
64-Bit TX System RISC
TX49/H2 Core Architecture

JAN. 2002

R4000/R4400/R5000 are a trademark of MIPS Technologies, Inc.

The information contained herein is subject to change without notice.

The information contained herein is presented only as a guide for the applications of our
products. No responsibility is assumed by TOSHIBA for any infringements of patents or
other rights of the third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of TOSHIBA or others.

The products described in this document contain components made in the United States
and subject to export control of the U.S. authorities. Diversion contrary to the U.S. law
is prohibited.

TOSHIBA is continually working to improve the quality and reliability of its products.
Nevertheless, semiconductor devices in general can malfunction or fail due to their
inherent electrical sensitivity and vulnerability to physical stress.
It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with
the standards of safety in making a safe design for the entire system, and to avoid
situations in which a malfunction or failure of such TOSHIBA products could cause loss
of human life, bodily injury or damage to property.
In developing your designs, please ensure that TOSHIBA products are used within
specified operating ranges as set forth in the most recent TOSHIBA products
specifications.
Also, please keep in mind the precautions and conditions set forth in the “Handling
Guide for Semiconductor Devices,” or “TOSHIBA Semiconductor Reliability
Handbook” etc..

The Toshiba products listed in this document are intended for usage in general
electronics applications (computer, personal equipment, office equipment, measuring
equipment, industrial robotics, domestic appliances, etc.).
These Toshiba products are neither intended nor warranted for usage in equipment that
requires extraordinarily high quality and/or reliability or a malfunction or failure of
which may cause loss of human life or bodily injury (“Unintended Usage”). Unintended
Usage include atomic energy control instruments, airplane or spaceship instruments,
transportation instruments, traffic signal instruments, combustion control instruments,
medical instruments, all types of safety devices, etc.. Unintended Usage of Toshiba
products listed in this document shall be made at the customer’s own risk.

The products described in this document may include products subject to the foreign
exchange and foreign trade laws.

© 2002 TOSHIBA CORPORATION
All Rights Reserved

Preface

Thank you for your new or continued patronage of Toshiba semiconductor products. This is the 1998

edition of the user’s manual for the TX49 Family of 64-bit RISC microprocessors, entitled 64-Bit TX

System RISC TX49/H2 Architecture.

This manual is written so as to be accessible to engineers who may be designing a Toshiba

microprocessor into their products for the first time. No prior knowledge of these devices is assumed.

The manual includes a review of the architecture of the processor family, a description of the TX49

instruction set, and sections dedicated to various other relevant topics, such as the Memory

Management System (MMU) and CPU exceptions.

Toshiba continually updates its technical information. Your comments and suggestions concerning this

and other Toshiba documents are sincerely appreciated and may be used in subsequent editions. For

updates to this document or for additional information about the product, please contact your nearest

Toshiba office or authorized Toshiba dealer.

January 2002

 Contents

i

Contents

Handling Precautions
1. Introduction ... 1-1

2. Feature ... 2-1

3. TX49 Block Diagram ... 3-1

4. CPU Registers Overview... 4-1
4.1 Introduction ... 4-1
4.2 CPU Registers.. 4-1
4.3 CP0 Registers... 4-2

5. CPU Instruction Set Summary .. 5-1
5.1 Introduction ... 5-1
5.2 Instruction Format .. 5-1
5.3 Instruction Set Overview .. 5-2

5.3.1 Load and Store Instructions (Table 5-1) .. 5-2
5.3.2 Computational Instructions (Table 5-2)... 5-3
5.3.3 Jump and Branch Instructions (Table 5-3).. 5-4
5.3.4 Special Instructions (Table 5-4).. 5-5
5.3.5 Exception Instructions (Table 5-5) ... 5-5
5.3.6 Coprocessor Instructions (Table 5-6).. 5-6
5.3.7 CP0 Instructions (Table 5-7)... 5-6
5.3.8 Multiply and Divide Instructions (Table 5-8) .. 5-7
5.3.9 Debug Instructions (Table 5-9) ... 5-7
5.3.10 Other Instructions (Table 5-10).. 5-7

5.4 Instruction Execution Cycles.. 5-7
5.5 Defining Access Types... 5-8

6. CPU Pipeline ... 6-1
6.1 Introduction ... 6-1
6.2 Basic Pipeline Operation... 6-1
6.3 TX49 Pipeline Activities.. 6-2
6.4 Branch and Load Delay... 6-3

6.4.1 Delayed load... 6-3
6.4.2 Delayed branching... 6-3

6.5 Non-blocking Load Function... 6-4
6.6 Interlock and Exception Handling ... 6-4

6.6.1 Overview of Interlock and Exception Handling .. 6-4
6.6.2 Exception Conditions... 6-6
6.6.3 Stall Conditions ... 6-6
6.6.4 External Stalls... 6-6
6.6.5 Interlock and Exception Timing ... 6-6

6.7 Multiply and Multiply/Add Instructions (MULT, MULTU, MADD, MADDU)......................... 6-7
6.8 Divide Instructions (DIV, DIVU).. 6-7
6.9 Streaming... 6-7

7. System Control Coprocessor, CP0 .. 7-1
7.1 Introduction ... 7-1
7.2 CP0 Registers... 7-2

7.2.1 Index register (Reg#0) ... 7-2
7.2.2 Random register (Reg#1)... 7-3
7.2.3 EntryLo0 register (Reg#2) and EntryLo1 register (Reg#3)... 7-4
7.2.4 Context register (Reg#4) ... 7-5
7.2.5 PageMask Register (Reg#5) .. 7-6
7.2.6 Wired Register (Reg#6) ... 7-7
7.2.7 BadVAddr Register (Reg#8).. 7-8
7.2.8 Count Register (Reg#9) ... 7-9
7.2.9 EntryHi Register (Reg#10).. 7-10

 Contents

ii

7.2.10 Compare Register (Reg#11) .. 7-11
7.2.11 Status Register (Reg#12)... 7-12
7.2.12 Cause Register (Reg#13) ... 7-15
7.2.13 EPC Register (Reg#14) .. 7-16
7.2.14 PRId Register (Reg#15) ... 7-17
7.2.15 Config Register (Reg#16)... 7-18
7.2.16 LLAddr Register (Reg#17) .. 7-20
7.2.17 XContext Register (Reg#20).. 7-21
7.2.18 Debug Register (Reg#23)... 7-22
7.2.19 DEPC Register (Reg#24) ... 7-24
7.2.20 TagLo Register (Reg#28) and TagHi Register (Reg#29) ... 7-25
7.2.21 ErrorEPC Register (Reg#30)... 7-26
7.2.22 DESAVE Register (Reg#31) .. 7-27
7.2.23 The Initialization of CP0 Registers in SoftReset Exception ... 7-28

8. Memory Management System.. 8-1
8.1 Introduction ... 8-1
8.2 Address Space Overview... 8-1

8.2.1 Virtual Address Space... 8-1
8.2.2 Physical Address Space... 8-2
8.2.3 Virtual-to-Physical Address Translation ... 8-2
8.2.4 32-bit Mode Address Translation ... 8-3
8.2.5 64-bit Mode Address Translation ... 8-4

8.3 Operating Modes ... 8-5
8.3.1 User Mode Operations... 8-5
8.3.2 Supervisor Mode Operations .. 8-7
8.3.3 Kernel Mode Operations ... 8-9

8.4 Translation Lookaside Buffer ... 8-16
8.4.1 Joint TLB ... 8-16
8.4.2 TLB Entry format.. 8-16
8.4.3 Instruction-TLB... 8-17
8.4.4 Data-TLB ... 8-17

8.5 Virtual-to-Physical Address Translation Process ... 8-18

9. Cache Organization... 9-1
9.1 Introduction ... 9-1
9.2 Instruction Cache (I-Cache).. 9-1

9.2.1 Instruction Cache Address Field .. 9-1
9.2.2 Instruction Cache Configuration.. 9-2

9.3 Data Cache... 9-2
9.3.1 Data Cache Address Field... 9-3
9.3.2 Data Cache Configuration .. 9-3
9.3.3 Data Cache Policies ... 9-4

9.4 FIFO Replacement Algorithm .. 9-5
9.5 Lock function ... 9-5

9.5.1 Lock bit setting and clearing .. 9-5
9.5.2 Operation During Lock ... 9-6
9.5.3 Example of Data Cache Locking... 9-6
9.5.4 Example of Instruction Cache Locking .. 9-6

9.6 The Primary Cache Accessing .. 9-7
9.7 Cache States .. 9-7
9.8 Cache Line Ownership .. 9-8
9.9 Cache Multi-Hit Operation ... 9-8
9.10 Cache Test Function.. 9-8

9.10.1 Cache Disabling... 9-8
9.10.2 Cache Flushing .. 9-9

10. Write Buffer ... 10-1

11. CPU Exception... 11-1
11.1 Introduction ... 11-1
11.2 Exception Vector Locations... 11-1

 Contents

iii

11.3 Priority of Exception ... 11-2
11.4 ColdReset Exception.. 11-3

11.4.1 Cause .. 11-3
11.4.2 Processing .. 11-3
11.4.3 Servicing... 11-3

11.5 SoftReset Exception... 11-4
11.5.1 Cause .. 11-4
11.5.2 Processing .. 11-4
11.5.3 Servicing... 11-4

11.6 NMI (Non-maskable Interrupt) Exception .. 11-5
11.6.1 Cause .. 11-5
11.6.2 Processing .. 11-5
11.6.3 Servicing... 11-5

11.7 Address Error Exception... 11-6
11.7.1 Cause .. 11-6
11.7.2 Processing .. 11-6
11.7.3 Servicing... 11-6

11.8 TLB Refill Exception ... 11-7
11.8.1 Cause .. 11-7
11.8.2 Processing .. 11-7
11.8.3 Servicing... 11-7

11.9 TLB Invalid Exception .. 11-8
11.9.1 Cause .. 11-8
11.9.2 Processing .. 11-8
11.9.3 Servicing... 11-8

11.10 TLB Modified Exception ... 11-9
11.10.1 Cause .. 11-9
11.10.2 Processing .. 11-9
11.10.3 Servicing... 11-9

11.11 Bus Error Exception.. 11-10
11.11.1 Cause .. 11-10
11.11.2 Processing .. 11-10
11.11.3 Servicing... 11-10

11.12 Integer Overflow Exception .. 11-11
11.12.1 Cause .. 11-11
11.12.2 Processing .. 11-11
11.12.3 Servicing... 11-11

11.13 Trap Exception .. 11-12
11.13.1 Cause .. 11-12
11.13.2 Processing .. 11-12
11.13.3 Servicing... 11-12

11.14 System Call Exception .. 11-13
11.14.1 Cause .. 11-13
11.14.2 Processing .. 11-13
11.14.3 Servicing... 11-13

11.15 Breakpoint Exception.. 11-14
11.15.1 Cause .. 11-14
11.15.2 Processing .. 11-14
11.15.3 Servicing... 11-14

11.16 Reserved Instruction Exception ... 11-15
11.16.1 Cause .. 11-15
11.16.2 Processing .. 11-15
11.16.3 Servicing... 11-15

11.17 Coprocessor Unusable Exception ... 11-16
11.17.1 Cause .. 11-16
11.17.2 Processing .. 11-16
11.17.3 Servicing... 11-16

11.18 Floating-Point Exception .. 11-17
11.18.1 Cause .. 11-17

 Contents

iv

11.18.2 Processing .. 11-17
11.18.3 Servicing... 11-17

11.19 Interrupt Exception... 11-18
11.19.1 Cause .. 11-18
11.19.2 Processing .. 11-18
11.19.3 Servicing... 11-18

11.20 Exception Handling and Servicing Flowcharts ... 11-19

12. Floating-Point Unit, CP1 .. 12-1
12.1 Overview .. 12-1
12.2 Floating Point Register ... 12-1

12.2.1 Floating-Point General Registers (FGRs) .. 12-1
12.2.2 Floating-Point Control Registers.. 12-2
12.2.3 Accessing the FP Control and Implementation/Revision Registers................................. 12-5

12.3 Floating-Point Formats... 12-6
12.4 Binary Fixed-Point Format... 12-7
12.5 Floating-Point Instruction Set Summary .. 12-8

12.5.1 Load, Move and Store Instructions (Table 12-10) ... 12-8
12.5.2 Conversion Instructions (Table 12-11)... 12-9
12.5.3 Computational Instructions (Table 12-12)... 12-9
12.5.4 Compare and Branch Instructions (Table 12-13) .. 12-10

13. Floating-Point Exception .. 13-1
13.1 Introduction ... 13-1
13.2 Exception Types... 13-1
13.3 Exception Trap Processing.. 13-2
13.4 Flags ... 13-2
13.5 FPU Exceptions ... 13-3
13.6 Saving and Restoring State .. 13-6
13.7 Trap Handlers for IEEE Standard 754 Exceptions... 13-6

14. Debug Support Unit .. 14-1
14.1 Features ... 14-1
14.2 EJTAG interface .. 14-1
14.3 JTAG Interface .. 14-2
14.4 Processor Access Overview ... 14-2
14.5 Instruction ... 14-2
14.6 Debug Unit... 14-3

14.6.1 Extended Instructions... 14-3
14.6.2 Extended Debug Registers in CP0 ... 14-3

14.7 Register Map.. 14-3
14.8 Processor Bus Break Function ... 14-3
14.9 Debug Exception.. 14-4

14.9.1 Debug Single Step (DSS)... 14-4
14.9.2 Debug Breakpoint exception (Dbp) .. 14-4
14.9.3 JTAG Break Exception.. 14-4
14.9.4 Debug Exception Handling ... 14-4
14.9.5 Branching to debug handler ... 14-4
14.9.6 Exception handling when in Debug Mode (DM bit is set) .. 14-4

