

Typical Applications

The HMC467LP3 is ideal for:

- Cellular: UMTS/3G Infrastructure
- Fixed Wireless & WLL
- Microwave Radio & VSAT
- Test Equipment

Functional Diagram

Features

2 dB LSB Steps to 6 dB

High IP3: +50 dBm

+/- 0.2 dB Typical Bit Error

Single Control Line Per Bit

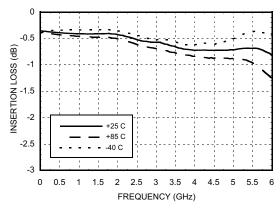
Single +5V Supply

3 mm x 3 mm x 1 mm SMT Package

General Description

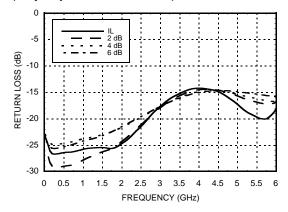
The HMC467LP3 is a broadband 2-bit GaAs IC digital attenuator in a low cost leadless surface mount package. Covering DC to 6.0 GHz, the insertion loss is less than 0.7 dB typical. The attenuator bit values are 2 (LSB) and 4 dB for a total attenuation of 6 dB. Attenuation accuracy is excellent at ± 0.2 dB typical step error with an IIP3 of +50 dBm. Two control voltage inputs, toggled between 0 and +5V, are used to select each attenuation state. A single Vdd bias of +5V is required.

Electrical Specifications, $T_A = +25^{\circ} C$, With Vdd = $+5V \& Vctl = 0/+5V^*$

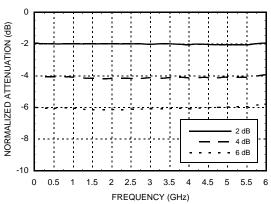

Parameter	Frequency (GHz)	Min.	Тур.	Max.	Units
Insertion Loss	DC - 2.5 GHz 2.5 - 6.0 GHz		0.5 0.8	0.8 1.2	dB dB
Attenuation Range	DC - 6.0 GHz		6		dB
Return Loss (RF1 & RF2, All Atten. States)	DC - 2.5 GHz 2.5 - 6.0 GHz		20 15		dB dB
Attenuation Accuracy: 2 dB State (Referenced to Insertion Loss) 4, 6 dB States	1 1)(:-6()(i Hz	± 0.2 + 2% of Atten. Setting Max. ± 0.4 + 2% of Atten. Setting Max.		dB dB	
Input Power for 0.1 dB Compression	0.25 - 6.0 GHz		22		dBm
Input Third Order Intercept Point (Two-Tone Input Power= 0 dBm Each Tone)	0.25 - 6.0 GHz		50		dBm
Switching Characteristics	DC - 6.0 GHz				
tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)			135 155		ns ns

^{*} Bypass capacitor connecting ACG1 & ACG2 to RF ground required per pin description herein.

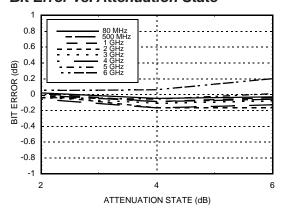
Fittite


2 dB LSB GaAs MMIC 2-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, DC - 6.0 GHz

Insertion Loss

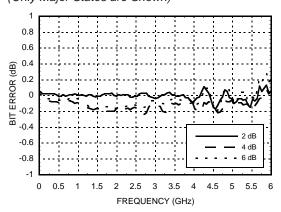

Return Loss RF1, RF2

(Only Major States are Shown)

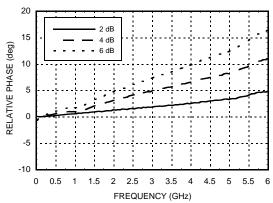


Normalized Attenuation

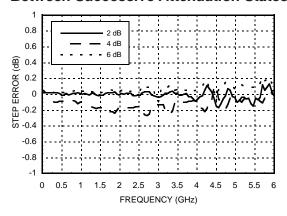
(Only Major States are Shown)



