

### 

# **GLT41116**

## 64k x 16 CMOS Dynamic RAM with Fast Page Mode

### **FEATURES**

- ♦ 65,536 words by 16 bits organization.
- ◆ Fast access time and cycle time.
- ◆ Dual CAS input.
- ◆ Low power dissipation.
- ◆ Read-Modify-Write, RAS-Only Refresh, CAS-before-RAS Refresh, Hidden Refresh and Test Mode Capability.
- ◆ 256 refresh cycles per 4ms.
- ◆ Available in 40-Pin 400 mil SOJ, and 40/44-Pin TSOP (Type II).
- ◆ Single 5.0V±10% Power Supply.
- ◆ All inputs and Outputs are TTL compatible.
- ◆ Fast Page Mode operation.

### **GENERAL DESCRIPTION**

The GLT41116 is a 65,536 x 16 bit high-performance CMOS dynamic random access memory. The GLT41116 offers Fast Page mode, and has both BYTE WRITE and WORD WRITE access cycles via two CAS pins. The GLT41116 has symmetric address and accepts 256-cycle refresh in 4ms interval.

All inputs are TTL compatible. Fast Page Mode operation allows random access up to 256x16 bits, within a page, with cycle times as short as 18ns.

The GLT41116 is best suited for graphics, and DSP applications requiring high performance memories.

## **FUNCTIONAL BLOCK DIAGRAM**

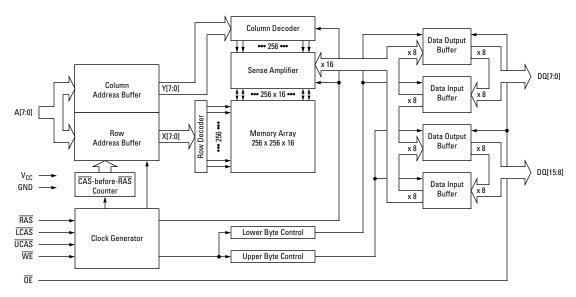



Figure 1. GLT41116 64 x 16 CMOS

### **Signal Descriptions**

| Symbol          | Туре  | Description                              |
|-----------------|-------|------------------------------------------|
| A0 - A7         | Input | Address Inputs                           |
| RAS             | Input | Row address strobe                       |
| UCAS            | Input | Column address strobe/upper byte control |
| LCAS            | Input | Column address strobe/lower byte control |
| WE              | Input | Write enable                             |
| ŌĒ              | Input | Output enable                            |
| DQ[15:0]        | Input | Data inputs/outputs                      |
| V <sub>CC</sub> | Input | +5V power supply                         |
| V <sub>SS</sub> | Input | Ground                                   |
| NC              | Input | No connection                            |