14.10 Real Time PC TRACE Output .. 14-4

15. TX49 MPU Core Signal Descriptions... 15-1
15.1 Signal Descriptions.. 15-2

15.1.1 Memory Interface Signals... 15-2
15.1.2 DMA Interface Signals.. 15-4
15.1.3 Coprocessor Interface Signals... 15-5
15.1.4 Interrupt Interface Signals... 15-5
15.1.5 Test Interface Signals ... 15-6
15.1.6 Debug Interface Signals.. 15-6
15.1.7 Clock and System Control Interface Signals ... 15-7

16. Low Power Consumption Modes... 16-1
16.1 Halt mode... 16-1

 Contents

v

16.2 Doze mode .. 16-2
16.3 Status Shifts .. 16-3

Appendix A: CPU Instruction Set Details..A-1
A.1 Instruction Classes..A-1

A.1.1 Instruction Formats ..A-2
A.1.2 Instruction Notation Conventions..A-2
A.1.3 Sign Extension and Zero Extension ...A-4
A.1.4 Instruction Notation Examples ..A-4

A.2 Load and Store Instructions ...A-5
A.3 Jump and Branch Instructions...A-6
A.4 Coprocessor Instructions...A-6
A.5 System Control Coprocessor (CP0) Instructions ...A-6
A.6 CPU Instructions...A-7
A.7 Bit Encoding of CPU Instruction OPcodes ..A-179

Appendix B: FPU Instruction Set Details ..B-1
B.1 Instruction Formats ..B-1

B.1.1 Floating-Point Loads, Stores, and Moves ..B-3
B.1.2 Floating-Point Operations ..B-3

B.2 Instruction Notational Conventions...B-4
B.2.1 Instruction Notation Examples ..B-4

B.3 Load and Store Instructions ...B-5
B.4 Computational Instructions..B-7
B.5 Bit Encoding of FPU Instruction OPcodes...B-50

Appendix C: Coprocessor 0 Hazards...C-1
C.1 Pipeline Interlock and Hazard in TX49 ...C-1

C.1.1 Interlock in Load Delay Slot ...C-1
C.1.2 Branch Delay Slot..C-2
C.1.3 Multiply, Multiply/Add and Division Instructions..C-3
C.1.4 Instructions regarding System Control Co-processor (CP0)...C-10
C.1.5 Control Bits Change in CP0 Registers by MTC0 Instruction...C-12

C.2 Pipeline Behavior on Cache Miss ...C-16
C.2.1 Instruction Cache Miss ...C-16
C.2.2 Data Cache Miss..C-17

C.3 Pipeline Behavior in Uncached Area ...C-19
C.3.1 Data Read from Uncached Area ...C-19
C.3.2 Instruction Fetch from Uncached Area..C-19
C.3.3 Data Write to Uncached Area...C-19

C.4 Timings on the Exception Handling...C-20
C.4.1 Basic Pipeline Behavior When Exceptions Occur ...C-20
C.4.2 Exceptions during the Execution of Multi-cycle Instructions ..C-21
C.4.3 Exceptions during the Data Cache Refill Cycle...C-21

Appendix D: G-Bus Overview... D-1
D.1 G-Bus Operation... D-1
D.2 Types of G-Bus Arbitration.. D-1

D.2.1 Snoop & Transfer (ST) Concurrency ... D-1
D.2.2 Execute & Transfer (ET) Concurrency.. D-2

Appendix E: Differences From TX4955A,TX4300 and TX4600 ..E-1

 Contents

vi

Handling Precautions

 1 Using Toshiba Semiconductors Safely

1-1

1. Using Toshiba Semiconductors Safely
TOSHIBA are continually working to improve the quality and the reliability of their products.

Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent
electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when
utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a
malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or
damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified
operating ranges as set forth in the most recent products specifications. Also, please keep in mind
the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

 1 Using Toshiba Semiconductors Safely

1-2

2 Safety Precautions

2-1

2. Safety Precautions
This section lists important precautions which users of semiconductor devices (and anyone else)
should observe in order to avoid injury and damage to property, and to ensure safe and correct use
of devices.

Please be sure that you understand the meanings of the labels and the graphic symbol described
below before you move on to the detailed descriptions of the precautions.

[Explanation of labels][Explanation of labels][Explanation of labels][Explanation of labels]

Indicates an imminently hazardous situation which will result in death or
serious injury if you do not follow instructions.

Indicates a potentially hazardous situation which could result in death or
serious injury if you do not follow instructions.

Indicates a potentially hazardous situation which if not avoided, may result
in minor injury or moderate injury.

[Explanation of graphic symbol][Explanation of graphic symbol][Explanation of graphic symbol][Explanation of graphic symbol]

Graphic symbol Meaning

Indicates that caution is required (laser beam is dangerous to eyes).

2 Safety Precautions

2-2

2.1 General Precautions regarding Semiconductor Devices

Do not use devices under conditions exceeding their absolute maximum ratings (e.g. current, voltage, power dissipation or
temperature).
This may cause the device to break down, degrade its performance, or cause it to catch fire or explode resulting in injury.

Do not insert devices in the wrong orientation.
Make sure that the positive and negative terminals of power supplies are connected correctly. Otherwise the rated maximum
current or power dissipation may be exceeded and the device may break down or undergo performance degradation, causing it to
catch fire or explode and resulting in injury.

When power to a device is on, do not touch the device’s heat sink.
Heat sinks become hot, so you may burn your hand.

Do not touch the tips of device leads.
Because some types of device have leads with pointed tips, you may prick your finger.

When conducting any kind of evaluation, inspection or testing, be sure to connect the testing equipment’s electrodes or probes to
the pins of the device under test before powering it on.
Otherwise, you may receive an electric shock causing injury.

Before grounding an item of measuring equipment or a soldering iron, check that there is no electrical leakage from it.
Electrical leakage may cause the device which you are testing or soldering to break down, or could give you an electric shock.

Always wear protective glasses when cutting the leads of a device with clippers or a similar tool.
If you do not, small bits of metal flying off the cut ends may damage your eyes.

2 Safety Precautions

2-3

2.2 Precautions Specific to Each Product Group

2.2.1 Optical semiconductor devices

When a visible semiconductor laser is operating, do not look directly into the laser beam or look through the optical system.
This is highly likely to impair vision, and in the worst case may cause blindness.
If it is necessary to examine the laser apparatus, for example to inspect its optical characteristics, always wear the appropriate
type of laser protective glasses as stipulated by IEC standard IEC825-1.

Ensure that the current flowing in an LED device does not exceed the device’s maximum rated current.
This is particularly important for resin-packaged LED devices, as excessive current may cause the package resin to blow up,
scattering resin fragments and causing injury.

When testing the dielectric strength of a photocoupler, use testing equipment which can shut off the supply voltage to the
photocoupler. If you detect a leakage current of more than 100 µA, use the testing equipment to shut off the photocoupler’s
supply voltage; otherwise a large short-circuit current will flow continuously, and the device may break down or burst into flames,
resulting in fire or injury.

When incorporating a visible semiconductor laser into a design, use the device’s internal photodetector or a separate
photodetector to stabilize the laser’s radiant power so as to ensure that laser beams exceeding the laser’s rated radiant power
cannot be emitted.
If this stabilizing mechanism does not work and the rated radiant power is exceeded, the device may break down or the
excessively powerful laser beams may cause injury.

2.2.2 Power devices

Never touch a power device while it is powered on. Also, after turning off a power device, do not touch it until it has thoroughly
discharged all remaining electrical charge.
Touching a power device while it is powered on or still charged could cause a severe electric shock, resulting in death or serious
injury.

When conducting any kind of evaluation, inspection or testing, be sure to connect the testing equipment’s electrodes or probes to
the device under test before powering it on.
When you have finished, discharge any electrical charge remaining in the device.
Connecting the electrodes or probes of testing equipment to a device while it is powered on may result in electric shock, causing
injury.

2 Safety Precautions

2-4

Do not use devices under conditions which exceed their absolute maximum ratings (current, voltage, power dissipation,
temperature etc.).
This may cause the device to break down, causing a large short-circuit current to flow, which may in turn cause it to catch fire or
explode, resulting in fire or injury.

Use a unit which can detect short-circuit currents and which will shut off the power supply if a short-circuit occurs.
If the power supply is not shut off, a large short-circuit current will flow continuously, which may in turn cause the device to catch
fire or explode, resulting in fire or injury.

When designing a case for enclosing your system, consider how best to protect the user from shrapnel in the event of the device
catching fire or exploding.
Flying shrapnel can cause injury.

When conducting any kind of evaluation, inspection or testing, always use protective safety tools such as a cover for the device.
Otherwise you may sustain injury caused by the device catching fire or exploding.

Make sure that all metal casings in your design are grounded to earth.
Even in modules where a device’s electrodes and metal casing are insulated, capacitance in the module may cause the
electrostatic potential in the casing to rise.
Dielectric breakdown may cause a high voltage to be applied to the casing, causing electric shock and injury to anyone touching it.

When designing the heat radiation and safety features of a system incorporating high-speed rectifiers, remember to take the
device’s forward and reverse losses into account.
The leakage current in these devices is greater than that in ordinary rectifiers; as a result, if a high-speed rectifier is used in an
extreme environment (e.g. at high temperature or high voltage), its reverse loss may increase, causing thermal runaway to occur.
This may in turn cause the device to explode and scatter shrapnel, resulting in injury to the user.

A design should ensure that, except when the main circuit of the device is active, reverse bias is applied to the device gate while
electricity is conducted to control circuits, so that the main circuit will become inactive.
Malfunction of the device may cause serious accidents or injuries.

When conducting any kind of evaluation, inspection or testing, either wear protective gloves or wait until the device has cooled
properly before handling it.
Devices become hot when they are operated. Even after the power has been turned off, the device will retain residual heat which
may cause a burn to anyone touching it.

2.2.3 Bipolar ICs (for use in automobiles)

If your design includes an inductive load such as a motor coil, incorporate diodes or similar devices into the design to prevent
negative current from flowing in.
The load current generated by powering the device on and off may cause it to function erratically or to break down, which could in
turn cause injury.

Ensure that the power supply to any device which incorporates protective functions is stable.
If the power supply is unstable, the device may operate erratically, preventing the protective functions from working correctly. If
protective functions fail, the device may break down causing injury to the user.

3 General Safety Precautions and Usage Considerations

3-1

3. General Safety Precautions and Usage Considerations
This section is designed to help you gain a better understanding of semiconductor devices, so as to
ensure the safety, quality and reliability of the devices which you incorporate into your designs.

3.1 From Incoming to Shipping

3.1.1 Electrostatic discharge (ESD)
When handling individual devices (which are not yet mounted on a printed
circuit board), be sure that the environment is protected against
electrostatic electricity. Operators should wear anti-static clothing, and
containers and other objects which come into direct contact with devices
should be made of anti-static materials and should be grounded to earth via
an 0.5- to 1.0-MΩ protective resistor.

Please follow the precautions described below; this is particularly important
for devices which are marked “Be careful of static.”.

(1) Work environment

• When humidity in the working environment decreases, the human body and other insulators
can easily become charged with static electricity due to friction. Maintain the recommended
humidity of 40% to 60% in the work environment, while also taking into account the fact that
moisture-proof-packed products may absorb moisture after unpacking.

• Be sure that all equipment, jigs and tools in the working area are grounded to earth.

• Place a conductive mat over the floor of the work area, or take other appropriate measures, so
that the floor surface is protected against static electricity and is grounded to earth. The surface
resistivity should be 104 to 108 Ω/sq and the resistance between surface and ground, 7.5 × 105 to
108 Ω

• Cover the workbench surface also with a conductive mat (with a surface resistivity of 104 to
108 Ω/sq, for a resistance between surface and ground of 7.5 × 105 to 108 Ω) . The purpose of this
is to disperse static electricity on the surface (through resistive components) and ground it to
earth. Workbench surfaces must not be constructed of low-resistance metallic materials that
allow rapid static discharge when a charged device touches them directly.

• Pay attention to the following points when using automatic equipment in your workplace:

(a) When picking up ICs with a vacuum unit, use a conductive rubber fitting on the end of the
pick-up wand to protect against electrostatic charge.

(b) Minimize friction on IC package surfaces. If some rubbing is unavoidable due to the device’s
mechanical structure, minimize the friction plane or use material with a small friction
coefficient and low electrical resistance. Also, consider the use of an ionizer.

(c) In sections which come into contact with device lead terminals, use a material which
dissipates static electricity.

(d) Ensure that no statically charged bodies (such as work clothes or the human body) touch
the devices.

3 General Safety Precautions and Usage Considerations

3-2

(e) Make sure that sections of the tape carrier which come into contact with installation
devices or other electrical machinery are made of a low-resistance material.

(f) Make sure that jigs and tools used in the assembly process do not touch devices.

(g) In processes in which packages may retain an electrostatic charge, use an ionizer to
neutralize the ions.

• Make sure that CRT displays in the working area are protected against static charge, for
example by a VDT filter. As much as possible, avoid turning displays on and off. Doing so can
cause electrostatic induction in devices.

• Keep track of charged potential in the working area by taking periodic measurements.

• Ensure that work chairs are protected by an anti-static textile cover and are grounded to the
floor surface by a grounding chain. (Suggested resistance between the seat surface and
grounding chain is 7.5 × 105 to 1012Ω.)

• Install anti-static mats on storage shelf surfaces. (Suggested surface resistivity is 104 to 108

Ω/sq; suggested resistance between surface and ground is 7.5 × 105 to 108 Ω.)

• For transport and temporary storage of devices, use containers (boxes, jigs or bags) that are
made of anti-static materials or materials which dissipate electrostatic charge.

• Make sure that cart surfaces which come into contact with device packaging are made of
materials which will conduct static electricity, and verify that they are grounded to the floor
surface via a grounding chain.

• In any location where the level of static electricity is to be closely controlled, the ground
resistance level should be Class 3 or above. Use different ground wires for all items of
equipment which may come into physical contact with devices.

(2) Operating environment

• Operators must wear anti-static clothing and conductive shoes (or
a leg or heel strap).

