	Port 0 data register	PDR0	R/W	Port 0	XXXXXXXX
000001н	Port 1 data register	PDR1	R/W	Port 1	XXXXXXXX
000002н	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXX
000003н	Port 3 data register	PDR3	R/W	Port 3	PXXXXXXX
000004н	Port 4 data register	PDR4	R/W	Port 4	$-X X X X X X X$
000005н	Port 5 data register	PDR5	R/W	Port 5	$----x \times X X$
000006н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXXX
000007н	Port 7 data register	PDR7	R/W	Port 7	$-X X X X X X X$
$\begin{array}{r} 000008 \mathrm{H} \\ \text { to } 0 \mathrm{~F} \end{array}$	Vacancy*				
000010н	Port 0 direction register	DDR0	R/W	Port 0	00000000
000011н	Port 1 direction register	DDR1	R/W	Port 1	00000000
000012н	Port 2 direction register	DDR2	R/W	Port 2	00000000
000013н	Port 3 direction register	DDR3	R/W	Port 3	00000000
000014H	Port 4 direction register	DDR4	R/W	Port 4	-0000000
000015н	Port 5 direction register	DDR5	R/W	Port 5	----0000
000016н	Port 6 direction register	DDR6	R/W	Port 6	00000000
000017н	Port 7 direction register	DDR7	R/W	Port 7	00000000
$\begin{array}{r} 000018 \mathrm{H} \\ \text { to } 19 \mathrm{H} \end{array}$	Vacancy*				
00001Aн	Port 0 pull-up resistor setting register	RDR0	R/W	Port 0	00000000
00001Bн	Port 1 pull-up resistor setting register	RDR1	R/W	Port 1	00000000
00001 CH	Port 2 pull-up resistor setting register	RDR2	R/W	Port 2	00000000
$00001 \mathrm{DH}^{\text {d }}$	Analog input enable register	ADER	R/W	A/D	----1111
00001Eн	Clock output enable register	CKOT	R/W	Clock output (CKOT)	----0000
00001FH	Vacancy*				
000020н	Serial mode register	SMR	R/W	UART	00000000
000021н	Serial control register	SCR	R/W		00000100
000022н	Serial input register/ Serial output register	$\begin{aligned} & \text { SIDR/ } \\ & \text { SODR } \end{aligned}$	R/W		XXXXXXXX
000023н	Serial status register	SSR	R/W		0001--00
000024	Serial mode control status register	SMCS	R/W	Extended serial I/O interface	---00000
000025н					00000010
000026н	Serial data register	SDR	R/W		XXXXXXXX

(Continued)

MB90620A Series

Address	Register	Register name	Access	Resource name	Initial value
000027	Communication prescaler control register	CDCR	R/W	UART, I/O, serial	0---1111
000028н	DTP/Interrupt enable register	ENIR	R/W	DTP/external interrupt	00000000
000029н	DTP/Interrupt source register	EIRR	R/W		00000000
00002Ан	Request level setting register	ELVR	R/W		00000000
00002Вн					00000000
00002Cн	A/D control status register	ADCS0	R/W	8/10-bit A/D converter	00000000
00002D		ADCS1			00000000
00002Ен	A/D data register	ADCR0	R/W		XXXXXXXX
00002F ${ }^{\text {H }}$		ADCR1			000000 XX
000030н	PPG0 cycle setting register	PCSR0	W	16-bit PPG timer 0	XXXXXXXX
000031н					XXXXXXXX
000032н	PPG0 duty factor setting register	PDUT0	W		XXXXXXXX
000033н					XXXXXXXX
000034н	PPG0 control status register	PCNLO	R/W		00000000
000035 ${ }^{\text {H }}$		PCNH0			$0000000-$
$\begin{array}{r} 000036 \mathrm{H} \\ \text { to } 37 \mathrm{H} \end{array}$	Vacancy*				
000038н	PPG1 cycle setting register	PCSR1	W	16-bit PPG timer 1	XXXXXXXX
000039н					XXXXXXXX
00003Ан	PPG1 duty factor setting register	PDUT1	W		XXXXXXXX
00003Bн					XXXXXXXX
00003CH	PPG1 control status register	PCNL1	R/W		00000000
00003D		PCNH1			$0000000-$
$\begin{array}{r} \text { 00003Ен, } \\ 3 \mathrm{~F}_{\mathrm{H}} \end{array}$	Vacancy*				
000040н	Timer control status register	TMCSR0	R/W	16-bit reload timer 0	00000000
000041н					----0000
000042н	16-bit timer register	TMR0	R/W		XXXXXXXX
000043н					XXXXXXXX
000044н	16-bit reload register	TMRLR0	R/W		XXXXXXXX
000045 ${ }^{\text {H }}$					XXXXXXXX

(Continued)

MB90620A Series

Address	Register	Register name	Access	Resource name	Initial value
000046н	Timer control status register 1	TMCSR1	R/W	16-bit reload timer 1	0000000
000047H					----0000
000048н	16-bit timer register 1	TMR1	R/W		XXXXXXXX
000049н					XXXXXXXX
00004Ан	16-bit reload register 1	TMRLR1	R/W		XXXXXXXX
00004Вн					XXXXXXXX
$\begin{aligned} & 00004 \mathrm{CH}_{\mathrm{H}} \\ & \text { to } 4 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	Vacancy*				
000050н	Timer control status register 2	TMCSR2	R/W	16-bit reload timer 2	00000000
000051н					----0000
000052н	16-bit timer register 2	TMR2	R/W		XXXXXXXX
000053н					XXXXXXXX
000054н	16-bit reload register 2	TMRLR2	R/W		XXXXXXXX
000055 ${ }^{\text {H }}$					XXXXXXXX
000056н	Timer data register 0	TCDT0	R	16-bit free-run timer 0	00000000
000057н					00000000
000058н	Timer control status register 0	TCSO	R/W		00000000
000059н	Compare control status register 0	CCSO	R/W	Compare register block	0000--00
00005Aн	Timer 0 compare register 0	TCR00	R/W		XXXXXXXX
00005Вн					XXXXXXXX
00005CH	Timer 0 compare register 1	TCR01	R/W		XXXXXXXX
00005D					XXXXXXXX
$\begin{array}{r} 00005 \mathrm{E}_{\mathrm{H}}, \\ 5 \mathrm{~F}_{\mathrm{H}} \end{array}$	Vacancy*				
000060н	Timer data register 1	TCDT1	R	16-bit free-run timer 1	00000000
000061н					00000000
000062н	Timer control status register 1	TCS1	R/W		00000000
000063н	Compare control status register 1	CCS1	R/W	Compare register block	0000--00
000064н	Timer 1 compare register 0	TCR10	R/W		XXXXXXXX
000065н					XXXXXXXX
000066н	Timer 1 compare register 1	TCR11	R/W		XXXXXXXX
000067H					X XXXXXXX

(Continued)

MB90620A Series

Address	Register	Register name	Access	Resource name	Initial value
$\begin{array}{r} 000068 \mathrm{H} \\ \text { to } 6 \mathrm{~F}_{\mathrm{H}} \end{array}$	Vacancy*				
000070н	LCD display data RAM	VRAM	R/W	LCD controller/ driver	XXXXXXXX
to 7FH		VRA	R/		XXXXXXXX
000080н	LCDC control register 0	LCR0	R/W		00010000
000081н	LCDC control register 1	LCR1			0--00000
$\begin{array}{r} 000082 \mathrm{H} \\ \text { to } 8 \mathrm{~F}_{\mathrm{H}} \end{array}$	Vacancy*				
$\begin{aligned} & 000090_{\mathrm{H}} \\ & \text { to } 9 \mathrm{E}_{\mathrm{H}} \end{aligned}$	System reserved area*				
00009F\%	Delayed interrupt source generation/ release register	DIRR	R/W	Delayed interrupt generation module	-------0
0000AOH	Low-power consumption mode control register	LPMCR	R/W	Low-power	00011000
0000A1н	Clock selection register	CKSCR	R/W		11111100
$\begin{array}{r} 0000 \mathrm{~A} 2 \mathrm{H} \\ \text { to } \mathrm{A} 7 \mathrm{H} \end{array}$	Vacancy*				
0000A8н	Watchdog timer control register	WDTC	R/W	Watchdog timer	XXXXXXXX
0000A9н	Timebase timer control register	TBTC	R/W	Timebase timer	$1--00000$
0000ААн	Watch timer control register	WTC	R/W	Watch timer	$1 \mathrm{X}-00000$
$\begin{gathered} 0000 \mathrm{ABH} \\ \text { to } \mathrm{AFH}_{\mathrm{H}} \end{gathered}$	Vacancy*				
0000B0н	Interrupt control register 00	ICR00	R/W	Interrupt controller	00000111
0000B1н	Interrupt control register 01	ICR01	R/W		00000111
0000B2н	Interrupt control register 02	ICR02	R/W		00000111
0000B3н	Interrupt control register 03	ICR03	R/W		00000111
0000B4н	Interrupt control register 04	ICR04	R/W		00000111
0000B5	Interrupt control register 05	ICR05	R/W		00000111
0000B6н	Interrupt control register 06	ICR06	R/W		00000111
0000B7 ${ }^{\text {H }}$	Interrupt control register 07	ICR07	R/W		00000111
0000B8н	Interrupt control register 08	ICR08	R/W		00000111
0000B9н	Interrupt control register 09	ICR09	R/W		00000111
0000ВАн	Interrupt control register 10	ICR10	R/W		00000111
0000BBн	Interrupt control register 11	ICR11	R/W		00000111
0000ВСн	Interrupt control register 12	ICR12	R/W		00000111
0000BD	Interrupt control register 13	ICR13	R/W		00000111

(Continued)
(Continued)

Address	Register	Register name	Access	Resource name	Initial value
0000BEн	Interrupt control register 14	ICR14	R/W	Interrupt controller	00000111
0000BF\%	Interrupt control register 15	ICR15	R/W		00000111
$\begin{gathered} 0000 \mathrm{COH}_{\mathrm{H}} \\ \text { to } \mathrm{FF} \end{gathered}$	Vacancy*				

*: Access prohibited.
Explanation of initial values
0 : The initial value of this bit is " 0 ".
1 : The initial value of this bit is " 1 ".
X : The initial value of this bit is undefined.
-: This bit is not used. No initial value is defined.

INTERRUPT SOURCES AND THEIR INTERRUPT VECTORS AND INTERRUPT CONTROL REGISTERS

Interrupt source	${ }^{2} \mathrm{OS}$ support	Interrupt vector			Interrupt control register	
		No.		Address	ICR	Address
Reset	\times	\#08	08н	FFFFDCH	-	-
INT9 instruction	\times	\#09	09н	FFFFD8 ${ }_{\text {H }}$	-	-
Exception	\times	\#10	ОАн	FFFFD4 ${ }_{\text {H }}$	-	-
External interrupt \#0	\bigcirc	\#11	OBH	FFFFDOH		0000B0
External interrupt \#1	\bigcirc	\#12	OCH	FFFFCC ${ }_{\text {H }}$,
External interrupt \#2	\bigcirc	\#13	ODH	FFFFC8 ${ }_{\text {H }}$		+
External interrupt \#3	\bigcirc	\#14	ОЕн	FFFFC4 ${ }_{\text {H }}$		位
External interrupt \#4	\bigcirc	\#15	OFH	FFFFCOH	CR02	0000B2
External interrupt \#5	\bigcirc	\#16	10 H	FFFFBCH		оо00в2н
External interrupt \#6	\bigcirc	\#17	11н	FFFFB8 ${ }_{\text {¢ }}$	R03	0000В3
External interrupt \#7	\bigcirc	\#18	12 H	FFFFB4 ${ }_{\text {н }}$		о000ВЗн
Extended serial I/O interface	\bigcirc	\#19	13 ${ }^{\text {H }}$	FFFFB0 ${ }_{\text {н }}$	ICR04	0000B4H
Free-run timer 0 overflow	\bigcirc	\#21	15 H	FFFFA8 ${ }_{\text {H }}$		
Free-run timer 1 overflow	\bigcirc	\#22	16 ${ }^{\text {¢ }}$	FFFFA4 ${ }_{\text {¢ }}$	ICROS	0000В
Free-run timer 0 and compare register 0 matched	\bigcirc	\#23	17\%	FFFFAOH	ICR06	000086н
Free-run timer 0 and compare register 1 matched	\bigcirc	\#24	18H	FFFF9C ${ }_{\text {H }}$		о000в6н
Free-run timer 1 and compare register 0 matched	\bigcirc	\#25	19н	FFFF98 ${ }_{\text {H }}$		0000B7
Free-run timer 1 and compare register 1 matched	\bigcirc	\#26	1Ан	FFFF94	CR07	0000В7н
PPG timer \#0	\bigcirc	\#27	1BH	FFFF90 ${ }_{\text {H }}$	8	0000В8н
PPG timer \#1	\bigcirc	\#28	1 CH	FFFF8C ${ }_{\text {H }}$	ICRO8	0000В8н
16-bit reload timer \#0	\bigcirc	\#29	1D ${ }_{\text {¢ }}$	FFFF88 ${ }_{\text {H }}$	ICR09	000089н
16-bit reload timer \#1	\bigcirc	\#30	$1 \mathrm{EH}^{\text {¢ }}$	FFFF84 ${ }_{\text {H }}$	ICROS	о000в
16-bit reload timer \#2	\bigcirc	\#31	1FH	FFFF80 ${ }_{\text {H }}$	ICR10	0000ВАн
A/D converter measurement complete	\bigcirc	\#33	21н	FFFF78 ${ }_{\text {H }}$	ICR11	0000ВВн
Watch prescaler	\times	\#35	23H	FFFF70 ${ }_{\text {H }}$	ICR12	0000 BC
Timebase timer interval interrupt	\times	\#36	24н	FFFF6C ${ }_{\text {H }}$		о000вСн
UART 0 transmission complete	\bigcirc	\#37	25 H	FFFF68 ${ }_{\text {H }}$	ICR13	0000BD ${ }_{\text {н }}$
UART 1 reception complete	\bigcirc	\#39	27 H	FFFF60 ${ }_{\text {H }}$	ICR14	0000ВЕн
Delayed interrupt generation module	\times	\#42	2 А	FFFF54	ICR15	0000BFн