### **Truth Table**

| Function                  | Address          | RAS     | CASL                            | CASH              | WE                | ŌĒ                | DQ                                        | Notes                                      |         |
|---------------------------|------------------|---------|---------------------------------|-------------------|-------------------|-------------------|-------------------------------------------|--------------------------------------------|---------|
| Stand By                  |                  |         | Н                               | $H \rightarrow X$ | $H \rightarrow X$ | Х                 | Х                                         | High-Z                                     |         |
| Read: Word                | Row/Col          | L       | L                               | L                 | Н                 | I                 | Data Out                                  |                                            |         |
| Read: Lower Byte          |                  | Row/Col | L                               | L                 | Н                 | Н                 | L                                         | Lower Byte, Data-Out<br>Upper Byte, High-Z |         |
| Read: Upper Byte          |                  | Row/Col | L                               | Н                 | L                 | Н                 | L                                         | Lower Byte, High-Z<br>Upper Byte, Data Out |         |
| Write: Word (Early Write) |                  | Row/Col | L                               | L                 | L                 | L                 | Х                                         | Data-In                                    |         |
| Write: Lower Byte (Early) |                  | Row/Col | L                               | L                 | Н                 | L                 | Х                                         | Lower Byte, Data-In<br>Upper Byte, High-Z  |         |
| Write: Upper Byte (Early) | Row/Col          | L       | Н                               | L                 | L                 | Х                 | Lower Byte, High-Z<br>Upper Byte, Data-In |                                            |         |
| Read Write                |                  | Row/Col | L                               | L                 | L                 | $H \rightarrow L$ | $L \rightarrow H$                         | Data-Out, Data-In                          | [1] [2] |
| Fast-Page Mode Read       | 1st Cycle        | Row/Col | L                               | $H \rightarrow L$ | $H \rightarrow L$ | Н                 | L                                         | Data-Out                                   | [1]     |
|                           | 2nd Cycle        | Col     | L                               | $H \rightarrow L$ | $H \rightarrow L$ | L                 | Х                                         | Data-Out                                   | [1]     |
| Fast-Page Mode Write      | 1st Cycle        | Row/Col | L                               | $H \rightarrow L$ | $H \rightarrow L$ | L                 | Х                                         | Data-In                                    | [2]     |
|                           | 2nd Cycle        | Col     | L                               | $H \rightarrow L$ | $H \rightarrow L$ | L                 | Х                                         | Data-In                                    | [2]     |
| Fast-Page Mode Read-Write | 1st Cycle        | Row/Col | L                               | $H \rightarrow L$ | $H \rightarrow L$ | $H \rightarrow L$ | $L \rightarrow H$                         | Data-Out, Data-In                          | [1] [2] |
|                           | 2nd Cycle        | Col     | L                               | $H \rightarrow L$ | $H \rightarrow L$ | $H \rightarrow L$ | $L \rightarrow H$                         | Data-Out, Data-In                          | [1] [2] |
| Hidden Refresh            | Read             | Row/Col | $L \rightarrow H \rightarrow L$ | L                 | L                 | Н                 | L                                         | Data-Out                                   | [1]     |
|                           | Write            | Row/Col | $L \to H \to L$                 | L                 | L                 | L                 | Х                                         | Data-In                                    | [2] [3] |
| RAS-Only Refresh          | RAS-Only Refresh |         |                                 | Н                 | Н                 | Х                 | Х                                         | High-Z                                     |         |
| CBR Refresh               |                  |         | $H \rightarrow L$               | L                 | L                 | Х                 | Х                                         | High-Z                                     | [4]     |

<sup>1.</sup> These READ cycles may also be BYTE READ cycles (either  $\overline{\text{UCAS}}$  or  $\overline{\text{LCAS}}$  active).

<sup>2.</sup> These WRITE cycles may also be BYTE READ cycles (either  $\overline{\text{UCAS}}$  or  $\overline{\text{LCAS}}$  active).

<sup>3.</sup> EARLY WRITE Only.

<sup>4.</sup> At least one of the two  $\overline{\text{CAS}}$  signals must be active ( $\overline{\text{UCAS}}$  or  $\overline{\text{LCAS}}$ ).

## **ELECTRICAL SPECIFICATIONS**

# Absolute Maximum Ratings [1]

| Parameter                                       | Rating          |
|-------------------------------------------------|-----------------|
| Operating Temperature, T <sub>A</sub> (ambient) | -0°C to +70°C   |
| Storage Temperature (plastic)                   | -55°C to +125°C |
| Voltage Relative to V <sub>SS</sub>             | -1.0V to +7.0V  |
| Short Circuit Output Current'                   | 50 mA           |
| Power Dissipitation                             | 1.0 W           |

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation
of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.

## Capacitance [1]

| Symbol           | Parameter               | Max | Units |
|------------------|-------------------------|-----|-------|
| C <sub>IN1</sub> | Address Input           | 5   | pF    |
| C <sub>IN2</sub> | RAS, ICAS, UCAS, WE, OE | 7   | pF    |
| C <sub>OUT</sub> | Data Input/Output       | 7   | pF    |