• Operators must wear a wrist strap grounded to earth via a
resistor of about 1 MΩ.

• Soldering irons must be grounded from iron tip to earth, and must be used only at low voltages
(6 V to 24 V).

• If the tweezers you use are likely to touch the device terminals, use anti-static tweezers and in
particular avoid metallic tweezers. If a charged device touches a low-resistance tool, rapid
discharge can occur. When using vacuum tweezers, attach a conductive chucking pat to the tip,
and connect it to a dedicated ground used especially for anti-static purposes (suggested
resistance value: 104 to 108 Ω).

• Do not place devices or their containers near sources of strong electrical fields (such as above a
CRT).

3 General Safety Precautions and Usage Considerations

3-3

• When storing printed circuit boards which have devices mounted on them, use a board
container or bag that is protected against static charge. To avoid the occurrence of static charge
or discharge due to friction, keep the boards separate from one other and do not stack them
directly on top of one another.

• Ensure, if possible, that any articles (such as clipboards) which are brought to any location
where the level of static electricity must be closely controlled are constructed of anti-static
materials.

• In cases where the human body comes into direct contact with a device, be sure to wear anti-
static finger covers or gloves (suggested resistance value: 108 Ω or less).

• Equipment safety covers installed near devices should have resistance ratings of 109 Ω or less.

• If a wrist strap cannot be used for some reason, and there is a possibility of imparting friction to
devices, use an ionizer.

• The transport film used in TCP products is manufactured from materials in which static
charges tend to build up. When using these products, install an ionizer to prevent the film from
being charged with static electricity. Also, ensure that no static electricity will be applied to the
product’s copper foils by taking measures to prevent static occuring in the peripheral
equipment.

3.1.2 Vibration, impact and stress
Handle devices and packaging materials with care. To avoid damage
to devices, do not toss or drop packages. Ensure that devices are not
subjected to mechanical vibration or shock during transportation.
Ceramic package devices and devices in canister-type packages which
have empty space inside them are subject to damage from vibration
and shock because the bonding wires are secured only at their ends.

Plastic molded devices, on the other hand, have a relatively high level
of resistance to vibration and mechanical shock because their bonding
wires are enveloped and fixed in resin. However, when any device or package type is installed in
target equipment, it is to some extent susceptible to wiring disconnections and other damage from
vibration, shock and stressed solder junctions. Therefore when devices are incorporated into the
design of equipment which will be subject to vibration, the structural design of the equipment
must be thought out carefully.

If a device is subjected to especially strong vibration, mechanical shock or stress, the package or
the chip itself may crack. In products such as CCDs which incorporate window glass, this could
cause surface flaws in the glass or cause the connection between the glass and the ceramic to
separate.

Furthermore, it is known that stress applied to a semiconductor device through the package
changes the resistance characteristics of the chip because of piezoelectric effects. In analog circuit
design attention must be paid to the problem of package stress as well as to the dangers of
vibration and shock as described above.

Vibration

3 General Safety Precautions and Usage Considerations

3-4

3.2 Storage

3.2.1 General storage
• Avoid storage locations where devices will be exposed to moisture or direct sunlight.

• Follow the instructions printed on the device cartons regarding
transportation and storage.

• The storage area temperature should be kept within a
temperature range of 5°C to 35°C, and relative humidity should
be maintained at between 45% and 75%.

• Do not store devices in the presence of harmful (especially
corrosive) gases, or in dusty conditions.

• Use storage areas where there is minimal temperature fluctuation. Rapid temperature changes
can cause moisture to form on stored devices, resulting in lead oxidation or corrosion. As a result,
the solderability of the leads will be degraded.

• When repacking devices, use anti-static containers.

• Do not allow external forces or loads to be applied to devices while they are in storage.

• If devices have been stored for more than two years, their electrical characteristics should be
tested and their leads should be tested for ease of soldering before they are used.

3.2.2 Moisture-proof packing
Moisture-proof packing should be handled with care. The handling
procedure specified for each packing type should be followed scrupulously.
If the proper procedures are not followed, the quality and reliability of
devices may be degraded. This section describes general precautions for
handling moisture-proof packing. Since the details may differ from device
to device, refer also to the relevant individual datasheets or databook.

(1) General precautions
Follow the instructions printed on the device cartons regarding transportation and storage.

• Do not drop or toss device packing. The laminated aluminum material in it can be rendered
ineffective by rough handling.

• The storage area temperature should be kept within a temperature range of 5°C to 30°C, and
relative humidity should be maintained at 90% (max). Use devices within 12 months of the date
marked on the package seal.

　　

Humidity: Temperature:

3 General Safety Precautions and Usage Considerations

3-5

• If the 12-month storage period has expired, or if the 30% humidity indicator shown in Figure 1
is pink when the packing is opened, it may be advisable, depending on the device and packing
type, to back the devices at high temperature to remove any moisture. Please refer to the table
below. After the pack has been opened, use the devices in a 5°C to 30°C. 60% RH environment
and within the effective usage period listed on the moisture-proof package. If the effective usage
period has expired, or if the packing has been stored in a high-humidity environment, bake the
devices at high temperature.

Packing Moisture removal

Tray If the packing bears the “Heatproof” marking or indicates the maximum temperature which it can
withstand, bake at 125°C for 20 hours. (Some devices require a different procedure.)

Tube Transfer devices to trays bearing the “Heatproof” marking or indicating the temperature which they
can withstand, or to aluminum tubes before baking at 125°C for 20 hours.

Tape Deviced packed on tape cannot be baked and must be used within the effective usage period after
unpacking, as specified on the packing.

• When baking devices, protect the devices from static electricity.

• Moisture indicators can detect the approximate humidity level at a standard temperature of
25°C. 6-point indicators and 3-point indicators are currently in use, but eventually all indicators
will be 3-point indicators.

D
AN

G
ER

 IF
 P

IN
K

C
H

AN
G

E
 D

ES
IC

C
AN

T

READ AT LAVENDER
BETWEEN PINK & BLUE

10%

20%

30%

40%

50%

60%

HUMIDITY INDICATOR

D
AN

G
ER

 IF
 P

IN
K

READ AT LAVENDER
BETWEEN PINK & BLUE

20

30

40

HUMIDITY INDICATOR

(a) 6-point indicator (b) 3-point indicator

Figure 1 Humidity indicator

3 General Safety Precautions and Usage Considerations

3-6

3.3 Design
Care must be exercised in the design of electronic equipment to achieve the desired reliability. It is
important not only to adhere to specifications concerning absolute maximum ratings and
recommended operating conditions, it is also important to consider the overall environment in
which equipment will be used, including factors such as the ambient temperature, transient noise
and voltage and current surges, as well as mounting conditions which affect device reliability. This
section describes some general precautions which you should observe when designing circuits and
when mounting devices on printed circuit boards.

For more detailed information about each product family, refer to the relevant individual technical
datasheets available from Toshiba.

3.3.1 Absolute maximum ratings
Do not use devices under conditions in which their absolute maximum ratings
(e.g. current, voltage, power dissipation or temperature) will be exceeded. A
device may break down or its performance may be degraded, causing it to
catch fire or explode resulting in injury to the user.

The absolute maximum ratings are rated values which must not be
exceeded during operation, even for an instant. Although absolute
maximum ratings differ from product to product, they essentially
concern the voltage and current at each pin, the allowable power
dissipation, and the junction and storage temperatures.

If the voltage or current on any pin exceeds the absolute maximum
rating, the device’s internal circuitry can become degraded. In the worst
case, heat generated in internal circuitry can fuse wiring or cause the semiconductor chip to break
down.

If storage or operating temperatures exceed rated values, the package seal can deteriorate or the
wires can become disconnected due to the differences between the thermal expansion coefficients
of the materials from which the device is constructed.

3.3.2 Recommended operating conditions
The recommended operating conditions for each device are those necessary to guarantee that the
device will operate as specified in the datasheet.
If greater reliability is required, derate the device’s absolute maximum ratings for voltage, current,
power and temperature before using it.

3.3.3 Derating
When incorporating a device into your design, reduce its rated absolute maximum voltage, current,
power dissipation and operating temperature in order to ensure high reliability.
Since derating differs from application to application, refer to the technical datasheets available
for the various devices used in your design.

3.3.4 Unused pins
If unused pins are left open, some devices can exhibit input instability problems, resulting in
malfunctions such as abrupt increase in current flow. Similarly, if the unused output pins on a
device are connected to the power supply pin, the ground pin or to other output pins, the IC may
malfunction or break down.

3 General Safety Precautions and Usage Considerations

3-7

Since the details regarding the handling of unused pins differ from device to device and from pin
to pin, please follow the instructions given in the relevant individual datasheets or databook.

CMOS logic IC inputs, for example, have extremely high impedance. If an input pin is left open, it
can easily pick up extraneous noise and become unstable. In this case, if the input voltage level
reaches an intermediate level, it is possible that both the P-channel and N-channel transistors
will be turned on, allowing unwanted supply current to flow. Therefore, ensure that the unused
input pins of a device are connected to the power supply (Vcc) pin or ground (GND) pin of the same
device. For details of what to do with the pins of heat sinks, refer to the relevant technical
datasheet and databook.

3.3.5 Latch-up
Latch-up is an abnormal condition inherent in CMOS devices, in which Vcc gets shorted to ground.
This happens when a parasitic PN-PN junction (thyristor structure) internal to the CMOS chip is
turned on, causing a large current of the order of several hundred mA or more to flow between Vcc
and GND, eventually causing the device to break down.

Latch-up occurs when the input or output voltage exceeds the rated value, causing a large current
to flow in the internal chip, or when the voltage on the Vcc (Vdd) pin exceeds its rated value,
forcing the internal chip into a breakdown condition. Once the chip falls into the latch-up state,
even though the excess voltage may have been applied only for an instant, the large current
continues to flow between Vcc (Vdd) and GND (Vss). This causes the device to heat up and, in
extreme cases, to emit gas fumes as well. To avoid this problem, observe the following precautions:

(1) Do not allow voltage levels on the input and output pins either to rise above Vcc (Vdd) or to
fall below GND (Vss). Also, follow any prescribed power-on sequence, so that power is applied
gradually or in steps rather than abruptly.

(2) Do not allow any abnormal noise signals to be applied to the device.

(3) Set the voltage levels of unused input pins to Vcc (Vdd) or GND (Vss).

(4) Do not connect output pins to one another.

3.3.6 Input/Output protection
Wired-AND configurations, in which outputs are connected together, cannot be used, since this
short-circuits the outputs. Outputs should, of course, never be connected to Vcc (Vdd) or GND
(Vss).

Furthermore, ICs with tri-state outputs can undergo performance degradation if a shorted output
current is allowed to flow for an extended period of time. Therefore, when designing circuits, make
sure that tri-state outputs will not be enabled simultaneously.

3.3.7 Load capacitance
Some devices display increased delay times if the load capacitance is large. Also, large charging
and discharging currents will flow in the device, causing noise. Furthermore, since outputs are
shorted for a relatively long time, wiring can become fused.

Consult the technical information for the device being used to determine the recommended load
capacitance.

3 General Safety Precautions and Usage Considerations

3-8

3.3.8 Thermal design
The failure rate of semiconductor devices is greatly increased as operating temperatures increase.
As shown in Figure 2, the internal thermal stress on a device is the sum of the ambient
temperature and the temperature rise due to power dissipation in the device. Therefore, to
achieve optimum reliability, observe the following precautions concerning thermal design:

(1) Keep the ambient temperature (Ta) as low as possible.

(2) If the device’s dynamic power dissipation is relatively large, select the most appropriate
circuit board material, and consider the use of heat sinks or of forced air cooling. Such
measures will help lower the thermal resistance of the package.

(3) Derate the device’s absolute maximum ratings to minimize thermal stress from power
dissipation.
θja = θjc + θca
θja = (Tj–Ta) / P
θjc = (Tj–Tc) / P
θca = (Tc–Ta) / P
in which θja = thermal resistance between junction and surrounding air (°C/W)

θjc = thermal resistance between junction and package surface, or internal thermal
resistance (°C/W)

θca = thermal resistance between package surface and surrounding air, or external
 thermal resistance (°C/W)

Tj = junction temperature or chip temperature (°C)
Tc = package surface temperature or case temperature (°C)
Ta = ambient temperature (°C)
P = power dissipation (W)

Tc

θca

Ta

Tj
θjc

Figure 2 Thermal resistance of package

3.3.9 Interfacing
When connecting inputs and outputs between devices, make sure input voltage (VIL/VIH) and
output voltage (VOL/VOH) levels are matched. Otherwise, the devices may malfunction. When
connecting devices operating at different supply voltages, such as in a dual-power-supply system,
be aware that erroneous power-on and power-off sequences can result in device breakdown. For
details of how to interface particular devices, consult the relevant technical datasheets and
databooks. If you have any questions or doubts about interfacing, contact your nearest Toshiba
office or distributor.

3 General Safety Precautions and Usage Considerations

3-9

3.3.10 Decoupling
Spike currents generated during switching can cause Vcc (Vdd) and GND (Vss) voltage levels to
fluctuate, causing ringing in the output waveform or a delay in response speed. (The power supply
and GND wiring impedance is normally 50 Ω to 100 Ω.) For this reason, the impedance of power
supply lines with respect to high frequencies must be kept low. This can be accomplished by using
thick and short wiring for the Vcc (Vdd) and GND (Vss) lines and by installing decoupling
capacitors (of approximately 0.01 µF to 1 µF capacitance) as high-frequency filters between Vcc
(Vdd) and GND (Vss) at strategic locations on the printed circuit board.

For low-frequency filtering, it is a good idea to install a 10- to 100-µF capacitor on the printed
circuit board (one capacitor will suffice). If the capacitance is excessively large, however, (e.g.
several thousand µF) latch-up can be a problem. Be sure to choose an appropriate capacitance
value.