O : The request flag is cleared by the $\mathrm{I}^{2} \mathrm{OS}$ interrupt clear signal (without stop requests).
O : The request flag is cleared by the $\mathrm{I}^{2} \mathrm{OS}$ interrupt clear signal (with stop requests).
x :The request flag is not cleared by the $\mathrm{I}^{2} \mathrm{OS}$ interrupt clear signal.
Note: Do not set I ${ }^{2}$ OS startup in an ICRxx that does not support I ${ }^{2}$ OS.

PERIPHERALS

1. Parallel Ports

The MB90620A series has 59 input/output pins.
In the twenty four input/output ports mapped on port 0 to 2 , pull-up resistors are selectively added during input state operations depending on the settings in the resistor setting register.
P45, P46, port 6 and port 7 are open-drain ports.
Port 6 and port 7 are combined with the LCD segment pin function.
(1) Register configuration

Port data register bit
Address: PDR1 000001H PDR3 000003н PDR5 000005 PDR7 000007 ${ }^{\text {H }}$

bit	15	14	13	12	11	10	9	8

Port data register
$\begin{array}{lllllllll}\text { bit } & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$
Address: PDRO 000000 H PDR2 000002н PDR4 000004н PDR6 000006

PDRx

Notes: Bit 7 of port 4 does not have a register bit.
Bit 4 to bit 7 of port 5 does not have a register bit.

bit	15	14	13	12	11	10	9	8

Port direction register
Address: DDRO 000010н DDR2 000012н DDR4 000014 DDR6 000016

Notes: Bit 7 of port 4 does not have a register bit.
Bit 4 to bit 7 of port 5 does not have a register bit.

Pull-up resistor setting register

bit	15	14	13	12	11	10	9	8

Address: 00001Вн

Pull-up resistor setting register

Address: 00001 A н $00001 \mathrm{CH}_{\mathrm{H}}$

bit	7	6	5	4	3	2	1	0

RDRO, RDR2

Analog input enable register

$$
\begin{array}{lllllllll}
\text { bit } & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8
\end{array}
$$

Address: 00001Dн

-	-	-	-	ADE3	ADE2	ADE1	ADE0	_- ADER

(2) Block Diagram

- I/O Port

- Open-drain Port

- Port combined with the A/D converter functions

- Port with a pull-up resistor option

2. UART

The UART is a serial I/O port for CLK asynchronous (start-stop synchronization) communications or for CLK synchronous communications. The features of this module are described below:

- Full-duplex double buffer
- CLK asynchronous (start-stop synchronization) communications and CLK synchronous communications capable
- Supports multiprocessor mode
- Built-in dedicated baud rate generator
$\left.\begin{array}{l}\text { CLK asynchronous: } 9615,31250,4808,2404,1202 \mathrm{bps} \\ \text { CLK synchronous: } 1 \mathrm{M}, 500 \mathrm{~K}, 250 \mathrm{~K}, 125 \mathrm{~K}, 62.5 \mathrm{~K} \text { bps }\end{array}\right\}$ For a $6,8,10,12$, or 16 MHz clock.
- Permits setting of any desired baud rate according to an external clock input
- Error detection function (parity errors, framing errors, and overrun errors)
- NRZ code as transfer signal
- Supports Intelligent I/O Service
(1) Register Configuration

Address: 000020^{H}

Address: 000021H

Address: 000022н

Address: 000023H

Address: 000027H

bit	7	6	5	4	3	2	1	0

 Serial mode register
(SMR) Serial control register (SCR)

bit	7	6	5	4	3	2	1	0

--	D7	D6	D5	D4	D3	D2	D1	D0

Serial input register Serial output register (SIDR/SODR)

| PE | OPE | FRE | RDRF | TDRE | - | RIE | TIE | Serial status register
 (SSR) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

bit 15										
14		13	12	11	10	9	8			-- MD - - - DIV3 DIV2 DIV1 DIV0 Communication prescaler control register (CDCR)
:---										

(2) Block Diagram

MB90620A Series

3. Extended Serial I/O Interface

This block consists of an 8-bit serial I/O interface that can perform clock synchronous data transfer. Either LSBfirst or MSB-first data transfer can be selected. The serial I/O port to be used can also be selected.
The following two serial I/O operation modes are available.
Internal shift clock mode: Data transfer is synchronization with the internal clock.
External shift clock mode: Data transfer is synchronization with the clock input from the external pin (SCK1). By manipulating the general-purpose port that shares the external pin (SCK1), this mode also enables the data transfer operation to be driven by CPU instructions.
(1) Register Configuration

Address: 000025 ${ }^{\text {H}}$	bit	15	14	13	12	11	10	9	8	Serial mode control status register (SMCS)
		SMD2	SMD1	SMD0	SIE	SIR	BUSY	STOP	STRT	
	bit	7	6	5	4	3	2	1	0	
Address: 000024H		-	-	-	-	MODE	BDS	SOE	SCOE	
	bit	7	6	5	4	3	2	1	0	
Address: 000026H		D7	D6	D5	D4	D3	D2	D1	D0	Serial data register (SDR)

(2) Block Diagram

MB90620A Series

4. A/D Converter

The A/D converter converts the analog input voltage into a digital value. The features of this module are as follows:

- Conversion time: Minimum of $7 \mu \mathrm{~s}$ per channel (12 MHz machine clock)
- RC-type successive approximation conversion method with sample and hold circuit
- 8-bit/10-bit resolution
- Analog input is selectable by software from among 4 channels
- A/D conversion mode selectable from the following three: One-shot conversion mode: Converts a specified channel once. Continuous conversion mode: Converts a specified channel repeatedly. Stop conversion mode: Pauses after converting one channel and wait until the next activation (permits synchronization of start of conversion).
- Conversion mode:

Single-conversion mode: Converts one channel (when the start and stop channels are the same).
Scan conversion mode: Converts several consecutive channels (when the start and stop channels are different).

- When A / D conversion is completed, an "A/D conversion complete" interrupt request can be issued to the CPU. Because generating this interrupt can be used to activate the $I^{2} O S$ and transfer the A/D conversion results to memory, this function is suitable for continuous processing.
- Activation sources can be selected from among software, an external trigger (falling edge), and timer (rising edge).
(1) Register Configuration

Address: 00002D

Address: $00002 \mathrm{CH}_{\mathrm{H}}$

Address: 00002Fн

Address: 00002Ен
$\begin{array}{lllllllll}\text { bit } & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8\end{array}$

BUSY	INT	INTE	PAUS	STS1	STS0	STRT	Reserved

bit	7	6	5	4	3	2	1	0

MD1	MD0	Reserved	ANS1	ANS0	Reserved	ANE1	ANE0

bit	15	14	13	12	11	10	9	8

| 0 | 0 | 0 | 0 | 0 | 0 | $D 9$ | $D 8$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

bit	7	6	5	4	3	2	1	0

D7	D6	D5	D4	D3	D2	D1	D0

A/D converter control status register (ADCS1, ADCS0)

A/D converter data register (ADCR1, ADCR0)
(2) Block Diagram

5. 16-bit Timer (with Event Count Function)

The 16-bit timer consists of a 16-bit down counter, a 16 -bit reload register, one input and output pin (TINx, TOTx), and a control register. Three internal clocks and an external clock can be selected for the input clock. When in reload mode, a toggled output waveform is output, while in one-shot mode a square wave indicating that the count is in progress is output pin (TOTX). The input pin (TINx) serves as an event input in event count mode, and can be used for trigger input or gate input in internal clock mode.
(1) Register Configuration

Address: 000040н
: 000046н
: 000050н

Address: 000041H
: 000047H
000051н

Address: 000042н
000048
: 000052н

Address: 000044
: 00004Ан
: 000054н
bit
76

| MODO | OUTE | OUTL | RELD | INTE | UF | CNTE | TRG |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| .- | | | | | | | |

$\begin{array}{lllllllll}\text { bit } & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8\end{array}$

-	-	-	-	CSL1	CSL0	MOD2	MOD1

bit 15 0
\square
bit 15
0
\square
Timer control status register 0 to 2 (TMCSRo to TMCSR2)

16-bit timer register 0 to 2 (TMRo to TMR2)

[^0](2) Block Diagram

6. 16-bit Free-run Timer

The 16-bit free-run timer consists of a 16-bit up counter, a control status register, and a compare register.

- Count clock is selectable from 4 types.
- A counter over flow interrupt can be generated.
- An interrupt can be generated on matching with the compare register value.
- Initialization of the counter on matching with compare register 0 value is enabled depending on the mode settings.
(1) Register Configuration

Address: 000056
: 000060н

Address: 000059н
: 000063н

Address: 000058
: 000062н

Address: 00005Ан
: 00005Сн
: 000064н
: 000066н

15	14	13	12	11	10	9	8
T15	T14	T13	T12	T11	T10	T09	T08

bit	15	14	13	12	11	10	9	8

ICP1	ICP0	ICE1	ICE0	-	-	CST1	CST0

Compare control status 0,1 register (CCS0, CCS1)

bit	15	14	13	12	11	10	9	8

| C15 | C14 | C13 | C12 | C11 | C10 | C09 | C08 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Timer 0, 1 compare register (TCR00, TCR01/ TCR10, TCR11)
(2) Block Diagram

7. 16-bit PPG Timer

This module can output a pulse synchronized with an external trigger or a software trigger. In addition, the cycle and duty ratio of the output pulse can be changed as desired by overwriting the two 16 -bit register values.

PWM function: Synchronizes pulse with trigger, and permits programming of the pulse output by overwriting the register values mentioned above.
This function permits use as a D/A converter with the addition of external circuits.
One-shot function: Detects the edge of trigger input, and permits single-pulse output.