<sup>1.</sup> Capacitance is sampled and not 100% tested

# DC Characteristics (T<sub>A</sub> = 0°C to 70°C, $V_{CC}$ = 5V $\pm$ 10%, $V_{SS}$ = 0V, unless otherwise specified)

|                  |                                              |                                                                                                                                                                                                                                     | -30 |                    | -35 |                    | -40 |                    | -45 |                    |       |         |
|------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------|-----|--------------------|-----|--------------------|-----|--------------------|-------|---------|
| Symbol           | Parameter                                    | Conditions                                                                                                                                                                                                                          | Min | Max                | Min | Max                | Min | Max                | Min | Max                | Units | Notes   |
| ILI              | Input Leakage Current<br>(any input pin)     | $0V \le V_{IN} \le 5.5V$ (All other pins not under test = $0V$ )                                                                                                                                                                    | -10 | +10                | -10 | +10                | -10 | +10                | -10 | +10                | μΑ    |         |
| I <sub>LO</sub>  | Output Leakage Current<br>(for High-Z State) | $0V \le V_{OUT} \le 5.5V$ Output is disabled (Hiz)                                                                                                                                                                                  |     | +10                |     | +10                |     | +10                |     | +10                | μА    |         |
| I <sub>CC1</sub> | Operating Current, Ran-<br>dom READ/WRITE    | $t_{RC} = t_{RC}$ (min.)                                                                                                                                                                                                            |     | 180                |     | 170                |     | 160                |     | 150                | mA    | [1] [2] |
| I <sub>CC2</sub> | Standby Current, (TTL)                       | $\overline{RAS}$ , $\overline{UCAS}$ , $\overline{LCAS}$ at $V_{IH}$ other inputs $\geq V_{SS}$                                                                                                                                     |     | 2                  |     | 2                  |     | 2                  |     | 2                  | mA    |         |
| I <sub>CC3</sub> | Refresh Current, RAS-<br>Only                | $\overline{RAS}$ cycling, $\overline{UCAS}$ , $\overline{LCAS}$ at $V_{IH}$ $t_{RC} = t_{RC}$ (min.)                                                                                                                                |     | 180                |     | 170                |     | 160                |     | 150                | mA    | [2]     |
| I <sub>CC4</sub> | Operating Current, EDO<br>Page Mode          | $\overline{RAS}$ at $\overline{VIL}$ , $\overline{UCAS}$ , $\overline{LCAS}$ address cycling: $t_{PC} = t_{PC}$ (min.)                                                                                                              |     | 180                |     | 170                |     | 160                |     | 150                | mA    | [1] [2] |
| I <sub>CC5</sub> | Refresh Current, CAS-<br>before-RAS          | RAS, UCAS, LCAS address cycling: t <sub>RC</sub> = t <sub>RC</sub> (min.)                                                                                                                                                           |     | 180                |     | 170                |     | 160                |     | 150                | mA    | [1]     |
| I <sub>CC6</sub> | Standby Current,<br>(CMOS)                   | $\label{eq:reconstruction} \begin{split} \overline{RAS} &\geq V_{CC} \text{ -0.2V, } \overline{UCS} \geq V_{CC} \\ \text{ -0.2V, } \overline{LCAS} &\geq V_{CC} \text{ -0.2V, All} \\ \text{other inputs} &\geq V_{CC} \end{split}$ |     | 2                  |     | 2                  |     | 2                  |     | 2                  | mA    |         |
| V <sub>IL</sub>  | Input Low Voltage                            |                                                                                                                                                                                                                                     | -1  | +0.8               | -1  | +0.8               | -1  | +0.8               | -1  | +0.8               | ٧     | [3]     |
| V <sub>IH</sub>  | Input High Voltage                           |                                                                                                                                                                                                                                     | 2.4 | V <sub>CC</sub> +1 | ٧     |         |
| V <sub>OL</sub>  | Output Low Voltage                           | I <sub>OL</sub> = 4.2 mA                                                                                                                                                                                                            |     | 0.4                |     | 0.4                |     | 0.4                |     | 0.4                | ٧     |         |
| V <sub>OH</sub>  | Output High Voltage                          | I <sub>OH</sub> = -5 mA                                                                                                                                                                                                             | 2.4 |                    | 2.4 |                    | 2.4 |                    | 2.4 |                    | V     |         |

<sup>1.</sup>  $I_{CC}$  is dependent on output loading when the device output is selected. Specified  $I_{CC}$  (max.) is measured with the output open.

<sup>2.</sup> I<sub>CC</sub> is dependent upon the number of address transitions specified I<sub>CC</sub> (max) is measured with a maximum of one transition per address cycle in random READ/WRITE and Fast-Page Mode.