An important point about wiring is that, in the case of high-speed logic ICs, noise is caused mainly
by reflection and crosstalk, or by the power supply impedance. Reflections cause increased signal
delay, ringing, overshoot and undershoot, thereby reducing the device’s safety margins with
respect to noise. To prevent reflections, reduce the wiring length by increasing the device
mounting density so as to lower the inductance (L) and capacitance (C) in the wiring. Extreme
care must be taken, however, when taking this corrective measure, since it tends to cause
crosstalk between the wires. In practice, there must be a trade-off between these two factors.

3.3.11 External noise
Printed circuit boards with long I/O or signal pattern lines are
vulnerable to induced noise or surges from outside sources.
Consequently, malfunctions or breakdowns can result from
overcurrent or overvoltage, depending on the types of device
used. To protect against noise, lower the impedance of the
pattern line or insert a noise-canceling circuit. Protective
measures must also be taken against surges.

For details of the appropriate protective measures for a
particular device, consult the relevant databook.

3.3.12 Electromagnetic interference
Widespread use of electrical and electronic equipment in recent years has brought with it radio
and TV reception problems due to electromagnetic interference. To use the radio spectrum
effectively and to maintain radio communications quality, each country has formulated
regulations limiting the amount of electromagnetic interference which can be generated by
individual products.

Electromagnetic interference includes conduction noise propagated through power supply and
telephone lines, and noise from direct electromagnetic waves radiated by equipment. Different
measurement methods and corrective measures are used to assess and counteract each specific
type of noise.

Difficulties in controlling electromagnetic interference derive from the fact that there is no
method available which allows designers to calculate, at the design stage, the strength of the
electromagnetic waves which will emanate from each component in a piece of equipment. For this
reason, it is only after the prototype equipment has been completed that the designer can take
measurements using a dedicated instrument to determine the strength of electromagnetic
interference waves. Yet it is possible during system design to incorporate some measures for the
prevention of electromagnetic interference, which can facilitate taking corrective measures once
the design has been completed. These include installing shields and noise filters, and increasing

Input/Output
Signals

3 General Safety Precautions and Usage Considerations

3-10

the thickness of the power supply wiring patterns on the printed circuit board. One effective
method, for example, is to devise several shielding options during design, and then select the most
suitable shielding method based on the results of measurements taken after the prototype has
been completed.

3.3.13 Peripheral circuits
In most cases semiconductor devices are used with peripheral circuits and components. The input
and output signal voltages and currents in these circuits must be chosen to match the
semiconductor device’s specifications. The following factors must be taken into account.

(1) Inappropriate voltages or currents applied to a device’s input pins may cause it to operate
erratically. Some devices contain pull-up or pull-down resistors. When designing your system,
remember to take the effect of this on the voltage and current levels into account.

(2) The output pins on a device have a predetermined external circuit drive capability. If this
drive capability is greater than that required, either incorporate a compensating circuit into
your design or carefully select suitable components for use in external circuits.

3.3.14 Safety standards
Each country has safety standards which must be observed. These safety standards include
requirements for quality assurance systems and design of device insulation. Such requirements
must be fully taken into account to ensure that your design conforms to the applicable safety
standards.

3.3.15 Other precautions
(1) When designing a system, be sure to incorporate fail-safe and other appropriate measures

according to the intended purpose of your system. Also, be sure to debug your system under
actual board-mounted conditions.

(2) If a plastic-package device is placed in a strong electric field, surface leakage may occur due to
the charge-up phenomenon, resulting in device malfunction. In such cases take appropriate
measures to prevent this problem, for example by protecting the package surface with a
conductive shield.

(3) With some microcomputers and MOS memory devices, caution is required when powering on
or resetting the device. To ensure that your design does not violate device specifications,
consult the relevant databook for each constituent device.

(4) Ensure that no conductive material or object (such as a metal pin) can drop onto and short the
leads of a device mounted on a printed circuit board.

3.4 Inspection, Testing and Evaluation

3.4.1 Grounding
Ground all measuring instruments, jigs, tools and soldering irons to earth.
Electrical leakage may cause a device to break down or may result in electric
shock.

3 General Safety Precautions and Usage Considerations

3-11

3.4.2 Inspection Sequence
 Do not insert devices in the wrong orientation. Make sure that the positive
and negative electrodes of the power supply are correctly connected.
Otherwise, the rated maximum current or maximum power dissipation
may be exceeded and the device may break down or undergo performance
degradation, causing it to catch fire or explode, resulting in injury to the
user.

 When conducting any kind of evaluation, inspection or testing using AC
power with a peak voltage of 42.4 V or DC power exceeding 60 V, be sure to
connect the electrodes or probes of the testing equipment to the device
under test before powering it on. Connecting the electrodes or probes of
testing equipment to a device while it is powered on may result in electric
shock, causing injury.

(1) Apply voltage to the test jig only after inserting the device securely into it. When applying or
removing power, observe the relevant precautions, if any.

(2) Make sure that the voltage applied to the device is off before removing the device from the
test jig. Otherwise, the device may undergo performance degradation or be destroyed.

(3) Make sure that no surge voltages from the measuring equipment are applied to the device.

(4) The chips housed in tape carrier packages (TCPs) are bare chips and are therefore exposed.
During inspection take care not to crack the chip or cause any flaws in it.
Electrical contact may also cause a chip to become faulty. Therefore make sure that nothing
comes into electrical contact with the chip.

3.5 Mounting
There are essentially two main types of semiconductor device package: lead insertion and surface
mount. During mounting on printed circuit boards, devices can become contaminated by flux or
damaged by thermal stress from the soldering process. With surface-mount devices in particular,
the most significant problem is thermal stress from solder reflow, when the entire package is
subjected to heat. This section describes a recommended temperature profile for each mounting
method, as well as general precautions which you should take when mounting devices on printed
circuit boards. Note, however, that even for devices with the same package type, the appropriate
mounting method varies according to the size of the chip and the size and shape of the lead frame.
Therefore, please consult the relevant technical datasheet and databook.

3.5.1 Lead forming
 Always wear protective glasses when cutting the leads of a device with
clippers or a similar tool. If you do not, small bits of metal flying off the cut
ends may damage your eyes.

 Do not touch the tips of device leads. Because some types of device have
leads with pointed tips, you may prick your finger.

Semiconductor devices must undergo a process in which the leads are cut and formed before the
devices can be mounted on a printed circuit board. If undue stress is applied to the interior of a
device during this process, mechanical breakdown or performance degradation can result. This is
attributable primarily to differences between the stress on the device’s external leads and the
stress on the internal leads. If the relative difference is great enough, the device’s internal leads,
adhesive properties or sealant can be damaged. Observe these precautions during the lead-
forming process (this does not apply to surface-mount devices):

3 General Safety Precautions and Usage Considerations

3-12

(1) Lead insertion hole intervals on the printed circuit board should match the lead pitch of the
device precisely.

(2) If lead insertion hole intervals on the printed circuit board do not precisely match the lead
pitch of the device, do not attempt to forcibly insert devices by pressing on them or by pulling
on their leads.

(3) For the minimum clearance specification between a device and a
printed circuit board, refer to the relevant device’s datasheet and
databook. If necessary, achieve the required clearance by forming
the device’s leads appropriately. Do not use the spacers which are
used to raise devices above the surface of the printed circuit board
during soldering to achieve clearance. These spacers normally
continue to expand due to heat, even after the solder has begun to solidify; this applies severe
stress to the device.

(4) Observe the following precautions when forming the leads of a device prior to mounting.

• Use a tool or jig to secure the lead at its base (where the lead meets the device package) while
bending so as to avoid mechanical stress to the device. Also avoid bending or stretching device
leads repeatedly.

• Be careful not to damage the lead during lead forming.

• Follow any other precautions described in the individual datasheets and databooks for each
device and package type.

3.5.2 Socket mounting
(1) When socket mounting devices on a printed circuit board, use sockets which match the

inserted device’s package.

(2) Use sockets whose contacts have the appropriate contact pressure. If the contact pressure is
insufficient, the socket may not make a perfect contact when the device is repeatedly inserted
and removed; if the pressure is excessively high, the device leads may be bent or damaged
when they are inserted into or removed from the socket.

(3) When soldering sockets to the printed circuit board, use sockets whose construction prevents
flux from penetrating into the contacts or which allows flux to be completely cleaned off.

(4) Make sure the coating agent applied to the printed circuit board for moisture-proofing
purposes does not stick to the socket contacts.

(5) If the device leads are severely bent by a socket as it is inserted or removed and you wish to
repair the leads so as to continue using the device, make sure that this lead correction is only
performed once. Do not use devices whose leads have been corrected more than once.

(6) If the printed circuit board with the devices mounted on it will be subjected to vibration from
external sources, use sockets which have a strong contact pressure so as to prevent the
sockets and devices from vibrating relative to one another.

3.5.3 Soldering temperature profile
The soldering temperature and heating time vary from device to device. Therefore, when
specifying the mounting conditions, refer to the individual datasheets and databooks for the
devices used.

3 General Safety Precautions and Usage Considerations

3-13

(1) Using a soldering iron

Complete soldering within ten seconds for lead temperatures of up to 260°C, or within three
seconds for lead temperatures of up to 350°C.

(2) Using medium infrared ray reflow

• Heating top and bottom with long or medium infrared rays is recommended (see Figure 3).

Long infrared ray heater (preheating)

Medium infrared ray heater
(reflow)

Product flow

Figure 3 Heating top and bottom with long or medium infrared rays

• Complete the infrared ray reflow process within 30 seconds at a package surface temperature of
between 210°C and 240°C.

• Refer to Figure 4 for an example of a good temperature profile for infrared or hot air reflow.

210

30 s
or less

Time (s)

60-120 s

(°C)
240

160

140

Pa
ck

ag
e

su
rfa

ce
 te

m
pe

ra
tu

re

Figure 4 Sample temperature profile for infrared or hot air reflow

(3) Using hot air reflow

• Complete hot air reflow within 30 seconds at a package surface temperature of between 210°C
and 240°C.

• For an example of a recommended temperature profile, refer to Figure 4 above.

(4) Using solder flow

• Apply preheating for 60 to 120 seconds at a temperature of 150°C.

• For lead insertion-type packages, complete solder flow within 10 seconds with the
temperature at the stopper (or, if there is no stopper, at a location more than 1.5 mm from
the body) which does not exceed 260°C.

3 General Safety Precautions and Usage Considerations

3-14

• For surface-mount packages, complete soldering within 5 seconds at a temperature of 250°C or
less in order to prevent thermal stress in the device.

• Figure 5 shows an example of a recommended temperature profile for surface-mount packages
using solder flow.

5 s
or less

60-120 s

(°C)
250

160

140

Pa
ck

ag
e

su
rfa

ce
 te

m
pe

ra
tu

re

Time (s)

Figure 5 Sample temperature profile for solder flow

3.5.4 Flux cleaning and ultrasonic cleaning
(1) When cleaning circuit boards to remove flux, make sure that no residual reactive ions such as

Na or Cl remain. Note that organic solvents react with water to generate hydrogen chloride
and other corrosive gases which can degrade device performance.

(2) Washing devices with water will not cause any problems. However, make sure that no
reactive ions such as sodium and chlorine are left as a residue. Also, be sure to dry devices
sufficiently after washing.

(3) Do not rub device markings with a brush or with your hand during cleaning or while the
devices are still wet from the cleaning agent. Doing so can rub off the markings.

(4) The dip cleaning, shower cleaning and steam cleaning processes all involve the chemical
action of a solvent. Use only recommended solvents for these cleaning methods. When
immersing devices in a solvent or steam bath, make sure that the temperature of the liquid is
50°C or below, and that the circuit board is removed from the bath within one minute.

(5) Ultrasonic cleaning should not be used with hermetically-sealed ceramic packages such as a
leadless chip carrier (LCC), pin grid array (PGA) or charge-coupled device (CCD), because the
bonding wires can become disconnected due to resonance during the cleaning process. Even if
a device package allows ultrasonic cleaning, limit the duration of ultrasonic cleaning to as
short a time as possible, since long hours of ultrasonic cleaning degrade the adhesion between
the mold resin and the frame material. The following ultrasonic cleaning conditions are
recommended:

Frequency: 27 kHz ∼ 29 kHz

Ultrasonic output power: 300 W or less (0.25 W/cm2 or less)

Cleaning time: 30 seconds or less

Suspend the circuit board in the solvent bath during ultrasonic cleaning in such a way that
the ultrasonic vibrator does not come into direct contact with the circuit board or the device.

3 General Safety Precautions and Usage Considerations

3-15

3.5.5 No cleaning
If analog devices or high-speed devices are used without being cleaned, flux residues may cause
minute amounts of leakage between pins. Similarly, dew condensation, which occurs in
environments containing residual chlorine when power to the device is on, may cause between-
lead leakage or migration. Therefore, Toshiba recommends that these devices be cleaned.
However, if the flux used contains only a small amount of halogen (0.05W% or less), the devices
may be used without cleaning without any problems.

3.5.6 Mounting tape carrier packages (TCPs)
(1) When tape carrier packages (TCPs) are mounted, measures must be taken to prevent

electrostatic breakdown of the devices.

(2) If devices are being picked up from tape, or outer lead bonding (OLB) mounting is being
carried out, consult the manufacturer of the insertion machine which is being used, in order
to establish the optimum mounting conditions in advance and to avoid any possible hazards.

(3) The base film, which is made of polyimide, is hard and thin. Be careful not to cut or scratch
your hands or any objects while handling the tape.

(4) When punching tape, try not to scatter broken pieces of tape too much.

(5) Treat the extra film, reels and spacers left after punching as industrial waste, taking care not
to destroy or pollute the environment.

(6) Chips housed in tape carrier packages (TCPs) are bare chips and therefore have their reverse
side exposed. To ensure that the chip will not be cracked during mounting, ensure that no
mechanical shock is applied to the reverse side of the chip. Electrical contact may also cause a
chip to fail. Therefore, when mounting devices, make sure that nothing comes into electrical
contact with the reverse side of the chip.
If your design requires connecting the reverse side of the chip to the circuit board, please
consult Toshiba or a Toshiba distributor beforehand.