(1) Register Configuration

(2) Block Diagram

8. LCD Controller/driver

The LCD controller driver consists of the display controller for generating the segment signal and common signal according to data set in the display data memory, the segment driver and the common driver capable of directly driving the LCD panel (Liquid Crystal Display).
Primary functions are as follows;

- LCD direct drive function
- Common output 4 channels (COM0 to COM3), segment output 32 channels (SEG0 to SEG31)
- Built-in 16 bytes of data memory for display
- Duty ratio selective from $1 / 2,1 / 3$ and $1 / 4$
- Driving clock source selective from the main clock (4 MHz) and the sub clock (32 kHz)
- SEG 16 to SEG 31 can be used as open-drain ports.
(1) Register Configuration

LCD control register
bit 15
87
0

Address: 000080 H
: 000081н

LCR0/LCR1

LCD display RAM

Address: 000080н

Address: 000080н

Address: 000080н

Address: 000080H

Address: 000080н

Address: 000080н

Address: 000080н

b3	b2	b1	b0	SEG00
b7	b6	b5	b4	SEG01
b3	b2	b1	b0	SEG02
b7	b6	b5	b4	SEG03
b3	b2	b1	b0	SEG04
b7	b6	b5	b4	SEG05
:	:	:	:	
:	:	:	:	
b3	b2	b1	b0	SEG16
b7	b6	b5	b4	SEG17
b3	b2	b1	b0	SEG18
b7	b6	b5	b4	SEG19
	.	:	:	
b3	b2	b1	b0	SEG28
b7	b6	b5	b4	SEG29
b3	b2	b1	b0	SEG30
b7	b6	b5	b4	SEG31
COM3	COM2	COM1	COMO	

(2) Block Diagram

9. DTP/External Interrupt

The DTP (Data Transfer Peripheral) is a peripheral, positioned between peripherals external to the device and the F${ }^{2}$ MC-16L CPU, that accepts DMA requests or interrupt requests generated by external peripherals and transfers them to the $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{LCPU}$ to activate the Intelligent I/O Service or interrupt processing.
In the case of the Intelligent I/O Service, there are two request levels that can be selected: high and low; in the case of an external interrupt request, there are a total of four request levels that can be selected: high, low, rising edge and falling edge.
(1) Register Configuration
bit 15 0
Address: 000029н
000028н
bit 15

EIRR	ENIR

Address: 00002Вн
: 00002Ан

Request level setting register
(2) Block Diagram

10. Watchdog Timer, Timebase Timer, and Watch Timer Functions

The watchdog timer consists of a 2-bit watchdog counter that uses the carry signal from the 18-bit timebase timer or the 15 -bit watch timer as a clock source, a control register, and a watchdog reset controller.
The timebase timer consists of an 18-bit timer and a circuit that controls interval interrupts. Note that the timebase timer uses the main clock, regardless of the setting of the MCS bit and SCS bit in CKSCR.
The watch timer consists of a 15-bit timer and a circuit that controls interval interrupts. Note that the watch timer uses the sub clock, regardless of the setting of the MCS bit and SCS bit in CKSCR.
(1) Register Configuration

Address: 0000A8H

Address: 0000А9

Address: 0000ААн
bit

bit	7

PONR	-	WRST	ERST	SRST	WTE	WT1	WT0

bit
t

Reserved	-	-	TBIE	TBOF	TBR	TBC1	TBC0

bit

WDCS	SCE	WTIE	WTOF	WTR	WTC2	WTC1	WTC0

Watchdog timer control register
(WDTC)

Timebase timer control register (TBTC)

Watch timer control register (WTC)
(2) Block Diagram

11. Delayed Interrupt Generation Module

The delayed interrupt generation module generates task switching interrupts. This module can be used to generate/cancel interrupt requests to the F^{2} MC-16L CPU by software.
(1) Register Configuration

(2) Block Diagram

MB90620A Series

12. Low-power Consumption Controller (CPU Intermittent Operation Function, Oscillation Stabilization Delay Time, Clock Multiplier Function)

The following are the operating modes: PLL clock mode, PLL sleep mode, PLL watch mode, Pseudo-watch mode, main clock mode, main sleep mode, main watch mode, main stop mode, sub clock mode, sub sleep mode, sub watch mode, sub stop mode, and hardware standby mode. Aside from the PLL clock mode, all of the other operating modes are low-power consumption modes.

In main clock mode and main sleep mode, the main clock (main OSC oscillation clock) and the sub clock (sub OSC oscillation clock) operate. In these modes, the main clock divided by 2 is used as the operation clock, the sub clock (sub OSC oscillation clock) is used as the timer clock, and the PLL clock (VCO oscillation clock) is stopped.

In sub clock mode and sub sleep mode, only the sub clock operates. In these modes, the sub clock is used as the operation clock, and the main clock and PLL clock are stopped.

In PLL sleep mode and main sleep mode, only the CPU's operation clock is stopped; all clocks other than the CPU clock operate.

In Pseudo-watch mode, only the watch timer and timebase timer operate.
In PLL watch mode, main watch mode, and sub watch mode, only the watch timer operates. In this mode, only the sub clock is used for operation, while the main clock and the PLL clock are stopped (the difference between the PLL watch mode, the main watch mode and the sub watch mode is that it resumes operation after an interrupt in the PLL clock mode, the main clock modes and the sub clock mode respectively, and there is no difference in the watch mode).

The main stop mode, sub stop mode, and hardware standby mode stop oscillation, making it possible to retain data while consuming the least amount of power. (The difference between the main stop mode and the sub stop mode is that it resumes operation in the main clock mode and the sub clock mode respectively, and there is no difference in the stop mode.)

The CPU intermittent operation function intermittently runs the clock supplied to the CPU when accessing registers, on-chip memory, on-chip resources, and the external bus. Processing is possible with lower power consumption by reducing the execution speed of the CPU while supplying a hig-speed clock and using on-chip resources.

The PLL clock multiplier can be selected as either $2,4,6$, or 8 by setting the CS1 and CS0 bits. These clocks are divided by 2 to be used as a machine clock.
The WS1 and WS0 bits can be used to set the main clock oscillation stabilization delay time for when stop mode and hardware standby mode are woken up.
(1) Register Configuration

Address: 0000AOH

Address: 0000A1н

bit	7	6	5	4	3	2	1	0

STP	SLP	SPL	RST	TMD	CG1	CG0	SSR
--15	14	13	12	11	10	9	8

| SCM | MCM | WS1 | WS0 | SCS | MCS | CS1 | CS0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Low-power consumption mode control register (LPMCR)

Clock selection register (CKSCR)

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	Vss -0.3	Vss +7.0	V	
	AVcc* ${ }^{\text {* }}$	Vss -0.3	Vss +7.0	V	
	AVRH* ${ }^{\star}$ AVRL	Vss - 0.3	Vss +7.0	V	
Input voltage*2	VI	Vss -0.3	$\mathrm{V} c \mathrm{c}+0.3$	V	
Output voltage*2	Vo	Vss -0.3	$\mathrm{V} c \mathrm{c}+0.3$	V	
"L" level output current	lo	-	15	mA	
"L" level total output current	Elob	-	50	mA	
" H " level output current	Іон	-	-4	mA	
"H" level total output current	Eloh	-	-48	mA	
Power consumption	Pd_{d}	-	+400	mW	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tsta	-55	+150	${ }^{\circ} \mathrm{C}$	

*1: AVcc, AVRH and AVRL must not exceed Vcc. In addition, AVRL must not exceed AVRH.
*2: Vı or Vo must not exceed Vcc +0.3 V .
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

$(\mathrm{Vss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V})$

Parameter	Symbol			Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	4.0	5.5	V	Normal operation
		2.7	5.5	V	Maintaining the stop status
"H" level input voltage	V_{IH}	0.7 Vcc	Vss +0.3	V	Except VIHs
	Vihs	0.8 Vcc	V ss +0.3	V	Hysteresis inputs
"L" level input voltage	VIL	Vss - 0.3	0.8	V	Except Vıs
	Vils	Vss - 0.3	0.2 Vcc	V	Hysteresis inputs
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

3. DC Characteristics

Parameter	Symbol	Pin name	Condition	$\left(\mathrm{Vcc}=4.0 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$				
				Value			Unit	Remarks
				Min.	Typ.	Max.		
"H" level output voltage	Vон	-	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V} \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	$\mathrm{V} c \mathrm{c}-0.5$	-	-	V	
"L" level output voltage	Vol	-	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V} \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Input leakage current	IIL	-	$\begin{aligned} & V_{\mathrm{cc}}=5.5 \mathrm{~V} \\ & <V_{\mathrm{ss}}<V_{\mathrm{l}}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-10	-	10	$\mu \mathrm{A}$	
Pull-up resistor	R	-	-	22	-	110	$\mathrm{k} \Omega$	
Power supply current	Icc	Vcc	-	-	40	80	mA	In 12 MHz operation
	Icc			-	30	60	mA	In 8 MHz operation
	Icc			-	15	40	mA	In 4 MHz operation
	Iccs			-	10	40	mA	In 12 MHz sleep
	Iccl			-	6	10	mA	In 32 KHz sub operation
	Icct			-	50	200	$\mu \mathrm{A}$	In 32 KHz watch mode
	Icch			-	1	10	$\mu \mathrm{A}$	In stop mode
LCD voltage division resistor	Rlcd	-	Between Vcc and V0, $\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$	300	500	750	$\mathrm{k} \Omega$	
COM0 to COM3 output impedance	Rvcom	-	$\mathrm{V} 1-\mathrm{V} 3=5.0 \mathrm{~V}$	-	-	2.5	$\mathrm{k} \Omega$	
SEG 0 to SEG31 output impedance	Rvseg	-	$\mathrm{V} 1-\mathrm{V} 3=5.0 \mathrm{~V}$	-	-	15	$\mathrm{k} \Omega$	
LCD leakage current	ILCdL	-	-	-10	-	10	$\mu \mathrm{A}$	
Input capacitance	Cin	Except Vcc, Vss	-	-	10	-	pF	
Open-drain output leakage current	leak	Opendrain pin	-	-	0.1	10	$\mu \mathrm{A}$	

MB90620A Series

4. AC Characteristics

(1) Clock Timing

- When $\mathrm{Vcc}=4.0 \mathrm{~V}$ to 5.5 V

Parameter	Symbol	Pin name	$\left(\mathrm{V} \mathrm{cc}=4.0 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$				
			Condition	Value		Unit	Remarks
				Min.	Max.		
Source oscillation frequency	Fc	X0, X1	-	3	24	MHz	
Source oscillation cycle time	tc	X0, X1	-	41.66	333	ns	
Frequency fluctuation ratio*1 (when locked)	Δf	-	-	-	3	\%	
Input clock pulse width	Рwh, Pwı	X0	-	12	-	ns	Use duty ratio of 30 to 70% as a guide
Input clock rising/falling time	tor, tof	X0	-	-	5	ns	
Internal operating clock frequency	fcp	-	-	$32 \mathrm{~K}^{\star 2}$	12 M	Hz	
Internal operating clock cycle time	tcp	-	-	83.5	31250	ns	

*1: The frequency fluctuation ratio indicates the maximum fluctuation ratio from the set center frequency while locked with multiply.

$$
\Delta f=\frac{|\alpha|}{f_{0}} \times 100(\%)
$$

Center frequency

*2: 32 KHz operation means sub operation.

- Relationship between Operating Clock Frequency and Power Supply Voltage

- Clock Timing

- PLL Operation Assurance Range

Relationship between internal operation clock frequency and power supply voltage

Relationship between source oscillation frequency, internal operating clock frequency

(2) Reset Input Timing

$$
\left(\mathrm{Vcc}=4.0 \mathrm{~V} \text { to }+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Reset input time	trstL	$\overline{\mathrm{RST}}$	-	4 tc	-	ns	

(3) Power-on Reset

$\left(\mathrm{V} \mathrm{cc}=4.0 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$							
Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Power supply rising time	tR	Vcc	-	-	30	ms	
Power supply cut-off time	toff	Vcc	-	1	-	ms	

If power supply voltage needs to be changed in the course of operation, a smooth voltage rise is recommended by suppressing the voltage variation as shown below. Also, do not use the PLL clock when varying the voltage.
However, the supply voltage can be changed when using the PLL clock if the voltage drops by less than $1 \mathrm{mV} / \mathrm{s}$.

(4) UART Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	-	For internal shift clock mode output pin, $\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$	8 tcp	-	ns	
SCK0 $\downarrow \rightarrow$ SOT0 delay time	tstov	-		-80	80	ns	
Valid SINO \rightarrow SCKO \uparrow	tivsh	-		100	-	ns	
SCKO $\uparrow \rightarrow$ Valid SINO hold time	tswix	-		60	-	ns	
Serial clock "H" pulse width	tshsL	-	For external shift clock mode output pin, $C L=80 \mathrm{pF}+1 \mathrm{TTL}$	4 tcp	-	ns	
Serial clock "L" pulse width	tsısh	-		4 tcp	-	ns	
SCK0 $\downarrow \rightarrow$ SOT0 delay time	tstov	-		-	150	ns	
Valid SINO \rightarrow SCKO \uparrow	tivsh	-		60	-	ns	
SCK0 $\uparrow \rightarrow$ Valid SINO hold time	tshix	-		60	-	ns	

Notes: - These are the AC characteristics for CLK synchronous mode.