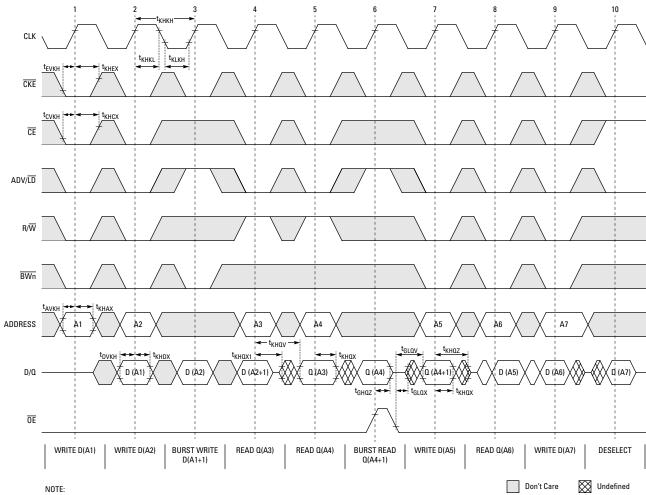
Specified V<sub>IL</sub> (min) is steady state operation. During transitions V<sub>IL</sub> (min) may undershoot to -1.0V for a period not to exceed 20 ns. All AC parameter are measured with V<sub>IL</sub> (min) ≥ VSS and V<sub>IH</sub> (max) ≤ V<sub>CC</sub>.