3.5.7 Mounting chips
Devices delivered in chip form tend to degrade or break under external forces much more easily
than plastic-packaged devices. Therefore, caution is required when handling this type of device.

(1) Mount devices in a properly prepared environment so that chip surfaces will not be exposed to
polluted ambient air or other polluted substances.

(2) When handling chips, be careful not to expose them to static electricity.
In particular, measures must be taken to prevent static damage during the mounting of chips.
With this in mind, Toshiba recommend mounting all peripheral parts first and then mounting
chips last (after all other components have been mounted).

(3) Make sure that PCBs (or any other kind of circuit board) on which chips are being mounted do
not have any chemical residues on them (such as the chemicals which were used for etching
the PCBs).

(4) When mounting chips on a board, use the method of assembly that is most suitable for
maintaining the appropriate electrical, thermal and mechanical properties of the
semiconductor devices used.

* For details of devices in chip form, refer to the relevant device’s individual datasheets.

3 General Safety Precautions and Usage Considerations

3-16

3.5.8 Circuit board coating
When devices are to be used in equipment requiring a high degree of reliability or in extreme
environments (where moisture, corrosive gas or dust is present), circuit boards may be coated for
protection. However, before doing so, you must carefully consider the possible stress and
contamination effects that may result and then choose the coating resin which results in the
minimum level of stress to the device.

3.5.9 Heat sinks
(1) When attaching a heat sink to a device, be careful not to apply excessive force to the device in

the process.

(2) When attaching a device to a heat sink by fixing it at two or more locations, evenly tighten all
the screws in stages (i.e. do not fully tighten one screw while the rest are still only loosely
tightened). Finally, fully tighten all the screws up to the specified torque.

(3) Drill holes for screws in the heat sink exactly as specified. Smooth the
surface by removing burrs and protrusions or indentations which might
interfere with the installation of any part of the device.

(4) A coating of silicone compound can be applied between the heat sink and
the device to improve heat conductivity. Be sure to apply the coating
thinly and evenly; do not use too much. Also, be sure to use a non-volatile
compound, as volatile compounds can crack after a time, causing the heat
radiation properties of the heat sink to deteriorate.

(5) If the device is housed in a plastic package, use caution when selecting the type of silicone
compound to be applied between the heat sink and the device. With some types, the base oil
separates and penetrates the plastic package, significantly reducing the useful life of the
device.
Two recommended silicone compounds in which base oil separation is not a problem are
YG6260 from Toshiba Silicone.

(6) Heat-sink-equipped devices can become very hot during operation. Do not touch them, or you
may sustain a burn.

3.5.10 Tightening torque
(1) Make sure the screws are tightened with fastening torques not exceeding the torque values

stipulated in individual datasheets and databooks for the devices used.

(2) Do not allow a power screwdriver (electrical or air-driven) to touch devices.

3.5.11 Repeated device mounting and usage
Do not remount or re-use devices which fall into the categories listed below; these devices may
cause significant problems relating to performance and reliability.

(1) Devices which have been removed from the board after soldering

(2) Devices which have been inserted in the wrong orientation or which have had reverse current
applied

(3) Devices which have undergone lead forming more than once

3 General Safety Precautions and Usage Considerations

3-17

3.6 Protecting Devices in the Field

3.6.1 Temperature
Semiconductor devices are generally more sensitive to temperature than are other electronic
components. The various electrical characteristics of a semiconductor device are dependent on the
ambient temperature at which the device is used. It is therefore necessary to understand the
temperature characteristics of a device and to incorporate device derating into circuit design. Note
also that if a device is used above its maximum temperature rating, device deterioration is more
rapid and it will reach the end of its usable life sooner than expected.

3.6.2 Humidity
Resin-molded devices are sometimes improperly sealed. When these devices are used for an
extended period of time in a high-humidity environment, moisture can penetrate into the device
and cause chip degradation or malfunction. Furthermore, when devices are mounted on a regular
printed circuit board, the impedance between wiring components can decrease under high-
humidity conditions. In systems which require a high signal-source impedance, circuit board
leakage or leakage between device lead pins can cause malfunctions. The application of a
moisture-proof treatment to the device surface should be considered in this case. On the other
hand, operation under low-humidity conditions can damage a device due to the occurrence of
electrostatic discharge. Unless damp-proofing measures have been specifically taken, use devices
only in environments with appropriate ambient moisture levels (i.e. within a relative humidity
range of 40% to 60%).

3.6.3 Corrosive gases
Corrosive gases can cause chemical reactions in devices, degrading device characteristics.
For example, sulphur-bearing corrosive gases emanating from rubber placed near a device
(accompanied by condensation under high-humidity conditions) can corrode a device’s leads. The
resulting chemical reaction between leads forms foreign particles which can cause electrical
leakage.

3.6.4 Radioactive and cosmic rays
Most industrial and consumer semiconductor devices are not designed with protection against
radioactive and cosmic rays. Devices used in aerospace equipment or in radioactive environments
must therefore be shielded.

3.6.5 Strong electrical and magnetic fields
Devices exposed to strong magnetic fields can undergo a polarization phenomenon in their plastic
material, or within the chip, which gives rise to abnormal symptoms such as impedance changes
or increased leakage current. Failures have been reported in LSIs mounted near malfunctioning
deflection yokes in TV sets. In such cases the device’s installation location must be changed or the
device must be shielded against the electrical or magnetic field. Shielding against magnetism is
especially necessary for devices used in an alternating magnetic field because of the electromotive
forces generated in this type of environment.

3 General Safety Precautions and Usage Considerations

3-18

3.6.6 Interference from light (ultraviolet rays, sunlight, fluorescent lamps and
incandescent lamps)

Light striking a semiconductor device generates electromotive force due to photoelectric effects. In
some cases the device can malfunction. This is especially true for devices in which the internal
chip is exposed. When designing circuits, make sure that devices are protected against incident
light from external sources. This problem is not limited to optical semiconductors and EPROMs.
All types of device can be affected by light.

3.6.7 Dust and oil
Just like corrosive gases, dust and oil can cause chemical reactions in devices, which will
adversely affect a device’s electrical characteristics. To avoid this problem, do not use devices in
dusty or oily environments. This is especially important for optical devices because dust and oil
can affect a device’s optical characteristics as well as its physical integrity and the electrical
performance factors mentioned above.

3.6.8 Fire
Semiconductor devices are combustible; they can emit smoke and catch fire if heated sufficiently.
When this happens, some devices may generate poisonous gases. Devices should therefore never
be used in close proximity to an open flame or a heat-generating body, or near flammable or
combustible materials.

3.7 Disposal of Devices and Packing Materials
When discarding unused devices and packing materials, follow all procedures specified by local
regulations in order to protect the environment against contamination.

4 Precautions and Usage Considerations

4-1

4. Precautions and Usage Considerations
This section describes matters specific to each product group which need to be taken into
consideration when using devices. If the same item is described in Sections 3 and 4, the
description in Section 4 takes precedence.

4.1 Microcontrollers

4.1.1 Design
(1) Using resonators which are not specifically recommended for use

Resonators recommended for use with Toshiba products in microcontroller oscillator applications
are listed in Toshiba databooks along with information about oscillation conditions. If you use a
resonator not included in this list, please consult Toshiba or the resonator manufacturer
concerning the suitability of the device for your application.

(2) Undefined functions

In some microcontrollers certain instruction code values do not constitute valid processor
instructions. Also, it is possible that the values of bits in registers will become undefined. Take
care in your applications not to use invalid instructions or to let register bit values become
undefined.

4 Precautions and Usage Considerations

4-2

64-Bit TX System RISC
TX49/H2 Core Architecture

 TX49/H2 Architecture

1-1

I TX49/H2 Processor Core Specification

1. Introduction
The TX49/H2 Processor Core is a high performance and low-power 64-bit RISC microprocessor

core developed by Toshiba which is well-suited to embedded applications such as networking,
laser printer, STB (Set Top Box) and 3-D graphic.

In this manual, TX49/H2 is called “TX49” hereinafter.

TX49/H2 Architecture

1-2

TX49/H2 Architecture

2-1

2. Feature
• 64 bit operation

• 32 of 64 bit integer general purpose registers

• 32 of 64 bit floating point general purpose registers

• 64 GB physical address space

• Instruction Set

• Upward compatible with MIPS I, MIPS II, and MIPS III ISA

• MAC (Multiply and Accumulate) instructions

• PREF (Prefetch) instruction

• Optimized 5 stage pipeline

• Instruction Cache

• 8 KB/ 16 KB/ 32KB : Fixed in each products

• Four-way set associative

• Lock function support (Way1-Way3)

• Data cache

• 8 KB/ 16 KB/ 32 KB: Fixed in each products

• Four-way set associative

• Lock function support (Way1-Way3)

• Write policies

Write-back

Write-through-No-Write-Allocate-Snoop

Write-through-Write-Allocate-Snoop

• MMU

• 48-double-entry (even/odd) Joint TLB

• 2-entry Instruction TLB

• 4-entry Data TLB

• IEEE754 compatible single and double precision FPU

• Single and double precision FPU in hardware

• Debug support (EJTAG)

• Debug instructions

• Real time debugging is supported by debug module logic

• Power management modes (Halt, Doze)

• WAIT instruction

TX49/H2 Architecture

2-2

TX49/H2 Architecture

3-1

3. TX49 Block Diagram
Figure 3-1 shows the block diagram of TX49 Pure Core, MPU Core and MCU. TX49 Pure Core

includes an instruction cache and a data cache. These cache are selectable by user system from
among a variety of possible configurations. Cache size is predetermined for each ASSP product,
however.

TX49 Pure Core

TX49 MCU

TX49 MPU Core

Instruction Cache

8 KB/ 16 KB/ 32 KB

4-way set associative

Lockable

Data Cache

8 KB/ 16 KB/ 32 KB

4-way set associative

Lockable

WB/WT

Integer Unit

GPR

DataPath

MAC

Pipeline

Control

CP0

CP0 Register

MMU/TLB

Exception Unit

FPU(CP1)

FP Register

Data Path

Debug

Support

Unit

Write Buffer GBUS I/F

Peripheral

Figure 3-1 Block Diagram of the TX49

TX49/H2 Architecture

3-2

TX49/H2 Architecture

4-1

4. CPU Registers Overview

4.1 Introduction

The TX49 has the CPU registers for integer operation or address calculation and the CP0
registers for memory system or exception handling.

4.2 CPU Registers

The TX49 has the 64-bit CPU registers.

• 32 general-purpose registers

• 64-bit program counters

• HI/LO register for storing the result of multiply and divide operations

Figure 4-1 shows the configuration of these registers.

General Purpose Registers (GPR) Multiply/Divide Registers
63 0 63 0

r0 = 0 HI
r1 63 0
r2 LO
.
.

Program counter
r29 63 0
r30 PC

r31 = Link Address

Figure 4-1 TX49 CPU registers

The r0 and r31 registers of GPR have special functions as follows.

• Register r0 always contains the value 0. It can be a target register of an instruction
whose operation result is not needed. Or, it can be a source register of an instruction
that requires a value of 0.

• Register r31 is the link register for the Jump and Link instruction. The address of
the instruction after the delay slot is placed in r31.

The TX49 has the following some special registers that are used or modified implicitly by
certain instructions.

• HI - Holds the high-order bits of the result of integer multiply operation or the
remainder of integer divide operation.

• LO - Holds the low-order bits of the result of integer multiply operation or the
quotient of integer divide operation.

These two registers are used to store that result of an integer multiplication or division. In
multiplication, the 64 high-order bits of a 128-bit result are stored in the HI, and the 64 low-
order bits are stored in the LO. In division, the resulting quotient is stored in the LO, and the
remainder is stored in the HI.

• PC - Program Counter

The register contains the address of the currently executed instruction.

TX49/H2 Architecture

4-2

4.3 CP0 Registers

The TX49 has the 32-bit or 64-bit System control coprocessor(CP0) registers. These
registers are used for memory system or exception handling. Table 4-1 lists the CP0 registers
built into the TX49. The more detail information are described in Chapter 7.

Table 4-1 CP0 Registers

Register Name Reg. No. Register Name Reg. No.
Index Reg#0 Config Reg#16
Random Reg#1 LLAddr Reg#17
EntryLo0 Reg#2 (Reserved) (Note 1) Reg#18
EntryLo1 Reg#3 (Reserved) (Note 1) Reg#19
Context Reg#4 XContext Reg#20
PageMask Reg#5 (Reserved) (Note 1) Reg#21
Wired Reg#6 (Reserved) (Note 1) Reg#22
(Reserved) (Note 1) Reg#7 Debug (Note 2) Reg#23
BadVAddr Reg#8 DEPC (Note 2) Reg#24
Count Reg#9 (Reserved) (Note 1) Reg#25
EntryHi Reg#10 (Reserved) (Note 1) Reg#26
Compare Reg#11 (Reserved) (Note 1) Reg#27
Status Reg#12 TagLo Reg#28
Cause Reg#13 TagHi Reg#29
EPC Reg#14 ErrorEPC Reg#30
PRId Reg#15 DESAVE (Note 2) Reg#31

Note 1: These registers are used to test the System Control Coprocessor (CP0) and should not be
accessed by the user.

Note 2: These registers are exclusively used by external in-circuit emulators (ICE).

TX49/H2 Architecture

5-1

5. CPU Instruction Set Summary

5.1 Introduction

Each instruction is 32 bits long. These instructions are upward compatible with the MIPS I,
II and III instruction set architecture and the TX39’s instructions.

5.2 Instruction Format

There are three instruction formats: Immediate (I-type), Jump (J-type) and Register (R-
type), as shown in Figure 5-1. Having just three instruction formats simplifies instruction
decoding. If more complex functions or addressing modes are required, they can be produced
with the compiler using combinations of the instructions.