- C is the load capacitance added to pins during testing.
- tcp is the internal operating clock cycle time (unit: ns).
- The values in the table are target values.
- Internal Shift Clock Mode

- External Shift Clock Mode

(5) Extended Serial I/O Timing
$\left(\mathrm{Vcc}=4.0 \mathrm{~V}\right.$ to +5.5 V , $\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	-	-	8 txmcyl	-	ns	For internal shift clock mode output pin, $C L=80 \mathrm{pF}+1 \mathrm{TTL}$
SCK1 $\downarrow \rightarrow$ SOT1 delay time	tstov	-	V cc $=5.0 \mathrm{~V} \pm 10 \%$	-	80	ns	
Valid SIN1 \rightarrow SCK1 \uparrow	tivsh	-	-	1 txmcyL	-	ns	
SCK1 $\uparrow \rightarrow$ Valid SIN1 hold time	tshix	-	-	1 txmcyl	-	ns	
Serial clock "H" pulse width	tshsL	-	V cc $=5.0 \mathrm{~V} \pm 10 \%$	230	-	ns	For external shift clock mode output pin, $\mathrm{CL}=80 \mathrm{pF}$ Max. 2 MHz
Serial clock "L" pulse width	tslsh	-	V cc $=5.0 \mathrm{~V} \pm 10 \%$	230	-	ns	
SCK1 $\downarrow \rightarrow$ SOT1 delay time	tsıov	-	-	2 txmcyL	-	ns	
Valid SIN1 \rightarrow SCK1 \uparrow	tivsh	-	-	1 txmcyl	-	ns	
SCK1 $\uparrow \rightarrow$ Valid SIN1 hold time	tshix	-	-	1 txmcyL	-	ns	

Notes: $\cdot \mathrm{C}_{\mathrm{L}}$ is the load capacitance added to pins during testing.

- txmcyl is the internal operation clock cycle time (unit: ns).
- Internal Shift Clock Mode

- External Shift Clock Mode

(6) Timer Input Timing

$$
\left(\mathrm{Vcc}=4.0 \mathrm{~V} \text { to }+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Input pulse width	ttiwn ttiwn	TIO0 to TIO2	-	4 tcp	-	ns	

(7) Trigger Input Timing

$$
\left(\mathrm{V} \mathrm{cc}=4.0 \mathrm{~V} \text { to }+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Trigger input width	ttrwh ttrwL	$\begin{aligned} & \hline \overline{\text { ADT }} \\ & \text { TRG } \end{aligned}$	-	4 tcp	-	ns	A/D trigger

MB90620A Series

5. A/D Converter Electrical Characteristics

$\left(\mathrm{AV} \mathrm{cc}=\mathrm{V} \mathrm{cc}=+2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V},+2.7 \mathrm{~V} \leq \mathrm{AVRH}-\mathrm{AVRL}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value			Unit
			Min.	Typ.	Max.	
Resolution	-	-	-	10	10	bit
Total error	-	-	-	-	± 3.0	LSB
Linearity error	-	-	-	-	± 1.5	LSB
Differential linearity error	-	-	-	-	± 1.5	LSB
Zero transition voltage	Vot	AN0 to AN3	-1.5	+0.5	+2.5	LSB
Full-scale transition voltage	Vfst	AN0 to AN3	AVRH - 3.5	AVRL-1.5	AVRH + 0.5	LSB
Conversion time	-	-	8.16	-	-	$\mu \mathrm{s}$
Analog port input current	lain	AN0 to AN3	-	-	10	$\mu \mathrm{A}$
Analog input voltage	Vain	AN0 to AN3	AVRL	-	AVRH	V
Reference voltage	-	AVRH	AVRL	-	AVcc	V
	-	AVRL	-	-	AVRH	V
Power supply current	I_{A}	AVcc	-	5	-	mA
	ІАн	AVcc	-	-	5*	$\mu \mathrm{A}$
Reference voltage supply current	IR	AVcc	-	200	-	$\mu \mathrm{A}$
	IRH	AVcc	-	-	5*	$\mu \mathrm{A}$
Interchannel disparity	-	AN0 to AN3	-	-	4	LSB

* : Current when the A/D converter is not operating and the CPU is stopped (when $\mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{cc}=\mathrm{AVRH}=+5.5 \mathrm{~V}$)

Notes: • The smaller | AVRH - AVRL |, the greater the error would become relatively.

- The output impedance of the external circuit for the analog input must satisfy the following conditions: The output impedance of the external circuit should be less than approximately $7 \mathrm{k} \Omega$.
- If the output impedance of the external circuit is too high, an analog voltage sampling time might be insufficient (sampling time $=5 \mu \mathrm{~s}$ @ at a machine clock of 12 MHz).

- Analog Input Circuit Model Diagram

Note: Use the values shown as guides only.

6. A/D Converter Glossary

- Resolution

Analog changes that are identifiable with the A/D converter.
If the resolution is 10 bits, the analog voltage can be resolved into $2^{10}=1024$ steps.

- Total error

The deviation between the actual and logic value attributable to offset error, gain error, non-linearity error, and noise.

- Linearity error

The deviation between the actual conversion characteristic of the device and the line linking the zero transition point ("00 00000000 " \leftrightarrow "00 00000001 ") and the full scale transition point (" 1111111110 " $\leftrightarrow " 1111111111$ ").

- Differential linearity error

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Digital output

EXAMPLE CHARACTERISTICS

Power supply current vs temperature characteristics example
MB90623A/622A

Power supply current vs temperature characteristics example
MB90623A/622A

Power supply current vs temperature characteristics example
MB90623A/622A

Operation frequency vs power supply current characteristics example

Sleep mode power supply current characteristics example

Power supply voltage vs power supply current characteristics example

Sub operation mode power supply current characteristics example

Watch mode power supply current characteristics example
Watch mode
current consumption characteristics example

Power supply current characteristics during PLL operation

(Continued)

Pseudo-watch mode power supply current characteristics example

CPU intermittent mode power supply current characteristics
CPU intermittent mode power supply current characteristics

INSTRUCTIONS (340 INSTRUCTIONS)

Table 1 Explanation of Items in Tables of Instructions

Item	Meaning
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler. Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction.
\#	Indicates the number of bytes.
\sim	Indicates the number of cycles. m : When branching n : When not branching See Table 4 for details about meanings of other letters in items.
RG	Indicates the number of accesses to the register during execution of the instruction. It is used calculate a correction value for intermittent operation of CPU.
B	Indicates the correction value for calculating the number of actual cycles during execution of the instruction. (Table 5) The number of actual cycles during execution of the instruction is the correction value summed with the value in the " \sim " column.
Operation	Indicates the operation of instruction.
LH	Indicates special operations involving the upper 8 bits of the lower 16 bits of the accumulator. Z : Transfers " 0 ". X : Extends with a sign before transferring. - : Transfers nothing.
AH	Indicates special operations involving the upper 16 bits in the accumulator. * : Transfers from AL to AH. - : No transfer. Z : Transfers 00 н to AH. X : Transfers 00 н or FF to AH by signing and extending AL.
I	Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky bit), N (negative), Z (zero), V (overflow), and C (carry). * : Changes due to execution of instruction. - : No change. S: Set by execution of instruction. R : Reset by execution of instruction.
S	
T	
N	
Z	
V	
C	
RMW	Indicates whether the instruction is a read-modify-write instruction. (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.) * : Instruction is a read-modify-write instruction. - : Instruction is not a read-modify-write instruction. Note: A read-modify-write instruction cannot be used on addresses that have different meanings depending on whether they are read or written.

Table 2 Explanation of Symbols in Tables of Instructions

Symbol	Meaning
A	32-bit accumulator The bit length varies according to the instruction. Byte : Lower 8 bits of AL Word : 16 bits of AL Long : 32 bits of AL:AH
$\begin{aligned} & \text { AH } \\ & \text { AL } \end{aligned}$	Upper 16 bits of A Lower 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir	Compact direct addressing
addr16 addr24 ad24 0 to 15 ad24 16 to 23	Direct addressing Physical direct addressing Bit 0 to bit 15 of addr24 Bit 16 to bit 23 of addr24
io	I/O area (000000н to 0000FF\%)
imm4 imm8 imm16 imm32 ext (imm8)	4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data signed and extended from 8-bit immediate data
disp8 disp16	8-bit displacement 16-bit displacement
bp	Bit offset
vct4 vct8	Vector number (0 to 15) Vector number (0 to 255)
() b	Bit address

(Continued)

Symbol	
rel	Branch specification relative to PC
ear	Effective addressing (codes 00 to 07) eam Effective addressing (codes 08 to 1F)
rlst	Register list

Table 3 Effective Address Fields

Code	Notation			Address format	Number of bytes in address extension *
00 01 02 03 04 05 06 07	R0 R1 R2 R3 R4 R5 R6 R7	RW0 RW1 RW2 RW3 RW4 RW5 RW6 RW7	RLO (RLO) RL1 (RL1) RL2 (RL2) RL3 (RL3)	Register direct "ea" corresponds to byte, word, and long-word types, starting from the left	-
$\begin{aligned} & 08 \\ & 09 \\ & 0 \mathrm{~A} \\ & \text { OB } \end{aligned}$	@RW0@RW1@RW2@RW3			Register indirect	0
$\begin{aligned} & \text { OC } \\ & 0 D \\ & 0 E \\ & 0 F \end{aligned}$	@RW0 + @RW1 + @RW2 + @RW3 +			Register indirect with post-increment	0
$\begin{aligned} & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \end{aligned}$	@RW0 + disp8 @RW1 + disp8 @RW2 + disp8 @RW3 + disp8 @RW4 + disp8 @RW5 + disp8 @RW6 + disp8 @RW7 + disp8			Register indirect with 8-bit displacement	1
$\begin{aligned} & 18 \\ & 19 \\ & 1 \mathrm{~A} \\ & 1 \mathrm{~B} \end{aligned}$	$\begin{aligned} & @ R W 0 \text { + disp16 } \\ & \text { @RW1 + disp16 } \\ & \text { @RW2 + disp16 } \\ & \text { @RW3 + disp16 } \end{aligned}$			Register indirect with 16-bit displacement	2
$\begin{aligned} & 1 \mathrm{C} \\ & 1 \mathrm{D} \\ & 1 \mathrm{E} \\ & 1 \mathrm{~F} \end{aligned}$	@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16			Register indirect with index Register indirect with index PC indirect with 16-bit displacement Direct address	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 2 \end{aligned}$

Note: The number of bytes in the address extension is indicated by the " + " symbol in the " $\#$ " (number of bytes) column in the tables of instructions.

Table 4 Number of Execution Cycles for Each Type of Addressing

Code	Operand	(a)	Number of register accesses for each type of addressing
		Number of execution cycles for each type of addressing	
00 to 07	Ri RWi RLi	Listed in tables of instructions	Listed in tables of instructions
08 to 0B	@RWj	2	1
0 C to 0F	@RWj +	4	2
10 to 17	@RWi + disp8	2	1
18 to 1B	@RWj + disp16	2	1
1 C 1 D 1 E 1 F	$\begin{aligned} & \text { @RW0 + RW7 } \\ & \text { @RW1 + RW7 } \\ & \text { @PC + disp16 } \\ & \text { addr16 } \end{aligned}$	4 4 2 1	$\begin{aligned} & 2 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$

Note: "(a)" is used in the " \sim " (number of states) column and column B (correction value) in the tables of instructions.
Table 5 Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles

Operand	(b) byte		(c) word		(d) long	
	Number of cycles	Number of access	Number of cycles	Number of access	Number of cycles	Number of access
Internal register	+0	1	+0	1	+0	2
Internal memory even address	+0	1	+0	1	+0	2
Internal memory odd address	+0	1	+2	2	+4	4
Even address on external data bus (16 bits)	+1	1	+1	1	+2	2
Odd address on external data bus (16 bits)	+1	1	+4	2	+8	4
External data bus (8 bits)	+1	1	+4	2	+8	4

Notes: • "(b)", "(c)", and "(d)" are used in the " \sim " (number of states) column and column B (correction value) in the tables of instructions.

- When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	-	+2
External data bus (16 bits)	-	+3
External data bus (8 bits)	+3	-

Notes: - When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

- Because instruction execution is not slowed down by all program fetches in actuality, these correction values should be used for "worst case" calculations.