# AC Characteristics (0 °C $\leq$ T<sub>A</sub> $\leq$ 70 °C, V<sub>CC</sub> = 5.0V $\pm$ 10%) [1] [2]

|                                             |                   | -30 |      | -;  | 35   | -40 |      | -45 |      |       |         |
|---------------------------------------------|-------------------|-----|------|-----|------|-----|------|-----|------|-------|---------|
| Parameter                                   | Symbol            | Min | Max  | Min | Max  | Min | Max  | Min | Max  | Units | Notes   |
| Read/Write Cycle Time                       | t <sub>RC</sub>   | 65  | -    | 70  | -    | 75  | -    | 80  | -    | ns    |         |
| Read Modify Write Cycle Time                | t <sub>RWC</sub>  | 80  | -    | 99  | -    | 105 | -    | 110 | -    | ns    |         |
| Access Time for RAS                         | t <sub>RAC</sub>  | _   | 30   | _   | 35   | -   | 40   | _   | 45   | ns    | [3] [4] |
| Access Time for CAS                         | t <sub>CAC</sub>  | -   | 10   | 11  | -    | 12  | -    | -   | 12   | ns    | [3] [4] |
| Access Time from Column Address             | t <sub>AA</sub>   | _   | 15   | -   | 18   | -   | 20   | -   | 22   | ns    | [3] [4] |
| CAS to output ion Low-Z                     | t <sub>CLZ</sub>  | 0   | -    | 0   | -    | 0   | -    | 0   | -    | ns    | [3]     |
| Output buffer turn-off delay from CAS       | t <sub>OFF</sub>  | 3   | 8    | 3   | 8    | 3   | 8    | 3   | 8    | ns    | [5]     |
| Transition Time (Rise and Fall)             | t <sub>T</sub>    | 3   | 50   | 3   | 50   | 3   | 50   | 3   | 50   | ns    | [2]     |
| RAS Precharge Time                          | t <sub>RP</sub>   | 25  | -    | 25  | -    | 25  | -    | 25  | -    | ns    |         |
| RAS Pulse Width                             | t <sub>RAS</sub>  | 30  | 100k | 35  | 100k | 40  | 100k | 45  | 100k | ns    |         |
| RAS Hold Time                               | t <sub>RSH</sub>  | 10  | -    | 12  | -    | 12  | -    | 13  | -    | ns    |         |
| CAS Hold Time                               | t <sub>CSH</sub>  | 30  | _    | 36  | _    | 40  | -    | 46  | _    | ns    |         |
| CAS Pulse Width                             | t <sub>CAS</sub>  | 10  | 10k  | 12  | 10k  | 12  | 10k  | 13  | 10k  | ns    |         |
| RAS to CAS Delay Time                       | t <sub>RCD</sub>  | 13  | 20   | 17  | 24   | 18  | 28   | 18  | 33   | ns    | [4]     |
| RAS to Column Address Delay Time            | t <sub>RAD</sub>  | 10  | 15   | 12  | 17   | 13  | 20   | 12  | 23   | ns    | [4]     |
| CAS To RAS Precharge Time                   | t <sub>CPRP</sub> | 5   | _    | 5   | _    | 5   | -    | 5   | -    | ns    | [6]     |
| Row Address Setup TIme                      | t <sub>ASR</sub>  | 0   | _    | 0   | _    | 0   | _    | 0   | _    | ns    |         |
| Row Address Hold Time                       | t <sub>RAH</sub>  | 6   | _    | 6   | _    | 6   | _    | 6   | -    | ns    |         |
| Column Address Setup Time                   | t <sub>ASC</sub>  | 26  | _    | 30  | _    | 34  | _    | 39  | -    | ns    |         |
| Column Address Hold Time                    | t <sub>CAH</sub>  | 15  | _    | 18  | _    | 20  | _    | 23  | _    | ns    |         |
| Column Address Hold Time Referenced to RAS  | t <sub>AR</sub>   | 26  | _    | 30  | _    | 34  | _    | 39  | -    | ns    |         |
| Column Address Lead Time Referenced to RAS  | t <sub>RAL</sub>  | 15  | _    | 18  | _    | 20  | _    | 23  | -    | ns    |         |
| Read Command Setup Time                     | t <sub>RCS</sub>  | 0   | _    | 0   | _    | 0   | _    | 0   | _    | ns    |         |
| Read Command Hold Time Referenced to RAS    | t <sub>RRH</sub>  | 0   | _    | 0   | _    | 0   | _    | 0   | -    | ns    | [7]     |
| Read Command Hold Time Referenced to CAS    | t <sub>RCH</sub>  | 0   | _    | 0   | _    | 0   | -    | 0   | -    | ns    | [7]     |
| WE Hold Time Referenced to CAS              | t <sub>WCH</sub>  | 6   | _    | 6   | _    | 6   | -    | 6   | _    | ns    | [8]     |
| Write Command Hold time Referenced to RAS   | t <sub>WCR</sub>  | 26  | _    | 30  | _    | 34  | -    | 39  | -    | ns    | [9]     |
| WE Pulse Width                              | t <sub>WP</sub>   | 6   | _    | 6   | _    | 6   | -    | 6   | -    | ns    | [8]     |
| WE Lead Time Referenced to RAS              | t <sub>RWL</sub>  | 10  | _    | 11  | _    | 12  | _    | 12  | _    | ns    |         |
| WE Lead Time Referenced to CAS              | t <sub>CWL</sub>  | 10  | _    | 11  | _    | 12  | -    | 12  | -    | ns    |         |
| Data-In Setup Time                          | t <sub>DS</sub>   | 0   | _    | 0   | _    | 0   | _    | 0   | -    | ns    | [10]    |
| Data-In Hold Time                           | t <sub>DH</sub>   | 7   | -    | 6   | -    | 8   | -    | 8   | _    | ns    | [10]    |
| Data Hold Time Referenced to RAS            | t <sub>DHR</sub>  | 27  | _    | 31  | _    | 36  | _    | 41  | -    | ns    | [11]    |
| WE Setup Time                               | t <sub>wcs</sub>  | 0   | _    | 0   | _    | 0   | _    | 0   | -    | ns    | [9]     |
| RAS to WE Delay Time                        | t <sub>RWD</sub>  | 47  | _    | 58  | _    | 63  | _    | 68  | _    | ns    | [9]     |
| CAS to WE Delay Time                        | t <sub>CWD</sub>  | 24  | _    | 29  | _    | 30  | _    | 30  | -    | ns    | [9]     |
| Column Address to WE Delay Time             | t <sub>AWD</sub>  | 29  | _    | 36  | _    | 38  | _    | 40  | -    | ns    | [9]     |
| CAS Setup Time (CAS Before RAS Refresh)     | t <sub>CSR</sub>  | 5   | _    | 5   | _    | 5   | _    | 5   | _    | ns    |         |
| CAS Hold Time (CAS Before RAS Refresh)      | t <sub>CHR</sub>  | 10  | _    | 10  | _    | 10  | _    | 10  | _    | ns    |         |
| RAS to CAS Precharge Time                   | t <sub>RPC</sub>  | 5   | _    | 5   | _    | 5   | _    | 5   | _    | ns    |         |
| CAS Precharge Time (CBR Counter Test Cycle) | t <sub>CPT</sub>  | 20  | _    | 20  | _    | 20  | _    | 20  | _    | ns    | †       |
| Access Time From CAS Precharge              | t <sub>CPA</sub>  | _   | 18   | _   | 21   | _   | 23   | -   | 25   | ns    | [3]     |
| Fast Page Mode Read/Write Cycle Time        | t <sub>PC</sub>   | 18  | _    | 21  | _    | 23  | _    | 25  | _    | ns    | †       |

# **GLT41116**

# AC Characteristics (0 $^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 70 \ ^{\circ}\text{C}, \text{V}_{\text{CC}} = 5.0\text{V} \pm 10\%)^{\,[1]} \ ^{\,[2]}$