Immediate (I-type)
31 26 25 21 20 16 15 0

op rs rt immediate

Jump (J-type)
31 26 25 0

op target

Register (R-type)
31 26 25 21 20 16 15 11 10 6 5 0

op rs rt rd sa funct

op Operation code (6 bits)
rs Source register (5 bits)
rt Target (source or destination) register, or branch condition (5 bits)
rd Destination register (5 bits)
immediate Immediate, branch displacement, address displacement (16 bits)
target Branch target address (26 bits)
sa Shift amount (5 bits)
funct Function (6 bits)

Figure 5-1 Instruction formats and subfield mnemonics

TX49/H2 Architecture

5-2

5.3 Instruction Set Overview

5.3.1 Load and Store Instructions (Table 5-1)

Load and Store instructions move data between memory and general purpose registers,
and are all I-type instructions. The only directly supported addressing mode is “base
register plus 16-bit signed immediate offset”.

Table 5-1 CPU Instruction Set: Load and Store Instructions

Instruction Description Note
LB Load Byte MIPS I
LBU Load Byte Unsigned MIPS I
LH Load Halfword MIPS I
LHU Load Halfword Unsigned MIPS I
LW Load Word MIPS I
LWL Load Word Left MIPS I
LWR Load Word Right MIPS I
SB Store Byte MIPS I
SH Store Halfword MIPS I
SW Store Word MIPS I
SWL Store Word Left MIPS I
SWR Store Word Right MIPS I
LD Load Doubleword MIPS III
LDL Load Doubleword Left MIPS III
LDR Load Doubleword Right MIPS III
LL Load Linked MIPS II
LLD Load Linked Doubleword MIPS III
LWU Load Word Unsigned MIPS III
SC Store Conditional MIPS II
SCD Store Conditional Doubleword MIPS III
SD Store Doubleword MIPS III
SDL Store Doubleword Left MIPS III
SDR Store Doubleword Right MIPS III
SYNC Sync MIPS II

TX49/H2 Architecture

5-3

5.3.2 Computational Instructions (Table 5-2)

Computational instructions perform arithmetic, logical or shift operations on values in
registers. This instruction format can be R-type or I-type. With R-type instructions, the
one/two operands and the result are register values. With I-type instructions, one of the
operands is 16-bit immediate data. Computational instructions can be classified as
follows.

• ALU immediate

• Three-operand register-type

• Shift

• Multiply/Divide

Table 5-2 CPU Instruction Set: Computational Instructions

Instruction Description Note
(ALU Immediate)

ADDI Add Immediate MIPS I
ADDIU Add Immediate Unsigned MIPS I
SLTI Set on Less Than Immediate MIPS I
SLTIU Set on Less Than Immediate Unsigned MIPS I
ANDI AND Immediate MIPS I
ORI OR Immediate MIPS I
XORI Exclusive OR Immediate MIPS I
LUI Load Upper Immediate MIPS I
DADDI Doubleword Add Immediate MIPS III
DADDIU Doubleword Add Immediate Unsigned MIPS III

(ALU 3-Operand, register type)
ADD Add MIPS I
ADDU Add Unsigned MIPS I
SUB Subtract MIPS I
SUBU Subtract Unsigned MIPS I
SLT Set on Less Than MIPS I
SLTU Set on Less Than Unsigned MIPS I
AND AND MIPS I
OR OR MIPS I
XOR Exclusive OR MIPS I
NOR NOR MIPS I
DADD Doubleword Add MIPS III
DADDU Doubleword Add Unsigned MIPS III
DSUB Doubleword Subtract MIPS III
DSUBU Doubleword Subtract Unsigned MIPS III

(Shift)
SLL Shift Left Logical MIPS I
SRL Shift Right Logical MIPS I
SRA Shift Right Arithmetic MIPS I
SLLV Shift Left Logical Variable MIPS I
SRLV Shift Right Logical Variable MIPS I
SRAV Shift Right Arithmetic Variable MIPS I
DSLL Doubleword Shift Left Logical MIPS III
DSRL Doubleword Shift Right Logical MIPS III
DSRA Doubleword Shift Right Arithmetic MIPS III
DSLLV Doubleword Shift Left Logical Variable MIPS III
DSRLV Doubleword Shift Right Logical Variable MIPS III

TX49/H2 Architecture

5-4

Instruction Description Note
DSRAV Doubleword Shift Right Arithmetic Variable MIPS III
DSLL32 Doubleword Shift Left Logical +32 MIPS III
DSRL32 Doubleword Shift Right Logical +32 MIPS III
DSRA32 Doubleword Shift Right Arithmetic +32 MIPS III

(Multiply and Divide)
MULT Multiply MIPS I
MULTU Multiply Unsigned MIPS I
DIV Divide MIPS I
DIVU Divide Unsigned MIPS I
MFHI Move From HI MIPS I
MTHI Move To HI MIPS I
MFLO Move From LO MIPS I
MTLO Move To LO MIPS I
DMULT Doubleword Multiply MIPS III
DMULTU Doubleword Multiply Unsigned MIPS III
DDIV Doubleword Divide MIPS III
DDIVU Doubleword Divide Unsigned MIPS III

5.3.3 Jump and Branch Instructions (Table 5-3)

Jump and branch instructions change the control flow of a program. All jump and
branch instructions occur with a delay of one instruction: that is, the instruction
immediately following the jump or branch (this is known as the instruction in the delay
slot) always executes while the target instruction is being fetched from storage. Branch-
likely instructions are used for static branch prediction. The instruction in the delay slot
is executed only when the branch is taken; the instruction in the delay slot is nullified if
the branch is not taken.

Table 5-3 CPU Instruction Set: Jump and Branch Instructions

Instruction Description Note
J Jump MIPS I
JAL Jump And Link MIPS I
JR Jump Register MIPS I
JALR Jump And Link Register MIPS I
BEQ Branch on Equal MIPS I
BNE Branch on Not Equal MIPS I
BLEZ Branch on Less Than or Equal to Zero MIPS I
BGTZ Branch on Greater Than Zero MIPS I
BLTZ Branch on Less Than Zero MIPS I
BGEZ Branch on Greater than or Equal to Zero MIPS I
BLTZAL Branch on Less Than Zero And Link MIPS I
BGEZAL Branch on Greater than or Equal to Zero And Link MIPS I
BEQL Branch on Equal Likely MIPS II
BNEL Branch on Not Equal Likely MIPS II
BLEZL Branch on Less Than or Equal to Zero Likely MIPS II
BGTZL Branch on Greater Than Zero Likely MIPS II
BLTZL Branch on Less Than Zero Likely MIPS II
BGEZL Branch on Greater Than or Equal to Zero Likely MIPS II
BLTZALL Branch on Less Than Zero And Link Likely MIPS II
BGEZALL Branch on Greater Than or Equal to Zero And Link Likely MIPS II

TX49/H2 Architecture

5-5

5.3.4 Special Instructions (Table 5-4)

There are special instructions used for software trap. The instruction format is R-type
for all two.

Table 5-4 CPU Instruction Set: Special Instructions

Instruction Description Note
SYSCALL System Call MIPS I
BREAK Break MIPS I

5.3.5 Exception Instructions (Table 5-5)

These instructions (R-type or I-type) cause a branch to the general exception handling
vector based upon the result of a comparison.

Table 5-5 CPU Instruction Set: Exception Instructions

Instruction Description Note
TGE Trap if Greater Than or Equal MIPS II
TGEU Trap if Greater Than or Equal Unsigned MIPS II
TLT Trap if Less Than MIPS II
TLTU Trap if Less Than Unsigned MIPS II
TEQ Trap if Equal MIPS II
TNE Trap if Not Equal MIPS II
TGEI Trap if Greater Than or Equal Immediate MIPS II
TGEIU Trap if Greater Than or Equal Immediate Unsigned MIPS II
TLTI Trap if Less Than Immediate MIPS II
TLTIU Trap if Less Than Immediate Unsigned MIPS II
TEQI Trap if Equal Immediate MIPS II
TNEI Trap if Not Equal Immediate MIPS II

TX49/H2 Architecture

5-6

5.3.6 Coprocessor Instructions (Table 5-6)

Coprocessor instructions invoke coprocessor operations. The format of these
instructions depends on which coprocessor is used.

Table 5-6 CPU Instruction Set: Coprocessor Instructions

Instruction Description Note
LWCz Load Word to Coprocessor z (z = 1,2) MIPS I
SWCz Store Word from Coprocessor z (z = 1,2) MIPS I
MTCz Move To Coprocessor z (z = 1,2) MIPS I
MFCz Move From Coprocessor z (z = 1,2) MIPS I
CTCz Move Control To Coprocessor z (z = 1,2) MIPS I
CFCz Move Control From Coprocessor z (z = 1,2) MIPS I
COPz Coprocessor Operation z (z = 1,2) MIPS I
BCzT Branch on Coprocessor z True (z = 0,1,2) MIPS I
BCzF Branch on Coprocessor z False (z = 0,1,2) MIPS I
BCzTL Branch on Coprocessor z True Likely (z = 0,1,2) MIPS II
BCzFL Branch on Coprocessor z False Likely (z = 0,1,2) MIPS II
LDCz Load Double Coprocessor z (z = 1,2) MIPS III
SDCz Store Double Coprocessor z (z = 1,2) MIPS III
DMTCz Doubleword Move To Coprocessor z (z = 1,2) MIPS III
DMFCz Doubleword Move From Coprocessor z (z = 1,2) MIPS III

5.3.7 CP0 Instructions (Table 5-7)

Coprocessor 0 instructions are used for operations involving the system control
coprocessor (CP0) registers, processor memory management and exception handling.

Table 5-7 Instruction Set: CP0 Instructions

Instruction Description Note
MTC0 Move To CP0 MIPS I
MFC0 Move From CP0 MIPS I
DMTC0 Doubleword Move To CP0 MIPS III
DMFC0 Doubleword Move From CP0 MIPS III
TLBR Read Indexed TLB Entry
TLBWI Write Indexed TLB Entry
TLBWR Write Random TLB Entry
TLBP Probe TLB for Matching Entry
CACHE Cache MIPS III
ERET Exception Return MIPS III
WAIT Enter power management mode

TX49/H2 Architecture

5-7

5.3.8 Multiply and Divide Instructions (Table 5-8)

Table 5-8 Extensions to the ISA: Multiply and Divide Instructions

Instruction Description Note
MULT Multiply (3-operand)
MULTU Multiply Unsigned (3-operand)
DMULT Doubleword Multiply (3-operand)
DMULTU Doubleword Multiply Unsigned (3-operand)
MADD Multiply and ADD (3-operand)
MADDU Multiply and ADD Unsigned (3-operand)

5.3.9 Debug Instructions (Table 5-9)

Table 5-9 Extensions to the ISA: Debug Instructions

Instruction Description Note
CTC0 Move Control To Coprocessor 0
CFC0 Move Control From Coprocessor 0
SDBBP Software Debug Breakpoint
DERET Debug Exception Return

5.3.10 Other Instructions (Table 5-10)

Table 5-10 Other Instructions

Instruction Description Note
PREF Prefetch

5.4 Instruction Execution Cycles

Because the TX49 employs the high-speed Multiply and Add Calculator (MAC), multiply
instructions, such as MULT, MULTU, DMULT and DMULTU are executed faster. And, TX49
is improved the execution of divide instructions, too.

Instruction Latency (2op/3op) Repeat (2op/3op)
MULT 2/3 operand 4/4 1/3
MADD 2/3 operand 4/4 1/3
DMULT 2/3 operand 7/7 6/6
DIV 37 36
DDIV 69 68

TX49/H2 Architecture

5-8

5.5 Defining Access Types

Access type indicates the size of a TX49 processor data item to be loaded or stored, set by
the load or store instruction opcode. Access types are defined in Table A-3.

Regardless of access type or byte ordering (endianness), the address given specifies the low-
order byte in the addressed field. For a big-endian configuration, the low-order byte is the
most-significant byte; for a little-endian configuration, the low-order byte is the least-
significant byte.

The access type, together with the three low-order bits of the address, define the bytes
accessed within the addressed doubleword (shown in Figure 5-2). Only the combinations
shown in Figure 5-2 are permissible; other combinations cause address error exceptions. See
Appendix A for individual descriptions of CPU load and store instructions.

Bytes AccessedLow-Order
Address

Bits

Access Type
Mnemonic

(Value)
2 1 0

Big Endian
(63-----------------31-----------------0)

Byte

Little Endian
(63-----------------31-----------------0)

Byte

Doubleword (7) 0 0 0 0 1 2 3 4 5 6 7 7 6 5 4 3 2 1 0
0 0 0 0 1 2 3 4 5 6 6 5 4 3 2 1 0

Septibyte (6)
0 0 1 1 2 3 4 5 6 7 7 6 5 4 3 2 1
0 0 0 0 1 2 3 4 5 5 4 3 2 1 0

Sextibyte (5)
0 1 0 2 3 4 5 6 7 7 6 5 4 3 2
0 0 0 0 1 2 3 4 4 3 2 1 0

Quintibyte (4)
0 1 1 3 4 5 6 7 7 6 5 4 3
0 0 0 0 1 2 3 3 2 1 0

Word (3)
1 0 0 4 5 6 7 7 6 5 4
0 0 0 0 1 2 2 1 0
0 0 1 1 2 3 3 2 1
1 0 0 4 5 6 6 5 4

Triplebyte (2)

1 0 1 5 6 7 7 6 5
0 0 0 0 1 1 0
0 1 0 2 3 3 2
1 0 0 4 5 5 4

Halfword (1)

1 1 0 6 7 7 6
0 0 0 0 0
0 0 1 1 1
0 1 0 2 2
0 1 1 3 3
1 0 0 4 4
1 0 1 5 5
1 1 0 6 6

Byte (0)

1 1 1 7 7

Figure 5-2 Byte Access within a Doubleword

TX49/H2 Architecture

6-1

6. CPU Pipeline

6.1 Introduction

This chapter describes the operation of the TX49 pipeline. It explains the basic operation of
the pipeline. And, it explains how the TX49 handled delay instructions; these are instructions
that follow a branch or load instruction in the pipeline. A later section explains interruptions
to the pipeline flow caused by interlocks and exceptions.