Table 7 Transfer Instructions (Byte) [41 Instructions]

	Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
MOV	A, dir	2	3	0	(b)	byte (A) \leftarrow (dir)	Z		-	-	-			-	-	-
MOV	A, addr16	3		0	(b)	byte (A) $\leftarrow($ addr 16$)$	Z	*	-	-	-	*	*	-	-	-
MOV	A, Ri	1	2	1	0	byte $(A) \leftarrow$ (Ri)	Z		-	-	-	*		-	-	-
MOV	A, ear	2	2	1	0	byte (A) \leftarrow (ear)	Z		-	-	-	*	*	-	-	-
MOV	A, eam	2+	$3+$ (a)	0	(b)	byte (A) \leftarrow (eam)	Z	*	-	-	-	*	*	-	-	-
MOV	A, io	2	3	0	(b)	byte (A) \leftarrow (io)	Z		-	-	-	*	*	-	-	-
MOV	A, \#imm8	2	2	0	0	byte (A) \leftarrow imm8	Z	*	-	-	-	*	*	-	-	-
MOV	A, @A	2	3	0	(b)	byte $(A) \leftarrow((A))$	Z	-	-	-	-	*	*	-	-	-
MOV	A, @RLi+disp8	3	10	2	(b)	byte $(A) \leftarrow(($ RLi) $)$ disp8)	Z	*	-	-	-	*	*	-	-	-
MOVN	A, \#imm4	1	1	0)	byte (A) \leftarrow imm4	Z	*	-	-	-	R	*	-	-	-
MOVX	A, dir	2	3	0	(b)	byte (A) \leftarrow (dir)	X		-	-	-				-	-
MOVX	A, addr16	3	4	0	(b)	byte (A) $\leftarrow($ addr16 $)$	X		-	-	-	*	*	-	-	-
MOVX	A, Ri	2	2	1	0	byte (A) $\leftarrow(\mathrm{Ri})$	X		-	-	-			-	-	-
MOVX	A, ear	2	2	1	0	byte $(A) \leftarrow$ (ear)	X	*	-	-	-	*		-	-	-
MOVX	A, eam	2+	$3+$ (a)	0	(b)	byte $(A) \leftarrow($ eam $)$	X	*	-	-	-	*		-	-	-
MOVX	A, io	2	3	0	(b)	byte (A) \leftarrow (io)	X		-	-	-	*		-	-	-
MOVX	A, \#imm8	2	2	0	0	byte (A) \leftarrow imm8	X		-	-	-	*		-	-	-
MOVX	A, @A	2	3	0	(b)	byte $(A) \leftarrow((A))$	X	-	-	-	-	*	*	-	-	-
MOVX	A,@RWi+disp8	2	5	1	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{RWi})+$ disp8)	X	*	-	-	-	*	*	-	-	-
MOVX	A, @RLi+disp8	3	10	2	(b)	byte $(A) \leftarrow((R L i)+$ disp8)	X	*	-	-	-	*	*	-	-	-
MOV	dir, A	2	3	0	(b)	byte (dir) $\leftarrow(A)$	-	-	-	-	-	*	*	-	-	-
MOV	addr16, A	3	4	0	(b)	byte (addr16) $\leftarrow($ A $)$	-	-	-	-	-	*	*	-	-	-
MOV	Ri, A	1	2	1	0	byte $(\mathrm{Ri}) \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	-
MOV	ear, A	2	2	1	0	byte (ear) $\leftarrow(A)$	-	-	-	-	-			-	-	-
MOV	eam, A	$2+$	$3+$ (a)	0	(b)	byte (eam) $\leftarrow(A)$	-	-	-	-	-	*		-	-	-
MOV	io, A	2	3	0	(b)	byte (io) $\leftarrow(\mathrm{A})$	-	-	-	-	-	*		-	-	-
MOV	@RLi+disp8, A	3	10	2	(b)	byte ($($ RLi) + disp8) $\leftarrow(\mathrm{A})$	-	-	-	-	-			-	-	-
MOV	Ri, ear	2	3	2	0	byte (Ri) \leftarrow (ear)	-	-	-	-	-	*	*	-	-	-
MOV	Ri, eam	2+	4+ (a)	1	(b)	byte $(\mathrm{Ri}) \leftarrow($ eam $)$	-	-	-	-	-	*		-	-	-
MOV	ear, Ri	2	4	2	0	byte (ear) \leftarrow (Ri)	-	-	-	-	-	*	*	-	-	-
MOV	eam, Ri	2+	5+ (a)	1	(b)	byte (eam) \leftarrow (Ri)	-	-	-	-	-	*	*	-	-	-
MOV	Ri, \#imm8	2	2	1	0	byte (Ri) \leftarrow imm8	-	-	-	-	-	*	*	-	-	-
MOV	io, \#imm8	3	5	0	(b)	byte (io) \leftarrow imm8	-	-	-	-	-	-	-	-	-	-
MOV	dir, \#imm8	3	5	0	(b)	byte (dir) \leftarrow imm8	-	-	-	-	-	-	-	-	-	-
MOV	ear, \#imm8	3	2	1	0	byte (ear) \leftarrow imm8	-	-	-	-	-			-	-	-
MOV	eam, \#imm8	$3+$	4+ (a)	0	(b)	byte (eam) \leftarrow imm8	-	-	-	-	-	-	-	-	-	-
MOV	@AL, AH	2	3	0	(b)	byte $($ (A$)) \leftarrow($ AH)	-	-	-	-	-	*		-	-	-
/MOV	@A, T															
XCH	A, ear	2	4	2	0	byte $(A) \leftrightarrow$ (ear)	Z	-	-	-	-	-	-	-	-	-
XCH	A, eam	2+	5+ (a)	0	$2 \times$ (b)	byte (A) $\leftrightarrow($ eam $)$	Z	-	-	-	-	-	-	-	-	-
XCH	Ri, ear	2	7	4	0	byte (Ri) \leftrightarrow (ear)	-	-	-	-	-	-	-	-	-	-
XCH	Ri, eam	2+	9+ (a)	2	$2 \times$ (b)	byte (Ri) $\leftrightarrow($ eam	-	-	-	-	-	-	-	-	-	-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90620A Series

Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH		1	S	T	N	Z	V	C	RMW
MOVW A, dir	2	3	0	(c)	word (A) \leftarrow (dir)	-			-	-	-			-	-	-
MOVW A, addr16	3		0	(c)	word $(A) \leftarrow($ addr 16$)$	-			-	-	-	*		-	-	
MOVW A, SP	1		0	0	word $(A) \leftarrow(S P)$	-			-	-	-	*	*	-	-	-
MOVW A, RWi	1	2	1	0	word $(A) \leftarrow($ RWi)	-			-	-	-	*	*	-	-	-
MOVW A, ear	2	2		0	word (A) $\leftarrow($ ear $)$	-			-	-	-	*	*	-	-	-
MOVW A, eam	2+	$3+$ (a)	0	(c)	word $(A) \leftarrow$ (eam)	-	*		-	-	-	*	*	-	-	-
MOVW A, io	2	3	0	(c)	word $(A) \leftarrow$ (io)	-	*		-	-	-	*	*	-	-	-
MOVW A, @A	2	3	0	(c)	word $(A) \leftarrow((A))$	-	-		-	-	-	*	*	-	-	-
MOVW A, \#imm16	3	2	0	0	word $(A) \leftarrow$ imm16	-			-	-	-	*	*	-	-	-
MOVW A, @RWi+disp8	2	5	1	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{RWi})+$ disp8)	-			-	-	-	*	*	-	-	-
MOVW A, @RLi+disp8	3	10	2	(c)	word $(A) \leftarrow(($ RLi $)+$ disp8)	-			-	-	-	*	*	-	-	-
MOVW dir, A	2	3	0	(c)	word (dir) $\leftarrow(A)$	-			-	-	-			-	-	-
MOVW addr16, A	3	4	0	(c)	word (addr16) $\leftarrow(A)$	-			-	-	-			-	-	-
MOVW SP, A	1	1	0	0	word $(S P) \leftarrow(A)$	-			-	-	-	*		-	-	-
MOVW RWi, A	1	2	1	0	word (RWi) $\leftarrow(\mathrm{A})$	-			-	-	-	*		-	-	-
MOVW ear, A	2	2	1	0	word (ear) $\leftarrow(A)$	-			-	-	-	*		-	-	-
MOVW eam, A	2+	$3+$ (a)	0	(c)	word (eam) $\leftarrow(\mathrm{A})$	-			-	-	-	*	*	-	-	
MOVW io, A	2	3	0	(c)	word (io) $\leftarrow(A)$	-			-	-	-	*	*	-	-	-
MOVW @RWi+disp8, A	2	5	1	(c)	word ((RWi) +disp8) $\leftarrow(\mathrm{A})$	-			-	-	-	*		-	-	-
MOVW @RLi+disp8, A	3	10	2	(c)	word $((\mathrm{RLL})+$ disp8) $\leftarrow(\mathrm{A})$	-	-		-	-	-	*		-	-	-
MOVW RWi, ear	2	3	2	(0)	word (RWi) \leftarrow (ear)	-			-	-	-			-	-	-
MOVW RWi, eam	2+	4+ (a)	1	(c)	word (RWW$) \leftarrow$ (eam)	-			-	-	-			-	-	-
MOVW ear, RWi	2	4	2	0	word (ear) $\leftarrow(\mathrm{RWi})$	-				-	-			-	-	
MOVW eam, RWi	2+	5+ (a)	1	(c)	word (eam) $\leftarrow($ RWi)	-			-	-	-			-	-	-
MOVW RWi, \#imm16	3	2	1	0	word (RWi) ¢imm16	-			-	-	-			-	-	-
MOVW io, \#imm16	4	5	0	(c)	word (io) \leftarrow imm16	-			-	-	-	-	-	-	-	-
MOVW ear, \#imm16	4	2	1	0	word (ear) \leftarrow imm16	-			-	-	-			-	-	-
MOVW eam, \#imm16	4+	4+ (a)	0	(c)	word (eam) \leftarrow imm16	-	-			-	-	-	-	-	-	-
MOVW AL, AH /MOVW @A,T	2	3	0	(c)	word $((\mathrm{A})) \leftarrow(\mathrm{AH})$	-			-	-				-	-	-
	2	(a)	2	0	word $(A) \leftrightarrow$ (ear)	-			-	-	-	-			-	-
XCHW A, eam	2+	$5+$ (a)	0	$2 \times$ (c)	word (A) $\leftrightarrow($ eam	-	-		-	-	-	-	-	-	-	-
XCHW RWi, ear	2	7	4	0	word (RWi) \leftrightarrow (ear)	-	-		-	-	-	-	-	-	-	-
XCHW RWi, eam	2+	$9+$ (a)	2	$2 \times$ (c)	word (RWi) \leftrightarrow (eam)	-			-	-	-	-	-	-		
MOVL A, ear	2	(a)	2	(d)	long $(A) \leftarrow$ (ear)	-	-		-	-	-				-	-
MOVL A, eam	$2+$	5+ (a)	0	(d)	long $(A) \leftarrow($ eam $)$	-			-	-	-			-		-
MOVL A, \#imm32	5	3	0	0	long $(A) \leftarrow$ imm 32	-			-	-	-			-	-	-
MOVL ear, A	2	4	2	0	long (ear) $\leftarrow(A)$	-	-		-	-	-	*	*	-	-	-
MOVL eam, A	2+	5+ (a)	0	(d)	long (eam) $\leftarrow(A)$	-	-		-	-	-			-	-	-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
ADD A,\#imm8	2	2	0	0	byte $(A) \leftarrow(A)+$ imm8	Z	-	-	-	-	*	*	*	*	-
ADD A, dir	2	5	0	(b)	byte $(A) \leftarrow(A)+$ (dir)	Z	-	-	-	-	*	*	*	*	-
ADD A, ear	2	3	1	0	byte $(A) \leftarrow(A)+($ ear $)$	Z	-	-	-	-	*	*	*	*	-
ADD A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)+($ eam $)$	Z	-	-	-	-	*	*	*	*	-
ADD ear, A	2	3	2	0	byte (ear) \leftarrow (ear) $+(\mathrm{A})$	-	-	-	-	-	*	*	*	*	-
ADD eam, A	2+	5+ (a)	0	$2 \times$ (b)	byte (eam) $\leftarrow($ eam $)+(\mathrm{A})$	Z	-	-	-	-	*	*	*	*	*
ADDC A	1	2	0	0	byte $(A) \leftarrow(A H)+(A L)+(C)$	Z	-	-	-	-	*	*	*		-
ADDC A, ear	2	3	1	0	byte $(A) \leftarrow(A)+($ ear $)+(C)$	Z	-	-	-	-	*	*	*	*	-
ADDC A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)+($ eam $)+(C)$	Z	-	-	-	-	*	*	*	*	-
ADDDC A	1	3	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})+(\mathrm{AL})+(\mathrm{C})$ (decimal)	Z	-	-	-	-	*	*	*	*	-
SUB A, \#imm8	2	2	0	0	byte $(A) \leftarrow(A)$-imm8	Z	-	-	-	-	*	*	*	*	-
SUB A, dir	2	5	0	(b)	byte $(A) \leftarrow(A)-$ (dir)	Z	-	-	-	-	*	*	*		-
SUB A, ear	2	3	1	0	byte $(A) \leftarrow(A)-$ ear)	Z	-	-	-	-	*	*	*	*	-
SUB A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)-($ eam $)$	Z	-	-	-	-	*	*	*	*	-
SUB ear, A	2	3	2	0	byte (ear) $\leftarrow($ ear $)-(A)$	-	-	-	-	-	*	*	*	*	-
SUB eam, A	2+	5+ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow (eam) - (A)	-	-	-	-	-	*	*	*	*	*
SUBC A	1	2	0	0	byte $(A) \leftarrow(A H)-(A L)-(C)$	Z	-	-	-	-	*	*	*	*	-
SUBC A, ear	2	3	1	0	byte $(A) \leftarrow(A)-($ ear $)-(C)$	Z	-	-	-	-	*	*	*	*	-
SUBC A, eam	2+	4+(a)	0	(b)	byte $(A) \leftarrow(A)-($ eam $)-(C)$	Z	-	-	-	-	*	*	*	*	-
SUBDC A	1	3	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{AH})-(\mathrm{AL})-(\mathrm{C})$ (decimal)	Z	-	-	-	-	*	*	*	*	-
ADDW A	1	2	0	0	word $(A) \leftarrow(A H)+(A L)$	-	-	-	-	-	*	*	*	*	-
ADDW A, ear	2	3	1	0	word $(A) \leftarrow(A)+($ ear $)$	-	-	-	-	-	*	*		*	-
ADDW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)+$ (eam)	-	-	-	-	-	*	*		*	-
ADDW A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)+i m m 16$	-	-	-	-	-	*	*		*	-
ADDW ear, A	2	3	2	0	word (ear) \leftarrow (ear) $+(\mathrm{A})$	-	-	-	-	-	*	*		*	-
ADDW eam, A	2+	$5+$ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)+(A)$	-	-	-	-	-	*	*	*	*	*
ADDCW A, ear	2	3	1	0	word $(A) \leftarrow(A)+($ ear $)+(C)$	-	-	-	-	-	*	*		*	-
ADDCW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)+($ eam $)+(C)$	-	-	-	-	-	*	*		*	-
SUBW A	1	2	0	0	word $(A) \leftarrow(A H)-(A L)$	-	-	-	-	-	*	*		*	-
SUBW A, ear	2	3	1	0	word $(A) \leftarrow(A)-($ ear $)$	-	-	-	-	-	*	*		*	-
SUBW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)-($ eam $)$	-	-	-	-	-	*	*		*	-
SUBW A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$-imm16	-	-	-	-	-	*	*	*	*	-
SUBW ear, A	2	3	2	0	word (ear) $\leftarrow($ ear $)-(A)$	-	-	-	-	-	*	*	*	*	-
SUBW eam, A	2+	$5+(a)$	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)-(A)$	-	-	-	-	-	*	*	*	*	
SUBCW A, ear	2	3	1	0	word $(A) \leftarrow(A)-($ ear $)-(C)$	-	-	-	-	-	*	*	*	*	-
SUBCW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)-($ eam $)-(C)$	-	-	-	-	-	*	*	*	*	-
ADDL A, ear	2	6	2	0	long $(A) \leftarrow(A)+$ (ear)	-	-	-	-	-	*	*			
ADDL A, eam	2+	$7+(a)$	0	(d)	long $(A) \leftarrow(A)+($ eam $)$	-	-	-	-	-	*	*	*	*	-
ADDL A, \#imm32	5	4	0	0	long $(A) \leftarrow(A)+$ imm32	-	-	-	-	-	*	*	*	*	-
SUBL A, ear	2	6	2	0	long $(A) \leftarrow(A)-(e a r)$	-	-	-	-	-	*	*	*	*	-
SUBL A, eam	2+	$7+(\mathrm{a})$	0	(d)	long $(A) \leftarrow(A)-($ eam $)$	-	-	-	-	-	*	*	*	*	-
SUBL A, \#imm32	5	4	0	0	long $(A) \leftarrow(A)$-imm32	-	-	-	-	-	*	*	*	*	-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
$\begin{array}{\|l} \hline \text { INC } \\ \text { INC } \end{array}$	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 2 \\ 5+(a) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(b) \end{gathered}$	$\begin{aligned} & \text { byte }(\text { ear }) \leftarrow(\text { ear })+1 \\ & \text { byte (eam }) \leftarrow(\text { eam })+1 \end{aligned}$	$-$	$-$	-	$-$	-				-	-
$\begin{array}{\|l} \text { DEC } \\ \text { DEC } \end{array}$	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 3 \\ 5+(a) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(\mathrm{b}) \end{gathered}$	$\begin{aligned} & \text { byte }(\text { ear }) \leftarrow(\text { ear })-1 \\ & \text { byte (eam }) \leftarrow(\text { eam })-1 \end{aligned}$	-	$-$	-	-	-	*	*	*	-	*
INCW INCW	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 3 \\ 5+(a) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(\mathrm{c}) \end{gathered}$	$\begin{aligned} & \text { word }(\text { ear }) \leftarrow(\text { ear })+1 \\ & \text { word }(\text { eam }) \leftarrow(\text { eam })+1 \end{aligned}$	-		-	-	-				-	-
$\begin{aligned} & \text { DECW } \\ & \text { DECW } \end{aligned}$	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 3 \\ 5+(a) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(\mathrm{c}) \end{gathered}$	$\begin{aligned} & \text { word }(\text { ear }) \leftarrow(\text { ear })-1 \\ & \text { word }(\text { eam }) \leftarrow(\text { eam })-1 \end{aligned}$	-	-	-	-	-	*	*	*	-	-
INCL INCL	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 7 \\ 9+(a) \end{gathered}$	$\begin{aligned} & 4 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(d) \end{gathered}$	$\begin{aligned} & \text { long }(\text { ear }) \leftarrow(e a r)+1 \\ & \text { long (eam) } \leftarrow(\text { eam })+1 \end{aligned}$	-	-	-	-	-		*	*	-	-
DECL DECL	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	7 $9+(\mathrm{a})$	$\begin{aligned} & 4 \\ & 0 \end{aligned}$	$\underset{2 \times(\mathrm{d})}{0}$	$\begin{aligned} & \text { long }(e a r) \leftarrow(e a r)-1 \\ & \text { long }(\text { eam }) \leftarrow(e a m)-1 \end{aligned}$	-	-	-	-	-	*	*	*	-	-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
CMP A	1	1	0	0	byte (AH) - (AL)	-	-	-	-	-	*				-
CMP A, ear	2	2		0	byte $(A) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMP A, eam	2+	$3+$ (a)	0	(b)	byte $(A) \leftarrow($ eam $)$	-	-	-	-	-	*	*	*	*	-
CMP A, \#imm8	2	2	0	0	byte $(\mathrm{A}) \leftarrow$ imm8	-	-	-	-	-	*	*	*		-
CMPW A	1	1	0	0	word (AH) - (AL)	-	-	-	-	-	*	*	*		-
CMPW A, ear	2	2	1	0	word (A) \leftarrow (ear)	-	-	-	-	-	*	*	*	*	-
CMPW A, eam	2+	$3+$ (a)	0	(c)	word (A) $\leftarrow($ eam $)$	-	-	-	-	-	*	*	*	*	-
CMPW A, \#imm16	3	2	0	0	word $(A) \leftarrow$ imm16	-	-	-	-	-	*	*	*		-
CMPL A, ear	2	6	2	0	word $(A) \leftarrow(e a r)$	-	-	-	-	-	*	*	*		-
CMPL A, eam	2+	$7+$ (a)	0	(d)	word (A) $\leftarrow($ eam $)$	-	-	-	-	-	*	*	*		-
CMPL A, \#imm32	5	3	0	0	word $(A) \leftarrow$ imm32	-	-	-	-	-	*	*	*		-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnem	onic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
DIVU	A	1	*1	0	0	word (AH) /byte (AL)	-	-	-	-	-	-	-	*	*	-
DIVU	A, ear	2	*2	1	0	word (A)/byte (ear) Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	-	-	-	-	-	-	-	*	*	-
DIVU	A, eam	2+	*3	0	*6	word (A)/byte (eam) Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam)	-	-	-	-	-	-	-	*	*	-
DIVUW	A, ear	2	*4	1	0	long (A)/word (ear) Quotient \rightarrow word (A) Remainder \rightarrow word (ear)	-	-	-	-	-	-	-	*	*	-
DIVUW	A, eam	2+	*5	0	*7	long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	-	-	-	-	-	-	-	*	*	-
MULU	A	1	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU	A, ear	2	*9	1	0	byte (A) *byte (ear) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU	A, eam	2+	*10	0	(b)	byte (A) *byte (eam) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A	1	*11	0	0	word (AH) *word (AL) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A, ear	2	*12	1	0	word (A) *word (ear) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A, eam	2+	*13	0	(c)	word (A) *word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-

*1: 3 when the result is zero, 7 when an overflow occurs, and 15 normally.
*2: 4 when the result is zero, 8 when an overflow occurs, and 16 normally.
*3: $6+$ (a) when the result is zero, $9+$ (a) when an overflow occurs, and $19+$ (a) normally.
*4: 4 when the result is zero, 7 when an overflow occurs, and 22 normally.
*5: $6+$ (a) when the result is zero, $8+$ (a) when an overflow occurs, and $26+$ (a) normally.
*6: (b) when the result is zero or when an overflow occurs, and $2 \times(\mathrm{b})$ normally.
*7: (c) when the result is zero or when an overflow occurs, and $2 \times$ (c) normally.
*8: 3 when byte (AH) is zero, and 7 when byte (AH) is not zero.
*9: 4 when byte (ear) is zero, and 8 when byte (ear) is not zero.
*10: $5+$ (a) when byte (eam) is zero, and $9+$ (a) when byte (eam) is not 0 .
*11: 3 when word (AH) is zero, and 11 when word (AH) is not zero.
*12: 4 when word (ear) is zero, and 12 when word (ear) is not zero.
*13: $5+$ (a) when word (eam) is zero, and $13+$ (a) when word (eam) is not zero.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90620A Series

Table 13 Logical 1 Instructions (Byte/Word) [39 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
AND	A, \#imm8	2	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ and imm8	-		-	-	-			R	-	
AND	A, ear	2	3	1	(b)	byte $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-	*	*	R	-	-
AND	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-		*	R	-	-
AND	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) and (A)	-	-	-	-	-	*	*	R	-	-
AND	eam, A	2+	5+ (a)	0	$2 \times$ (b)	byte (eam) $\leftarrow($ eam) and (A)	-	-	-	-	-	*	*	R	-	
OR	A, \#imm8	2	2	0	0	byte $(A) \leftarrow(A)$ or imm8	-	-	-	-	-	*	*	R	-	-
OR	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-	*	*	R	-	-
OR	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-		*	R	-	-
OR	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) or (A)	-		-	-	-		*	R	-	-
OR	eam, A	2+	$5+$ (a)	0	$2 \times$ (b)	byte (eam) $\leftarrow($ eam) or (A)	-		-	-	-	*	*	R	-	
XOR	A, \#imm 8		2	0	0	byte $(A) \leftarrow(A)$ xor imm8	-	-	-	-	-		*	R	-	-
XOR	A, ear	2	(a)	1	0	byte $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-	*	*	R	-	
XOR	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-		*	R	-	
XOR	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) xor (A)	-	-	-	-	-	*	*	R	-	
XOR	eam, A	2+	$5+$ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow (eam) xor (A)	-	-	-	-	-	*	*	R	-	
NOT	A	1	2	0	0	byte (A) $\leftarrow \operatorname{not}(\mathrm{A})$	-	-	-	-	-	*	*	R	-	-
NOT	ear	2	3	2	0	byte (ear) \leftarrow not (ear)	-	-	-	-	-	*	*	R	-	-
NOT	eam	2+	$5+$ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow not (eam)	-	-	-	-	-	*		R	-	
ANDW	A	1	2	0	0	word $(A) \leftarrow(A H)$ and (A)	-	-	-	-	-			R	-	-
ANDW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ and imm16	-	-	-	-	-	*	*	R	-	-
ANDW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-	*	*	R	-	-
ANDW	A, eam	$2+$	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	*	*	R	-	-
ANDW	ear, A	2	(a)	2	0	word (ear) \leftarrow (ear) and (A)	-	-	-	-	-	*	*	R	-	-
ANDW	eam, A	2+	$5+$ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam) and (A)	-	-	-	-	-	*		R	-	
ORW	A	1		0	0	word $(A) \leftarrow(A H)$ or (A)	-	-	-	-	-			R	-	-
ORW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ or imm16	-	-	-	-	-	*		R	-	-
ORW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-	*	*	R	-	-
ORW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*	*	R	-	-
ORW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) or (A)	-	-	-	-	-	*	*	R	-	-
ORW	eam, A	2+	5+ (a)	0	$2 \times$ (c)	word (eam) \leftarrow (eam) or (A)	-	-	-	-	-	*	*	R	-	*
XORW		1		0	0	word $(A) \leftarrow(A H)$ xor (A)	-	-	-	-	-	*		R	-	-
XORW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ xor imm16	-	-	-	-	-	*	*	R	-	-
XORW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-		*	R	-	-
XORW	A, eam	$2+$	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-			R	-	-
XORW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) xor (A)	-	-	-	-	-			R	-	-
XORW	eam, A	2+	$5+$ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam) xor (A)	-	-	-	-	-	*		R	-	*
NOTW		1	2	0	0	word $(A) \leftarrow \operatorname{not}(A)$	-	-	-	-	-		*	R	-	-
NOTW	ear	2	3	2	0	word (ear) \leftarrow not (ear)	-	-	-	-	-	*	*	R	-	-
NOTW	eam	2+	5+ (a)	0	$2 \times$ (c)	word (eam) \leftarrow not (eam)	-	-	-	-	-	*	*	R	-	*