Bit Error vs. Attenuation State


Bit Error vs. Frequency

(Only Major States are Shown)


Relative Phase vs. Frequency

(Only Major States are Shown)

Worst Case Step Error Between Successive Attenuation States

Bias Voltage & Current

Vdd Range= +5.0 Vdc ± 10%			
Vdd (Vdc)	ldd (Typ.) (mA)	ldd (Max.) (mA)	
+5.0	0.7	1.2	

TTL/CMOS Control Voltages

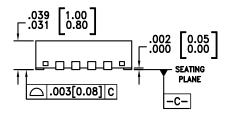
State	Bias Condition
Low	0 to 0.8 Vdc @ -5 uA Typ.
High	+2.0 to +5.0 Vdc @ 40 uA Typ.

Truth Table

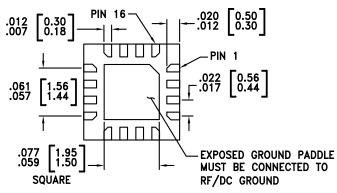
Control Voltage Input		A.,	
V1 4 dB	V2 2 dB	Attenuation Setting RF1 - RF2	
High	High	Reference I.L.	
High	Low	2 dB	
Low	High	4 dB	
Low	Low	6 dB Max. Atten.	

Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.




Absolute Maximum Ratings

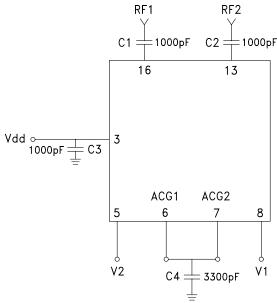
Control Voltage (V1, V2)	-0.5 Vdc to Vdd +1 Vdc
Bias Voltage (Vdd)	+7.0 Vdc
Staorage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
RF Input Power	+30 dBm


v00.0403

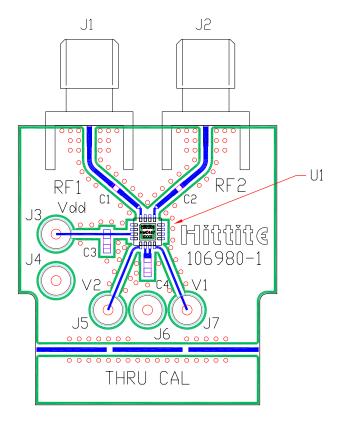
Outline Drawing

BOTTOM VIEW

NOTES:


- 1. MATERIAL PACKAGE BODY: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEAD AND GROUND PADDLE MATERIAL: COPPER ALLOY
- 3. LEAD AND GROUND PADDLE PLATING: Sn/Pb SOLDER
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 5. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
 PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 7. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 8. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 2, 4, 9 - 12, 14, 15	N/C	These pins should be connected to PCB RF ground to maximize performance.	
3	Vdd	Supply Voltage	
5, 8	V2, V1	See truth table and control voltage table.	Vdd 133K V1 0
6, 7	ACG1, ACG2	External capacitor to ground is required. Select value for lowest frequency of operation. Place capacitor as close to pins as possible.	
13, 16	RF2, RF1	These pins are DC coupled and matched to 50 Ohm. Blocking capacitors are required.	RF1 (RF2)
	GND	Package bottom has an exposed metal paddle that must be connected to RF/DC ground.	

Application Circuit

Evaluation PCB

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

List of Material

Item	Description	
J1 - J2	PC Mount SMA Connector	
J3 - J7	DC Pin	
C1, C2	1000 pF Capacitor, 0402 Pkg.	
C3	1000 pF Capacitor, 0603 Pkg.	
C4	3300 pF Capacitor, 0603 Pkg.	
U1	HMC467LP3 Digital Attenuator	
PCB*	106980 Evaluation PCB	
* Circuit Board Material: Rogers 4350		