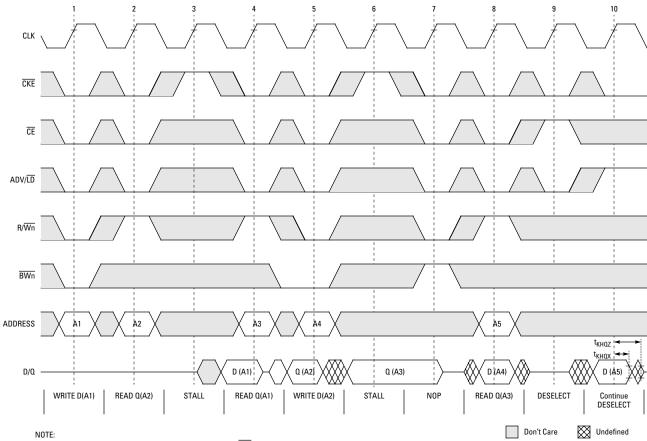

|                                             |                   | -30 |      | -35 |      | -40 |      | -45 |      |       |       |
|---------------------------------------------|-------------------|-----|------|-----|------|-----|------|-----|------|-------|-------|
| Parameter                                   | Symbol            | Min | Max  | Min | Max  | Min | Max  | Min | Max  | Units | Notes |
| Fast Page Mode Read Modify Write Cycle Time | t <sub>PRWC</sub> | 48  | -    | 60  | -    | 53  | -    | 65  | -    | ns    |       |
| CAS Precharge Time (Fast Page Mode)         | t <sub>CP</sub>   | 6   | -    | 6   | -    | 7   | -    | 7   | -    | ns    |       |
| RAS Pulse Width (Fast PAge Mode)            | t <sub>RASP</sub> | 30  | 100k | 35  | 100k | 40  | 100k | 45  | 100k | ns    |       |
| RAS Hold Time From CAS Precharge            | t <sub>RHCP</sub> | 25  | -    | 25  | -    | 25  | -    | 30  | -    | ns    |       |
| Access Time From OE                         | t <sub>OEA</sub>  | -   | 10   | -   | 11   | -   | 12   | -   | 12   | ns    |       |
| OE to Delay Time                            | t <sub>OED</sub>  | 8   | -    | 8   | -    | 8   | -    | 8   | -    | ns    |       |
| Output Buffer Turn-off Delay Time From OE   | t <sub>OEZ</sub>  | 3   | -    | 3   | 8    | 3   | 8    | 3   | 8    | ns    | [5]   |
| OE Hold Time                                | t <sub>OEH</sub>  | 6   | -    | 6   | -    | 7   | -    | 7   | -    | ns    |       |
| WE Hold Time (Hidden Refresh Cycle)         | t <sub>WHR</sub>  | 15  | -    | 15  | -    | 15  | -    | 15  |      | ns    |       |
| Refresh Time (256 Cycles)                   | t <sub>REF</sub>  | _   | 4    | -   | 4    | -   | 4    | -   | 4    | ms    |       |

- 1. An initial pause of 100 µs is required after power-up followed by any 8 RAS only Refresh or CAS before RAS Refresh Cycles to initialize the internal circuit.
- 2.  $V_{IH}$  (min) and  $V_{IL}$  (min) are reference levels for measuring timing of input signals. Transition times are measured between  $V_{IH}$  (min) and  $V_{IL}$  (max), AC measurements assume  $t_T = 3$  ns.
- 3. Measured with an equivalent to 2 TTL loads and 100 pF.
- 4. For read cycles, the access time is defined as follows:

| Input Conditions                                              | Access Time             |
|---------------------------------------------------------------|-------------------------|
| $t_{RAD} \le t_{RAD}$ (max.) and $t_{RCD} \le t_{RCD}$ (max.) | t <sub>RAC</sub> (Max.) |
| $t_{RAD}$ (max.) $< t_{RAD}$ and $t_{RCD} \le t_{RCD}$ (max.) | t <sub>AA</sub> (Max.)  |
| t <sub>RCD</sub> (max). < t <sub>RCD</sub>                    | t <sub>CAC</sub> (Max.) |

 $t_{RAD}$  (max.) and  $t_{RCD}$  (max.) indicate the points which the access time changes and are not the limits of operation.