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 14 Logical 2 Instructions (Long Word) [6 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
ANDL A, ear	2	6	2	0	long $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-	*		R	-	-
ANDL A, eam	2+	7+ (a)	0	(d)	long $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	*	*	R	-	-
ORL A, ear	2	6	2	0	long $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-	*	*	R	-	-
ORL A, eam	2+	7+ (a)	0	(d)	long $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*	*	R	-	-
XORL A, ea	2	6	2	0	long $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-	*	*	R	-	-
XORL A, eam	2+	7+ (a)	0	(d)	long $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-	*	*	R	-	-

Table 15 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
NEG		1	2	0	0	byte $(\mathrm{A}) \leftarrow 0-(\mathrm{A})$	X	-	-	-	-	*	*	*	*	-
$\begin{array}{\|l\|} \text { NEG } \\ \text { NEG } \end{array}$	ear eam	$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 3 \\ 5+(a) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(b) \end{gathered}$	byte (ear) $\leftarrow 0$ - (ear) byte $($ eam $) \leftarrow 0-($ eam $)$	-	-	-	-	-	*	*	*	*	-
NEGW		1	2	0	0	word $(\mathrm{A}) \leftarrow 0-(\mathrm{A})$	-	-	-	-	-	*	*	*	*	-
$\begin{aligned} & \text { NEGW } \\ & \text { NFGW } \end{aligned}$		$\begin{gathered} 2 \\ 2+ \end{gathered}$	$\begin{gathered} 3 \\ 5+(a) \end{gathered}$	$\begin{aligned} & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 2 \times(\mathrm{c}) \end{gathered}$	word (ear) $\leftarrow 0-$ (ear) word $($ eam $) \leftarrow 0-($ eam $)$	-	-	-	-	-	*	*	*	*	-

Table 16 Normalize Instruction (Long Word) [1 Instruction]

Mnemonic	$\#$	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
NRML A, R0	2	${ }^{*}$	1	0	long (A) \leftarrow Shift until first digit is " $1 "$ byte (R0) \leftarrow Current shift count	-	-	-	-	-	-	$*$	-	-	-

*1: 4 when the contents of the accumulator are all zeroes, $6+(\mathrm{RO})$ in all other cases (shift count).
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 17 Shift Instructions (Byte/Word/Long Word) [18 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
RORC A	2	2	0	0	byte $($ A) \leftarrow Right rotation with carry	-	-	-	-	-			-		-
ROLC A	2	2	0	0	byte (A) \leftarrow Left rotation with carry	-	-	-	-	-	*		-		-
RORC ear	2	3	2	0	byte (ear) \leftarrow Right rotation with carry	-	-	-	-	-	*		-	*	-
RORC eam	2+	5+ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow Right rotation with carry	-	-	-	-	-	*		-	*	*
ROLC ear	2	3	2	0	byte (ear) \leftarrow Left rotation with carry	-	-	-	-	-	*		-	*	-
ROLC eam	$2+$	5+ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow Left rotation with carry	-	-	-	-	-	*	*	-	*	*
ASR A, RO	2	*1	1	0	byte $(A) \leftarrow$ Arithmetic right barrel shift ($A, R 0$)	-	-	-	-	*	*		-		-
LSR A, RO	2	*1	1	0	byte (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*	*	*	_	*	-
LSL A, RO	2	*1	1	0	byte $(A) \leftarrow$ Logical left barrel shift (A, RO)		-	-	-	-			-	*	-
ASRW A	1	2	0	0	word $(A) \leftarrow$ Arithmetic right shift (A, 1 bit)	-	-	-	-				-		-
LSRW A/SHRWA	1	2	0	0	word $(A) \leftarrow$ Logical right shift (A, 1 bit)	-	-	-	-		R		-		-
LSLW A/SHLW A	1	2	0	0	word (A) \leftarrow Logical left shift (A, 1 bit)	-	-	-	-	-			-	*	-
ASRW A, RO	2	*1	1	0	word $(A) \leftarrow$ Arithmetic right barrel shift (A, R0)		-	-	-	*		*	-	*	-
LSRW A, RO	2	*1	1	0	word (A) \leftarrow Logical right barrel shift (A, RO)	-	-	-	-	*	*	*	-	*	-
LSLW A, RO	2	*1	1	0	word (A) \leftarrow Logical left barrel shift (A, RO)	-	-	-	-	-	*	*	-	*	-
ASRL A, RO	2	*2	1	0	long $(A) \leftarrow$ Arithmetic right shift $(A, R O)$			-	-	*	*	*	-	*	-
LSRL A, RO	2	*2	1	0	long $(A) \leftarrow$ Logical right barrel shift $(A, R O)$	-	-	-	-	*	*	*	-	*	-
LSLL A, R0	2	*2	1	0	long (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-

*1: 6 when R0 is $0,5+(R 0)$ in all other cases.
*2: 6 when R0 is $0,6+(R 0)$ in all other cases.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90620A Series

Table 18 Branch 1 Instructions [31 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH		1	S	T	N	Z	V	C	RMW
BZ/BEQ rel	2	*1	0	0	Branch when (Z) = 1	-	-		-	-	-	-	-	-	-	
BNZ/BNE rel	2	*1	0	0	Branch when (Z) $=0$	-	-		-	-	-	-	-	-	-	-
BC/BLO rel	2	*1	0	0	Branch when (C) $=1$	-	-		-	-	-	-	-	-	-	-
BNC/BHS rel	2	*1	0	0	Branch when (C) $=0$	-	-		-	-	-	-	-	-	-	-
BN rel	2	*1	0	0	Branch when (N) $=1$	-	-		-	-	-	-	-	-	-	-
BP rel	2	*1	0	0	Branch when (N) $=0$	-	-		-	-	-	-	-	-	-	-
BV rel	2	*1	0	0	Branch when (V) $=1$	-	-		-	-	-	-	-	-	-	-
BNV rel	2	*1	0	0	Branch when (V) $=0$	-	-		-	-	-	-	-	-	-	-
BT rel	2	${ }^{* 1}$	0	0	Branch when (T) = 1	-	-		-	-	-	-	-	-	-	-
BNT rel	2	*1	0	0	Branch when (T) $=0$	-	-		-	-	-	-	-	-	-	-
BLT rel	2	*1	0	0	Branch when (V) xor (N) $=1$	-	-		-	-	-	-	-	-	-	-
BGE rel	2	*1	0	0	Branch when (V) xor (N) $=0$	-	-		-	-	-	-	-	-	-	-
BLE rel	2	*1	0	0	Branch when (V) xor (N)) or (Z) = 1	-	-		-	-	-	-	-	-	-	-
BGT rel	2	*1	0	0	Branch when ($(\mathrm{V}) \mathrm{xor}(\mathrm{N})$) or (Z) $=0$	-	-		-	-	-	-	-	-	-	-
BLS rel	2	*1	0	0	Branch when (C) or (Z) = 1	-	-		-	-	-	-	-	-	-	-
BHI rel	2	${ }_{* 1}^{* 1}$	0	0	Branch when (C) or $(\mathrm{Z})=0$	-	-		-	-	-	-	-	-	-	-
BRA rel	2	${ }^{*}$	0	0	Branch unconditionally	-	-		-	-	-	-	-	-	-	-
JMP @A	1	2	0	0	word $(\mathrm{PC}) \leftarrow(\mathrm{A})$	-	-		-	-	-	-	-	-	-	-
JMP addr16	3	3	0	0	word (PC) \leftarrow addr16	-	-		-	-	-	-	-	-	-	-
JMP @ear	2	3	1	0	word (PC) \leftarrow (ear)	-	-		-	-	-	-	-	-	-	-
JMP @eam	2+	4+ (a)	0	(c)	word (PC) $\leftarrow(\mathrm{eam})$	-	-		-	-	-	-	-	-	-	-
JMPP @ear*3	2	5	2	0	word (PC) \leftarrow (ear), (PCB) $\leftarrow($ ear +2$)$	-	-		-	-	-	-	-	-	-	-
JMPP @eam*3	$2+$	6+ (a)	0	(d)	word $(\mathrm{PC}) \leftarrow($ eam $),(\mathrm{PCB}) \leftarrow($ eam +2$)$	-	-		-	-	-	-	-	-	-	
JMPP addr24	4	4	0	0	word (PC) \leftarrow ad24 0 to 15, $(\mathrm{PCB}) \leftarrow \mathrm{ad} 2416$ to 23	-	-		-	-	-	-	-	-	-	
CALL @ear*4	2	${ }^{6}$	1	(c)	word (PC) \leftarrow (ear)	-	-		-	-	-	-	-	-	-	-
CALL @eam*4	2+	7+ (a)	0	$2 \times$ (c)	word (PC) $\leftarrow($ eam $)$	-	-		-	-	-	-	-	-	-	-
CALL addr16*5	3	6	0	(c)	word (PC) \leftarrow addr 16	-	-		-	-	-	-	-	-	-	-
CALLV \#vct4*5	1	10	0	$2 \times$ (c)	Vector call instruction	-	-		-	-	-	-	-	-	-	-
CALLP @ear *6	2	10	2	$2 \times$ (c)	word $(\mathrm{PC}) \leftarrow$ (ear) 0 to 15 $(\mathrm{PCB}) \leftarrow$ (ear) 16 to 23	-	-			-	-	-	-	-	-	-
CALLP @eam *6	2+		0	*2	word $(\mathrm{PC}) \leftarrow$ (eam) 0 to 15 $(\mathrm{PCB}) \leftarrow($ eam $) 16$ to 23	-	-			-	-	-	-	-	-	-
CALLP addr24*7	4	10	0	$2 \times$ (c)	word $(\mathrm{PC}) \leftarrow$ addr0 to 15, $(\mathrm{PCB}) \leftarrow$ addr16 to 23	-	-		-	-	-	-	-	-	-	-

*1: 4 when branching, 3 when not branching.
*2: (b) $+3 \times$ (c)
*3: Read (word) branch address.
*4: W: Save (word) to stack; R: read (word) branch address.
*5: Save (word) to stack.
*6: W: Save (long word) to W stack; R: read (long word) R branch address.
*7: Save (long word) to stack.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 19 Branch 2 Instructions [19 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AF		I	S	T	N	Z	V	C	RMW
CBNE A, \#imm8, rel	3	*1	0	0	Branch when byte (A) $=$ imm8	-	-		-	-	-	*	*	*	*	-
CWBNE A, \#imm16, rel	4	*1	0	0	Branch when word $(A) \neq$ imm16	-	-		-	-	-	*	*	*	*	
CBNE ear, \#imm8, rel	4	*2	1	0	Branch when byte (ear) $=$ imm8	-	-		-	-	-	*	*	*	*	-
CBNE eam, \#imm8, rel* ${ }^{\text {*9 }}$	4+	*3	0	(b)	Branch when byte (eam) \neq imm8	-	-		-	-	-	*	*	*	*	_
CWBNE ear, \#imm16, rel	5	* 4	1	0	Branch when word (ear) \neq imm16	-	-		-	-	-	*	*	*	*	-
CWBNE eam, \#imm16, re**	5+	*3	0	(c)	Branch when word (eam) $=$ imm16	-	-		-	-	-	*	*	*	*	-
DBNZ ear, rel	3	*5	2	0	Branch when byte (ear) = (ear) - 1, and (ear) $\neq 0$		-		-	-	-	*	*	*	-	-
DBNZ eam, rel	3+	* 6	2	$2 \times$ (b)	Branch when byte (eam) = (eam) -1 , and (eam) $\neq 0$	-	-		-	-	-	*	*	*	-	*
DWBNZ ear, rel	3	*5	2	0	Branch when word (ear) = (ear) - 1, and (ear) $\neq 0$		-		-	-	-	*	*	*	-	-
DWBNZ eam, rel	3+	* 6	2	$2 \times$ (c)	Branch when word (eam) = (eam) -1 , and (eam) $\neq 0$	-	-		-	-	-	*	*	*	-	*
INT \#vct8	2	20	0	$8 \times$ (c)	Software interrupt	-	-		R	S	-	-	-	-	-	-
INT addr16	3	16	0	6× (c)	Software interrupt	-	-		R	S	-	-	-	-	-	-
INTP addr24	4	17	0	$6 \times$ (c)	Software interrupt	-	-		R	S	-	-	-	-	-	-
INT9	1	20	0	$8 \times$ (c)	Software interrupt	-	-		R	S	-	-	-	-	-	-
RETI	1	15	0	$6 \times$ (c)	Return from interrupt	-	-					*	*	*	*	-
LINK \#local8	2	6	0	(c)	At constant entry, save old frame pointer to stack, set new frame pointer, and allocate local pointer	-	-		-	-	-	-	-	-	-	-
UNLINK	1	5	0	(c)	area At constant entry, retrieve old frame pointer from stack.		-		-	-	-	-	-	-	-	-
RET *7	1	4	0	(c)	Return from subroutine	-	-		-	-	-	-	-	-	-	-
RETP *8	1	6	0	(d)	Return from subroutine	-	-		-	-	-	-	-	-	-	-