6.2 Basic Pipeline Operation

The TX49 executes instructions in an optimized 5 stage pipeline. Each pipeline stage is
executed in one clock cycle. When the pipeline is fully utilized, five instructions are executed
at the same time, resulting in an average instruction execution rate of one instruction par
cycle as illustrated in Figure 6-1.

One cycle

F1 F2 D1 D2 E1 E2 M1 M2 W1 W2
F1 F2 D1 D2 E1 E2 M1 M2 W1 W2

F1 F2 D1 D2 E1 E2 M1 M2 W1 W2
F1 F2 D1 D2 E1 E2 M1 M2 W1 W2

F1 F2 D1 D2 E1 E2 M1 M2 W1 W2

F1 - Instruction Fetch, Phase one
F2 - Instruction Fetch, Phase two
D1 - Instruction Decode, Phase one
D2 - Instruction Decode, Phase two
E1 - Execution, Phase one
E2 - Execution, Phase two
M1 - Memory Access, Phase one
M2 - Memory Access, Phase two
W1 - Write Back, Phase one
W2 - Write Back, Phase two

Figure 6-1 Pipeline stages for executing TX49 instructions

F1, F2 : Instruction Fetch

During the F1 phase the ITLB begins the virtual to physical address
translation. And, during the F2 phase the instruction cache fetch and the virtual
to physical address translation are completed.

D1, D2 : Instruction Decode

The instruction is decoded. Contents of the general-purpose registers are read.
If the instruction involves a branch or jump, the target address is generated.
The coprocessor condition signal is latched.

E1, E2 : Execution

Arithmetic, logical and shift operations are performed. The execution of
multiple/divide instructions is begun.

For load and store instructions, the data virtual address is calculated, and
virtual-to-physical address translation is begun.

TX49/H2 Architecture

6-2

M1, M2 : Memory Access

The data cache is accessed in the case of load and store instructions.

W1, W2 : Write Back

The result is written to a general register.

6.3 TX49 Pipeline Activities

Stage F1 F2 D1 D2 E1 E2 M1 M2 W1 W2

Fetch ICD ICA RF
& Decode ITLBM ITLBR ITC IDEC
ALU ALU WB
Load/Store DVA DCAD DCAA DCLA

JTLB1 JTLB2
SA DTC WB

DCW
Jump/Branch BCMP

BAC IVA

ICD: Instruction cache address decode
ICA: Instruction cache array access
RF: Register fetch
ITLBM: Instruction address translation match
ITLBR: Instruction address translation read
ITC: Instruction tag match
IDEC: Instruction decode
ALU: ALU operation
WB: Write back to register file
DVA: Data virtual address calculation
DCAD: Data cache address decode
DCAA: Data cache array access
DCLA: Data cache load align
JTLB1: Address translation in JTLB stage1
JTLB2: Address translation in JTLB stage2
SA: Store align
DTC: Data cache tag check
DCW: Data cache write
BCMP: Branch compare
BAC: Branch address calculation
IVA: Generate instruction virtual address

TX49/H2 Architecture

6-3

6.4 Branch and Load Delay

Some TX49 instructions are executed with a delay of one instruction cycle. The cycle in
which an instruction is delayed is called a delay slot. A delay occurs with load instruction and
branch/jump instructions.

6.4.1 Delayed load

With load instructions, a one-cycle delay occurs while waiting for the data being loaded
to become available for use by another instruction. The TX49 checks the instruction in
the delay slot (the instruction immediately following the load instruction) to see if that
instruction needs to use the load result; if so, it stalls the pipeline (see Figure 6-2).

LW r5, 0 (r26) F D E M W
ADDU r8, r7, r5 F D ES E M W

↑ Pipeline stall

Figure 6-2 CPU Pipeline Load Delay

6.4.2 Delayed branching

Figure 6-3 shows the pipeline flow for jump/branch instructions. The branch target
address that must be generated for these type of instructions does not become available
unit the E stage - too late to be used by the instruction in the branch delay slot. The
branch target instruction is fetched immediately after the branch delay slot cycle.

It is, however, possible to fetch a different instruction that would normally be executed
prior to the branch instruction.

BEQ r1, r4, L1 F D E M W
Target addr

subu r3, r5,r6 (delay slot) F D E M W

L1:addiu r7, r7, 1 (target) F D E M W

Figure 6-3 CPU Pipeline Branch Delay

You can make effective use of the branch delay slot as follows.

• Since the instruction immediately following a branch instruction will be executed
just prior to the branch, you can therefore place an instruction (that logically
should be executed just before the branch) into delay slot following the branch
instruction.

• The TX49 provides Branch Likely instructions in addition to the normal Branch
instructions. If the branch condition of the Branch Likely instruction is met, the
instruction in the delay slot is executed and the branch is taken. If the branch is
not taken, the instruction in the delay is treated as a NOP.
Therefore, Branch-Likely instructions allow the processor to execute the
instruction immediately following the branch while the target instruction is being
fetched.

• If no instruction is placed in the delay slot, a NOP is placed just after the branch
instruction.

TX49/H2 Architecture

6-4

6.5 Non-blocking Load Function

The non-blocking load function prevents the pipeline from stalling when a cache miss occurs
and a refill cycle is required to refill the data cache. Instructions after the load instruction
that do not use registers affected by the load will continue to be executed. An example is
shown in Figure 6-4. Here a cache miss occurs with the first load instruction. The two
instructions following are executed prior to the load. The fourth instruction (ADD) must use a
register that will be loaded by the load instruction, therefore the pipeline is stalled until the
cache data becomes valid.

LW r3, 0(r0) F D E M R R R R W
ADD r6, r4, r2 F D E M W r3

ADD r7, r5, r2 F D E M W
ADD r8,r9,r3 F D ES ES ES E M W

R: Refill cycle, ES: Stall in E stage

Figure 6-4 Non-blocking load function

6.6 Interlock and Exception Handling

6.6.1 Overview of Interlock and Exception Handling

Smooth pipeline flow is interrupted when cache misses or exceptions occur, or when
data dependencies are detected. Interruptions handled using hardware, such as cache
misses, are referred to as interlocks, while those that are handled using software are
called exceptions.

As shown in Figure 6-5, all interlock and exception conditions are collectively referred
to as faults.

Figure 6-5 Interlocks, Exceptions, and Faults

These are two types of interlocks:

• stalls, which are resolved by halting the pipeline

• slips, which require one part of the pipeline to advance while another part of the
pipeline is held static

At each cycle, exception and interlock condition corresponds to a particular pipeline
stage, a condition can be traced to the particular instruction in the exception/interlock
stage, as shown in Figure 6-6. For instance, an Illegal Instruction (II) exception is raised
in the exception (EX) stage.

Table 6-1 and Table 6-2 describe the pipeline interlocks and exceptions listed in Figure
6-6.

Exceptions Interlocks

Stalls Slips

Software Hardware

Faults

TX49/H2 Architecture

6-5

Pipeline Stage
State

F D E M W
ITM ICM DCMStall

CPE
LDI
MDStSlip
FCBsy

ITLB IBE RI DBE
Cun NMI
BP Reset
SC OVF
DTLB Trap
DTMod

Exception

Intr

Figure 6-6 Correspondence of pipeline stage to interlock condition

Table 6-1 Pipeline Interlocks

Interlock Description
ITM Instruction TLB Miss
ICM Instruction Cache Miss
CPE Coprocessor Possible Exception
DCM Data Cache Miss
LDI Load Interlock
MDSt Multiply / Divide Start
FCBsy FP Coprocessor Busy

Table 6-2 Pipeline Exceptions

Exception Description
ITLB Instruction Translation or Address Exception
Intr External Interrupt
IBE Instruction Bus Error
RI Reserved Instruction
BP Breakpoint
SC System Call
Cun Coprocessor Unusable
OVF Integer Overflow
FPE FP Interrupt
ExTrap EX Stage Traps
DTLB Data Translation or Address Exception
TLBMod TLB Modified
DBE Data Bus Error
NMI Nom-maskable Interrupt (or Soft Reset)
Reset Reset

TX49/H2 Architecture

6-6

6.6.2 Exception Conditions

When an exception condition occurs, the relevant instruction and all those that follow it
in the pipeline are cancelled. Accordingly, any stall conditions and any later exception
conditions that may have referenced this instruction are inhibited; there is no benefit in
servicing stalls for a cancelled instruction.

After instruction cancellation, a new instruction stream begins, starting execution at a
predefined exception vector. System Control Coprocessor registers are loaded with
information that identifies the type of exception and auxiliary information such as the
virtual address at which translation exceptions occur.

6.6.3 Stall Conditions

Often, a stall condition is only detected after parts of the pipeline have advanced using
incorrect data; this is called a pipeline overrun. When a stall condition is detected, all five
instructions − each different stage of the pipeline − are frozen at once. In this stalled
state, no pipeline stages can advance until the interlock condition is resolved. For
example, when a cache miss occurs, the processor must refill the cache before it restarts
the pipeline.

Once the interlock is removed, the restart sequence begins two cycles before the
pipeline resumes execution. The restart sequence reverses the pipeline overrun by
inserting the correct information into the pipeline.

6.6.4 External Stalls

External stall is another class of interlocks. An external stall originates outside the
processor and is not referenced to a particular pipeline stage. This interlock is not
affected by exceptions.

6.6.5 Interlock and Exception Timing

To prevent interlock and exception handling from adversely affecting the processor
cycle time, the TX49 processor uses both logic and circuit pipeline techniques to reduce
critical timing paths. Interlock and exception handling have the following effects on the
pipeline:

• In some cases, the processor pipeline must be backed up (reversed and started
over again from a prior stage) to recover from interlocks.

• In some cases, interlocks are serviced for instructions that will be aborted, due to
an exception.

TX49/H2 Architecture

6-7

6.7 Multiply and Multiply/Add Instructions (MULT, MULTU, MADD, MADDU)

The TX49 can execute 32-bit multiply and multiply/add instructions of 2-operand
continuously, and can use the results in the HI/LO registers in immediately following
instructions, without pipeline stall as shown Figure 6-7. The TX49 requires three cycles to
use the results of a general-purpose register as shown Figure 6-8.

MULT/MADD r3, r4 F D E1 E2 E3 M W
MULT/MADD r6, r7, r8 F D E1 E2 E3 M W

Figure 6-7 MULT and MADD Instructions without data dependency
(32-bit and 2-operand)

MULT/MADD r3, r4, r5 F D E1 E2 E3 M W
MULT/MADD r6, r3, r8 F D ES ES ES E1 E2 E3 M W

Figure 6-8 MULT and MADD Instructions with data dependency
(32-bit and 3-operand)

6.8 Divide Instructions (DIV, DIVU)

Division starts from the pipeline E stage and takes 36 cycles.

Figure 6-9 shows an example of a divide instruction.

DIV/DIVU F D E M W
V1 V2 V3 V4 … V35 V36

Division stage1

Figure 6-9 DIV and DIVU Instructions

6.9 Streaming

During a cache refill operation, the TX49 can resume execution immediately after arrival of
necessary data or instruction in cache even though cache refill is not completed. This is
referred to as “streaming”.

TX49/H2 Architecture

6-8

TX49/H2 Architecture

7-1

7. System Control Coprocessor, CP0

7.1 Introduction

The TX49 has a System Control Co-Processor (CP0). CP0 translates virtual addresses to
physical addresses. CP0 manages exceptions and transitions between kernel, supervisor, and
user states. CP0 also controls the cache sub-system, as well as providing diagnostic control
and error recovery facilities.

TX49/H2 Architecture

7-2

7.2 CP0 Registers

This section is described about the bit field of each register. The term “coldreset” of tables
shows the value of each bit when GCOLDRESET* signal is asserted. The reserved bits in
description must be written the same value in reset, and return the same value when read.

7.2.1 Index register (Reg#0)

The Index register is a 32-bit read/write register containing six bits to index an entry in
the TLB. The P bit of the register shows the success/failure of a TLB Probe (TLBP)
instruction.

The Index register also specifies the TLB entry affected by TLB Read (TLBR) or TLB
Write Index (TLBWI) instructions. Figure 7-1 shows the format of the Index register and
Table 7-1 describes the Index register fields.

31 30 6 5 0
P 0 Index

Figure 7-1 Index Register Format

Table 7-1 Index Register Field Descriptions

Bit Field Description Cold Reset Read/Write
31 P Probe failure. Set to 1 when the previous

TLB Probe (TLBP) instruction was unsuccessful.
Undefined Read/Write

30~6 0 Reserved 0x0 Read
5~0 Index Index to the TLB entry affected by the TLB Read and TLB

Write Index instructions.
Undefined Read/Write

TX49/H2 Architecture

7-3

7.2.2 Random register (Reg#1)

The Random register is a read only register containing six bits to index an entry in the
TLB. This register decrements as each instruction executes. The values are as follows.

• A lower bound is set by the number of TLB entries reserved for exclusive use by
the operating system (the contents of the Wired register).

• An upper bound is set by the total number of TLB entries (47 maximum).

The Random register specifies the TLB entry affected by TLB Write Random (TLBWR)
instruction. However the register doesn’t need to be read for this purpose, it is readable
to verify proper operation of the processor.

To simplify testing, the Random register is set to the value of the upper bound upon
system reset. This register is also set to the upper bound when the Wired register is
written.

Figure 7-2 shows the format of the Random register and Table 7-2 describes the
Random register fields.