- 5. t<sub>OFF</sub> (max.) and t<sub>OEZ</sub> (max.) define the time at which the output achieves the open circuit condition and are not referenced to V<sub>OH</sub> or V<sub>OL</sub>.
- 6. t<sub>CRP</sub> (min.) requirement should be applicable for RAS, CAS cycle preceded by any cycles.
- 7. Either t<sub>RCH</sub> (min.) or t<sub>RRH</sub> (min) must be satisfied for a read cycle.
- 8. t<sub>WP</sub> (min.) is applicable for late write cycle or read modify write cycle. In early write cycles, t<sub>WCH</sub> (min.) should be satisfied.
- 9.  $t_{WCS}$ ,  $t_{RWD}$ ,  $t_{CWD}$  and  $t_{AWD}$  are non-restrictive operating parameters. They are included in the data sheet as electric characteristics only. If  $t_{WCS} \ge t_{WCS}$  (min.), the cycle is an early write cycle and the data output will remain high impedance for the duration of the cycle. If  $t_{CWD} \ge t_{CWD}$  (min.),  $t_{RWD} \ge t_{RWD}$  (min.) and  $t_{AWD} \ge t_{AWD}$  (min.), then the cycle is a read-modify-write cycle and the data output will contain the data read from the selected address. If neither of the above conditions is satisfied, the condition of the data out is indeterminate.
- 10. This specification is referenced to CAS falling edge in early write cycles and to WE falling edge in late write orr read modify write cycles.
- 11.  $t_{AR}$ ,  $t_{WCR}$ , and  $t_{DHR}$  are referenced to  $t_{RAD}$ (max.).




<sup>1.</sup> For this waveform, ZZ is tied LOW.

Figure 2. Read/Write Timing

<sup>2.</sup> Burst sequence order is determined by MODE (0 = linear, 1 = interleaved). BURST operations are optional. 3. CE represents three signals. When  $\overline{\text{CE}} = 0$ , it represents  $\overline{\text{CE}} = 0$ ,  $\overline{\text{CE2}} = 0$ ,  $\overline{\text{CE2}} = 1$ .

<sup>4.</sup> Data coherency is provided for all possible operations. If a READ is initiated, the most current data is used. The most recent data may be from the input data register.



<sup>1.</sup> The IGNORE CLOCK EDGE or STALL cycle (clock 3) illustrates CKE being used to create a "pause." A WRITE is not performed during this cycle.

Figure 3. NOP, STALL and DESELECT Timing

<sup>2.</sup> For this waveform, ZZ and  $\overline{\text{OE}}$  are tied LOW.

<sup>3.</sup>  $\overline{\text{CE}}$  represents three signals. When  $\overline{\text{CE}}$  = 0, it represents  $\overline{\text{CE}}$  = 0,  $\overline{\text{CE2}}$  = 0, CE2 = 1.

<sup>4.</sup> Data coherency is provided for all possible operations. If a READ is initiated, the most current data is used. The most recent data may be from the input data register.

## **PACKAGING INFORMATION**

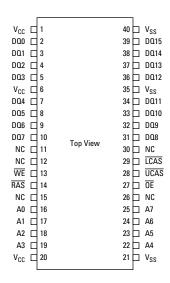



Figure 4. 40-Pin 400 mil Plastic SOJ Pin Assignment

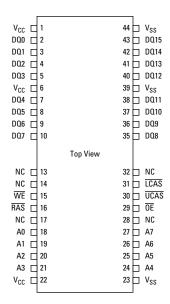
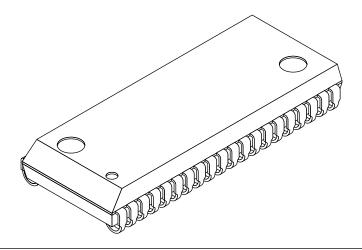
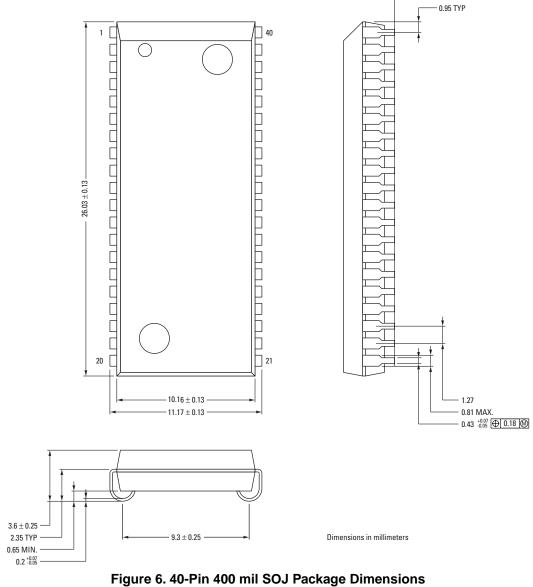
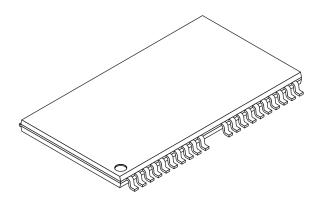