*1: 5 when branching, 4 when not branching
*2: 13 when branching, 12 when not branching
*3: $7+$ (a) when branching, $6+$ (a) when not branching
*4: 8 when branching, 7 when not branching
*5: 7 when branching, 6 when not branching
*6: $8+$ (a) when branching, $7+$ (a) when not branching
*7: Retrieve (word) from stack
*8: Retrieve (long word) from stack
*9: In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90620A Series

Table 20 Other Control Instructions (Byte/Word/Long Word) [28 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
PUSHW A	1	4	0	(c)	word $(S P) \leftarrow(S P)-2,((S P)) \leftarrow(A)$	-	-	-	-	-	-	-	-	-	-
PUSHW AH	1	4	0	(c)	word $(S P) \leftarrow(S P)-2,((S P)) \leftarrow(A H)$	-	-	-	-	-	-	-	-	-	-
PUSHW PS	1	4	0	(c)	word (SP) $\leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{PS})$	-	-	-	-	-	-	-	-	-	-
PUSHW rlst	2	*3	*5	*4	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-2 \mathrm{n},((\mathrm{SP})) \leftarrow(\mathrm{rlst})$	-	-	-	-	-	-	-	-	-	-
POPW A	1	3	0	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{SP}))$, (SP) $\leftarrow(\mathrm{SP})+2$	-	*	-	-	-	-	-	-	-	-
POPW AH	1	3	0	(c)	word $(\mathrm{AH}) \leftarrow((\mathrm{SP}) \mathrm{)}$, (SP) $\leftarrow(\mathrm{SP})+2$	-	-	-	-	-	-	-	-	-	-
POPW PS	1	4	0	(c)	word $(\mathrm{PS}) \leftarrow((\mathrm{SP}))$, $(\mathrm{SP}) \leftarrow(\mathrm{SP})+2$	-	-	*	*	*	*	*	*	*	-
POPW rlst	2	*2	*5	*4	$(\mathrm{rlst}) \leftarrow((\mathrm{SP})),(\mathrm{SP}) \leftarrow(\mathrm{SP})+2 \mathrm{n}$	-	-	-	-	-	-	-	-	-	-
JCTX @A	1	14	0	$6 \times(\mathrm{c})$	Context switch instruction	-	-	*	*	*	*	*	*	*	-
AND CCR, \#imm8	2	3	0	0	byte $(\mathrm{CCR}) \leftarrow(\mathrm{CCR})$ and imm8	-	-	*	*	*	*	*	*	*	-
OR CCR, \#imm8	2	3	0	0	byte $(\mathrm{CCR}) \leftarrow(\mathrm{CCR})$ or imm8	-	-	*	*	*	*	*	*	*	-
MOV RP, \#imm8	2	2	0	0	byte (RP) ↔imm8	-	-	-	-	-	-	-	-	-	-
MOV ILM, \#imm8	2	2	0	0	byte $($ ILM $) \leftarrow$-imm8	-	-	-	-	-	-	-	-	-	-
MOVEA RWi, ear	2	3	1	0	word (RWi) ¢ear	-	-	-	-	-	-	-	-	-	-
MOVEA RWi, eam	2+	$2+(\mathrm{a})$	1	0	word (RWi) ¢eam	-	-	-	-	-	-	-	-	-	-
MOVEA A, ear	2	1	0	0	word $(A) \leftarrow$ ear	-	*	-	-	-	-	-	-	-	-
MOVEA A, eam	2+	$1+(\mathrm{a})$	0	0	word $(A) \leftarrow$ eam	-	*	-	-	-	-	-	-	-	-
ADDSP \#imm8	2	3	0	0	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})+$ ext (imm8)	-	-	-	-	-	-	-	-	-	-
ADDSP \#imm16	3	3	0	0	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})+$ imm16	-	-	-	-	-	-	-	-	-	-
MOV A, brgl	2	*1	0	0	byte $(\mathrm{A}) \leftarrow($ brgl $)$	Z	*	-	-	-	*	*	-	-	-
MOV brg2, A	2	1	0	0	byte $($ brg2 $) \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	-
NOP	1	1	0	0	No operation	-	-	-	-	-	-	-	-	-	-
ADB	1	1	0	0	Prefix code for accessing AD space	-	-	-	-	-	-	-	-	-	-
DTB	1	1	0	0	Prefix code for accessing DT space	-	-	-	-	-	-	-	-	-	-
PCB	1	1	0	0	Prefix code for accessing PC space	-	-	-	-	-	-	-	-	-	-
SPB	1	1	0	0	Prefix code for accessing SP space	-	-	-	-	-	-	-	-	-	-
NCC	1	1	0	0	Prefix code for no flag change	-	-	-	-	-	-	-	-	-	-
CMR	1	1	0	0	Prefix code for common register bank	-	-	-	-	-	-	-	-	-	-

*1: PCB, ADB, SSB, USB, and SPB : 1 state
DTB, DPR
: 2 states
*2: $7+3 \times$ (pop count) $+2 \times$ (last register number to be popped), 7 when rlst $=0$ (no transfer register)
*3: $29+$ (push count) $-3 \times$ (last register number to be pushed), 8 when rlst $=0$ (no transfer register)
*4: Pop count \times (c), or push count \times (c)
*5: Pop count or push count.
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 21 Bit Manipulation Instructions [21 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
MOVB A, dir:bp	3	5	0	(b)	byte (A) \leftarrow (dir:bp) b	Z	*	-	-	-	*	*	-	-	-
MOVB A, addr16:bp	4	5	0	(b)	byte (A) $\leftarrow($ addr $16: \mathrm{bp}) \mathrm{b}$	Z	*	-	-	-	*	*	-	-	-
MOVB A, io:bp	3	4	0	(b)	byte $(A) \leftarrow$ (io:bp) b	Z	*	-	-	-	*	*	-	-	-
MOVB dir:bp, A	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	*
MOVB addr16:bp, A	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	
MOVB io:bp, A	3	6	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	*
SETB dir:bp	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 1$	-	-	-	-	-	-	-	-	-	*
SETB addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow 1$	-	-	-	-	-	-	-	-	-	*
SETB io:bp	3	7	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 1$	-	-	-	-	-	-	-	-	-	*
CLRB dir:bp	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 0$	-	-	-	-	-	-	-	-	-	*
CLRB addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) $\mathrm{b} \leftarrow 0$	-	-	-	-	-		-	-	-	*
CLRB io:bp	3	7	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 0$	-	-	-	-	-	-	-	-	-	*
BBC dir:bp, rel	4	*1	0	(b)	Branch when (dir:bp) $b=0$	-	-	-	-	-	-	*	-	-	-
BBC addr16:bp, rel	5	*1	0	(b)	Branch when (addr16:bp) b $=0$	-	-	-	-	-	-	*	-	-	-
BBC io:bp, rel	4	*2	0	(b)	Branch when (io:bp) $\mathrm{b}=0$	-	-	-	-	-	-	*	-	-	-
BBS dir:bp, rel	5	*1	0	(b)	Branch when (dir:bp) $b=1$	-	-	-	-	-	-	*	-	-	-
BBS addr16: bp, rel	5	*1	0	(b)	Branch when (addr16:bp) $b=1$	-	-	-	-	-	-	*	-	-	-
BBS io:bp, rel	4	*2	0	(b)	Branch when (io:bp) $b=1$	-	-	-	-	-	-	*	-	-	-
SBBS addr16:bp, rel	5	*3	0	$2 \times$ (b)	Branch when (addr16:bp) b=1, bit = 1	-	-	-	-	-	-	*	-	-	*
WBTS io:bp	3	*4	0	*5	Wait until (io:bp) $\mathrm{b}=1$	-	-	-	-	-	-	-	-	-	-
WBTC io:bp	3	*4	0	*5	Wait until (io:bp) $\mathrm{b}=0$	-	-	-	-	-	-	-	-	-	-

*1: 8 when branching, 7 when not branching
*2: 7 when branching, 6 when not branching
*3: 10 when condition is satisfied, 9 when not satisfied
*4: Undefined count
*5: Until condition is satisfied
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 22 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	S	T	N	Z	V	C	RMW
SWAP	1	3	0	0	byte (A) 0 to $7 \leftrightarrow(\mathrm{~A}) 8$ to 15	-	-	-	-	-	-	-	-	-	
SWAPW/XCHW AL, AH	1	2	0	0	word (AH) $\leftrightarrow(\mathrm{AL})$	-	*	-	-	-	-	-	-	-	-
EXT	1	1	0	0	byte sign extension	X	-	-	-	-	*	*	-	-	-
EXTW	1	2	0	0	word sign extension	-	X	-	-	-	*	*	-	-	-
ZEXT	1	1	0	0	byte zero extension	Z	-	-	-	-	R	*	-	-	-
ZEXTW	1	1	0	0	word zero extension	-	Z	-	-	-	R	*	-	-	-

Table 23 String Instructions [10 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	I	S	T	N	Z	V	C	RMW
MOVS/MOVSI	2	*2	*5	*3	Byte transfer @AH+ ¢ @ AL+, counter = RW0	-	-	-	-	-	-	-	-	-	-
MOVSD	2	*2	*5	*3	Byte transfer @AH- ¢ @AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCEQ/SCEQI	2	*1	*5	*4	Byte retrieval (@AH+)-AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
SCEQD	2	*1	*5	*4	Byte retrieval (@AH-)-AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FISL/FILSI	2	$6 \mathrm{~m}+6$	*5	*3	Byte filling @AH+ +AL , counter $=$ RW0	-	-	-	-	-	*	*	-	-	-
MOVSW/MOVSWI	2	*2	*8	*6	Word transfer @AH+ ¢ @AL+, counter = RW0	-	-	-	-	-	-	-	-	-	-
MOVSWD	2	*2	*8	*6	Word transfer @AH- ¢ @AL-, counter = RW0	-	-	-	-	-	-	-	-	-	-
SCWEQ/SCWEQI	2	*1	*8	*7	Word retrieval (@AH+)-AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
SCWEQD	2	*1	*8	*7	Word retrieval (@AH-)-AL, counter = RW0	-	-	-	-	-	*	*	*	*	-
FILSW/FILSWI	2	$6 \mathrm{~m}+6$	*8	*6	Word filling @AH $+\leftarrow A L$, counter $=$ RW0	-	-	-	-	-	*	*	-	-	-

m : RW0 value (counter value)
n : Loop count
*1: 5 when RW0 is $0,4+7 \times($ RW0) for count out, and $7 \times \mathrm{n}+5$ when match occurs
*2: 5 when RW0 is $0,4+8 \times($ RW0) in any other case
*3: (b) $\times($ RW0 $)+(b) \times($ RW0 $)$ when accessing different areas for the source and destination, calculate (b) separately for each.
*4: (b) $\times n$
*5: $2 \times($ RWO $)$
*6: (c) $\times($ RW0 $)+(c) \times($ RW0 $)$ when accessing different areas for the source and destination, calculate (c) separately for each.
*7: (c) $\times n$
*8: $2 \times$ (RW0)
Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90620A Series

ORDERING INFORMATION

Model	Package	Remarks
MB90622PFV	100-pin Plastic LQFP	
MB90623PFV	(FPT-100P-M05)	
MB90P623PFV		

PACKAGE DIMENSIONS

0-pin Plastic LQFP
0-pin Plastic LQFP
(FPT-100P-M05)

© 1995 FUUTSU LIMTED F100007S-2C-3
Dimension in mm (inches)

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329

North and South America

FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LIMITED
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

[^0]: 16-bit reload register 0 to 2 (TMRLRo to TMRLR2)