Figure 5. 44/40-Pin 400 mil TSOP (Typell) Pin Assignment



SEATING PLANE





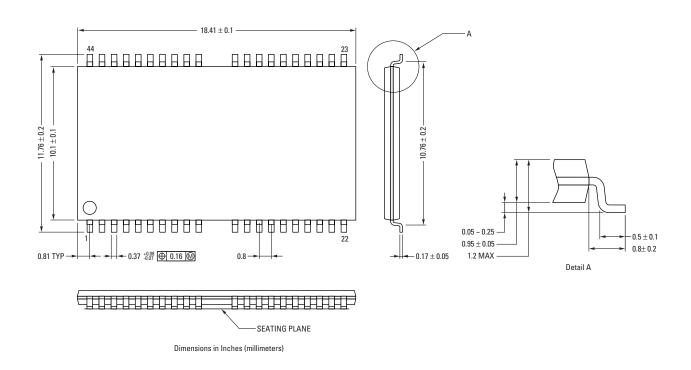



Figure 7. 40/44-Pin TSOP (Type II) Package Dimensions

# **GLT41116**

# **ORDERING INFO**

| Part Number  | Speed | Power  | Feature | Package             |
|--------------|-------|--------|---------|---------------------|
| GLT4116-30J4 | 30 ns | Normal | FPM     | 40-Pin 400 mil SOJ  |
| GLT4116-35J4 | 35 ns | Normal | FPM     | 40-Pin 400 mil SOJ  |
| GLT4116-40J4 | 40 ns | Normal | FPM     | 40-Pin 400 mil SOJ  |
| GLT4116-45J4 | 45 ns | Normal | FPM     | 40-Pin 400 mil SOJ  |
| GLT4116-30TC | 30 ns | Normal | FPM     | 44-Pin 400 mil TSOP |
| GLT4116-35TC | 35 ns | Normal | FPM     | 44-Pin 400 mil TSOP |
| GLT4116-40TC | 40 ns | Normal | FPM     | 44-Pin 400 mil TSOP |
| GLT4116-45TC | 45 ns | Normal | FPM     | 44-Pin 400 mil TSOP |

Notes:

# **GLT41116**

Notes:

Notes:



### www.glinktech.com

### **G-LINK Technology**

1753 South Main Street Milpitas, California, 95035, USA TEL: 408-240-1380 • FAX: 408-240-1385

### **G-LINK Technology Corporation, Taiwan**

6F, No. 24-2, Industry E. Rd. IV Science-Based Industrial Park Hsin Chu, Taiwan, R.O.C. TEL: 03-578-2833 • FAX: 03-578-5820

### © 2001 G-LINK Technology

All rights reserved. No part of this document may be copied or reproduced in any form or by any means or transferred to any third party without the prior written consent of G-LINK Technology.

Circuit diagrams utilizing G-LINK products are included as a means of illustrating typical semiconductor applications. Complete information sufficient for design purposes is not necessarily given.

 $\hbox{G-LINK Technology reserves the right to change products or specifications without notice.}\\$ 

The information contained in this document does not convey any license under copyrights, patent rights or trademarks claimed and owned by G-LINK or its subsidiaries. G-LINK assumes no liability for G-LINK applications assistance, customer's product design, or infringement of patents arising from use of semiconductor devices in such systems' designs. Nor does G-LINK warrant or represent that any patent right, copyright, or other intellectual property right of G-LINK covering or relating to any combination, machine, or process in which such semiconductor devices might be or are used.

G-LINK Technology's products are not authorized for use in life support devices or systems. Life support devices or systems are device or systems which are: a) intended for surgical implant into the human body and b) designed to support or sustain life; and when properly used according to label instructions, can reasonably be expected to cause significant injury to the user in the event of failure.

The information contained in this document is believed to be entirely accurate. However, G-LINK Technology assumes no responsibility for inaccuracies.