31 6 5 0
0 Random

Figure 7-2 Random Register Format

Table 7-2 Random Register Field Descriptions

Bit Field Description Cold Reset Read/Write
31~6 0 Reserved. 0x0 Read
5~0 Random TLB random index for TLBWR instruction. Upper bound

(47)
Read

TX49/H2 Architecture

7-4

7.2.3 EntryLo0 register (Reg#2) and EntryLo1 register (Reg#3)

The EntryLo register consists of two registers have identical formats:

• EntryLo0 is used for even virtual pages

• EntryLo1 is used for odd virtual pages

The EntryLo0 and EntryLo1 register are read/write register. These registers hold the
physical page frame number (PFN) of the TLB entry for even and odd pages, respectively,
when performing TLB read and write operations.

Figure 7-3 shows the format of the EntryLo0/EntryLo1 register and Table 7-3 describes
the EntryLo0/EntryLo1 register fields.

63 32 31 30 29 6 5 3 2 1 0
0 WCE PFN C D V G

Figure 7-3 EntryLo0/EntryLo1 Register Format

Table 7-3 EntryLo0/EntryLo1 Register Field Descriptions

Bit Field Description Cold Reset Read/Write
63~32 0 Reserved 0x0 Read
31~30 WCE Usable for Win-CE 0x0 Read/Write
29~6 PFN Page frame number. Undefined Read/Write
5~3 C Specifies the TLB page coherency attribute.

0: Cacheable, noncoherent, write-through, no-WA
1: Cacheable, noncoherent, write-through, WA
2: Uncached
3: Cacheable,noncoherent,write-back,WA
4∼ 7: Reserved

0x0 Read/Write

2 D Dirty
If this bit is set, the page is marked as dirty and, therefore,
writable. This bit is actually a write-protect bit that software
can use to prevent alteration of data.

0 Read/Write

1 V Valid
If this bit is set, it indicates that the TLB entry is valid;
otherwise, a TLBL or TLBS miss occurs.

0 Read/Write

0 G Global
If this bit is set in both EntryLo0 and EntryLo1, then the
processor ignores the ASID during TLB lookup.

0 Read/Write

TX49/H2 Architecture

7-5

7.2.4 Context register (Reg#4)

The Context register is a read/write register containing the pointer to an entry in the
page table entry (PTE) array. This array is an operating system data structure that
stores virtual to physical address translations. When there is a TLB miss, the CPU loads
the TLB with the missing translation from the PTE array. Normally, the operating
system uses the Context register to address the current page map which resides in the
kernel mapped segment,kseg3. However the contents of this register duplicates some
information of the BadVAddr register, it is arranged in a form that is more useful for TLB
exception handler by a software.

Figure 7-4 shows the formats of the Context register and Table 7-4 describes the
Context register fields.

31 23 22 4 3 0
PTEBase BadVPN2 0

(32-bit mode)

63 23 22 4 3 0
PTEBase BadVPN2 0

(64-bit mode)

Figure 7-4 Context Register Formats

Table 7-4 Context Register Field Descriptions
32-bit mode

Bit Field Description Cold Reset Read/Write
31∼ 23 PTEBase Page table entry base pointer

This field is for use by the operating system. It is normally
written with a value that allows the operating system to use
the Context register as a pointer into the current PTE array
in memory.

Undefined Read/Write

22∼ 4 BadVPN2 Bad virtual address bits 31~13
This field is written by hardware on a miss. It contains the
virtual page number (VPN) of the most recent virtual address
that did not have a valid translation.

Undefined Read

3∼ 0 0 Reserved 0x0 Read

64-bit mode

Bit Field Description Cold Reset Read/Write
63∼ 23 PTEBase Page table entry base pointer Undefined Read/Write
22∼ 4 BadVPN2 Bad virtual address bits 31~13 Undefined Read
3∼ 0 0 Reserved 0x0 Read

The 19-bit BadVPN2 field contains bits 31 to 13 of the virtual address that caused the
TLB miss; bits 12 is excluded because a single TLB entry maps to an even-odd page pair.
For a 4-Kbyte page size, this format can directly address the pair-table of 8-byte PTEs.
For other page size and PTE sizes, shifting and masking this value produces the
appropriate address.

TX49/H2 Architecture

7-6

7.2.5 PageMask Register (Reg#5)

The PageMask register is a read/write register used for reading from/writing to the
TLB. This register holds a comparison mask that sets the variable page size for each TLB
entry.

TLB read and write operations use this register as either a source or a destination.
When virtual addresses are presented for translation into physical address, the
corresponding bits in the TLB identify which virtual address bits among bits 24~13 are
used in the comparison. When the Mask field is not one of the values shown in Table 7-5,
the operation of the TLB is undefined.

Figure 7-5 shows the format of the PageMask register and Table 7-5 describes the
PageMask register fields.

31 25 24 13 12 0
0 MASK 0

Figure 7-5 PageMask Register Format

Table 7-5 PageMask Register Field Descriptions

Bit Field Description Cold Reset Read/Write
31∼ 25 0 Reserved 0x0 Read
24∼ 13 MASK Page comparison mask

000000000000: page size = 4 Kbytes
000000000011: page size = 16 Kbytes
000000001111: page size = 64 Kbytes
000000111111: page size = 256 Kbytes
000011111111: page size = 1 Mbytes
001111111111: page size = 4 Mbytes
111111111111: page size = 16 Mbytes

0x0 Read/Write

12∼ 0 0 Reserved 0x0 Read

TX49/H2 Architecture

7-7

7.2.6 Wired Register (Reg#6)

The Wired register is a read/write register specifies the boundary between the wired
and random entries of the TLB as follows. Wired entries are non-replaceable entries,
which can not be overwritten by a TLB write random operation. Random entries can be
overwritten.

TLB

47

0

Wired Register

Range of Random entries

Range of Wired entries

The Wired register is set to 0 upon system reset. Writing this register also sets the
Random register to the value of its upper bound. Figure 7-6 shows the format of the
Wired register and Table 7-6 describes the Wired register fields.

31 6 5 0
0 Wired

Figure 7-6 Wired Register

Table 7-6 Wired Register Filed Descriptions

Bit Field Description Cold Reset Read/Write
31∼ 6 0 Reserved

(Must be written as zeroes, and returns zeroes when read.)
0x0 Read

5∼ 0 Wired TLB Wired boundary. 0x0 Read/Write

TX49/H2 Architecture

7-8

7.2.7 BadVAddr Register (Reg#8)

The Bad Virtual Address (BadVAddr) register is a read only register that displays the
most recent virtual address that cause one of the following exceptions; Address Error,
TLB Invalid, TLB Modified and TLB Refill exceptions.

The processor does not write to this register when the EXL bit in the Status register is
set to a 1. Figure 7-7 shows the formats of the BadVAddr register and Table 7-7 describes
the BadVAddr register fields.

31 0
Bad Virtual Address

(32-bit mode)

63 0
Bad Virtual Address

(64-bit mode)

Figure 7-7 BadVAddr Register Formats

Table 7-7 BadVAddr Register Field Descriptions
32-bit mode

Bit Field Description Cold Reset Read/Write
31∼ 0 BadVAddr Bad Virtual address Undefined Read

64-bit mode

Bit Field Description Cold Reset Read/Write
63∼ 0 BadVAddr Bad Virtual address Undefined Read

TX49/H2 Architecture

7-9

7.2.8 Count Register (Reg#9)

The Count register is a read/write register. This register acts as a timer, incrementing
at a constant rate (1/2 rate of CPUCLK) whether or not an instruction is executed, retired,
or any forward progress is made through the pipeline.

This register can be also written for diagnostic purpose or system initialization. Figure
7-8 shows the format of the Count register and Table 7-8 describes the Count register
field.

31 0
Count

Figure 7-8 Count Register Format

Table 7-8 Count Register Field Description

Bit Field Description Cold Reset Read/Write
31∼ 0 Count 32-bit timer, incrementing at half the maximum instruction

issue rate (CPUCLK).
0x0 Read/Write

TX49/H2 Architecture

7-10

7.2.9 EntryHi Register (Reg#10)

The EntryHi is a read/write register, and holds the high-order bits of a TLB entry for
TLB read and write operations. This register is accessed by the TLB Probe (TLBP), TLB
Write Ransom (TLBWR), TLB Write Indexed (TLBWI), and TLB Read Indexed (TLBR)
instructions.

When either a TLB refill, TLB invalid, or TLB modified exception occurs, this register is
loaded with the virtual page number (VPN2) and the ASID of the virtual address that did
not have a matching TLB entry. Figure 7-9 shows the formats of the EntryHi register
and Table 7-9 describes the EntryHi register fields.

31 13 12 8 7 0
VPN2 0 ASID

(32-bit mode)

63 62 61 40 39 13 12 8 7 0
R FILL VPN2 0 ASID

(64-bit mode)

Figure 7-9 EntryHi Register Formats

Table 7-9 EntryHi Register Field Descriptions
32-bit mode

Bit Field Description Cold Reset Read/Write
31∼ 1 VPN2 Virtual page number divided by two Undefined Read/Write
12∼ 8 0 Reserved 0x0 Read
7∼ 0 ASID Address space ID field

An 8-bit field that lets multiple processes share the TLB;
each process has a distinct mapping of otherwise identical
virtual page numbers.

Undefined Read/Write

64-bit mode

Bit Field Description Cold Reset Read/Write
63∼ 62 R Region. Used to match vAddr63 and vAddr62.

00: user, 01: supervisor, 11: kernel
Undefined Read/Write

61∼ 40 Fill Reserved. 0 on read. Ignored on write. Undefined Read
39∼ 13 VPN2 Virtual page number divided by two Undefined Read/Write
12∼ 8 0 Reserved 0x0 Read
7∼ 0 ASID Address space ID field. Undefined Read/Write

TX49/H2 Architecture

7-11

7.2.10 Compare Register (Reg#11)

The Compare register acts as a timer. When value of the Count register equals the
value of the Compare register, interrupt bit IP (7) in the Cause register is set. This
causes an interrupt exception as soon as the interrupt is enabled. Writing a value to this
register, as a side effect, clears the timer interrupt.

For diagnostic purpose, this register is a read/write register. However, in normal
operation this register is write only. Figure 7-10 shows the format of the Compare
register and Table 7-10 describes the Compare register field.

31 0
Compare

Figure 7-10 Compare Register Format

Table 7-10 Compare Register Field Description

Bit Field Description Cold Reset Read/Write
31∼ 0 Compare Acts as a timer; it maintains a stable value that does not

change on its own.
0x0 Read/Write

TX49/H2 Architecture

7-12

7.2.11 Status Register (Reg#12)

The Status register is a read/write register that contains the operating mode, interrupt
enabling, and diagnostic states of the processor. The more important Status register
fields are as following;

• The Interrupt Mask (IM) field of 8 bits controls the enabling of eight interrupt
conditions. Interrupt must be enabled before they can be asserted, and the
corresponding bits are set in both the IM field of this register and the Interrupt
Pending field of the Cause register.

• The Coprocessor Usability (CU) field of 4 bits controls the usability of four
possible coprocessors. Regardless of the CU0 bit setting, CP0 is always usable in
Kernel mode.

• The Diagnostic Status (DS) field of 9 bits is used for self-testing, and checks the
cache and virtual memory system.

• The Reverse Endian (RE) bit reverses the endianness. The processor can be
configured as either little/big-endian at reset; reverse-endian selection is used in
Kernel and Supervisor modes, and in the User mode when the RE bit is 0.
Setting the RE bit to 1 inverts the User mode endianness.

Figure 7-11 shows the format of the Status register and Table 7-11 describes the Status
register field.

31 28 27 26 25 24 16 15 8 7 6 5 4 3 2 1 0
CU 0 FR RE DS IM KX SX UX KSU ERL EXL IE

24 23 22 21 20 19 18 17 16
0 BEV 0 SR 0 CH 0 0

Figure 7-11 Status Register Format

Table 7-11 Status Register Field Descriptions

Bit Field Description Cold Reset Read/Write
31∼ 28 CU (3,2,1,0) Controls the usability of each of the four coprocessor unit

numbers. CP0 is always usable when in Kernel mode,
regardless of the setting of the CU0 bit.
0: unusable, 1: usable

0000 Read/Write

27 0 Reserved 0 Read

26 FR Enables additional floating-point registers.
0: 16 registers, 1: 32 registers

0 Read/Write

25 RE Reverse-Endian bit, valid in User mode. 0 Read/Write
24∼ 23 0 Reserved 0x0 Read
22 BEV Controls the location of TLB refill and general exception

vectors.
0: normal, 1: bootstrap

1 Read/Write

TX49/H2 Architecture

7-13

Bit Field Description Cold Reset Read/Write
21 0 Reserved 0 Read
20 SR 1: Indicates a soft reset or NMI has occurred. 0 Read/Write
19 0 Reserved 0 Read
18 CH “Hit” or “miss” indication for last CACHE Hit Invalidate, Hit

Write Back Invalidate, Hit Write Back for a primary cache.
0: miss, 1: hit.

0 Read/Write

17∼ 16 0 Reserved 0x0 Read
15∼ 8 IM Interrupt Mask

Controls the enabling of each of the external, internal and
software interrupts. An interrupt is taken if interrupts are
enabled, and the corresponding bits are set in both the IM
field of the Status register and the IP field of the Cause
register.
0: disabled, 0: enabled

0x0 Read/Write

7 KX Enables 64-bit addressing in Kernel mode. The extended-
addressing TLB refill exception is used for TLB misses on
kernel addresses.
0: 32-bit, 1: 64-bit

0 Read/Write

6 SX Enables 64-bit addressing and operations in Supervisor
mode. The extended-addressing TLB refill exception is used
for TLB misses on supervisor addresses.
0: 32-bit, 1: 64-bit

0 Read/Write

5 UX Enables 64-bit addressing and operations in User mode. The
extended-addressing TLB refill exception is used for TLB
misses on user addresses.
0: 32-bit, 1: 64-bit

0 Read/Write

4∼ 3 KSU Mode.
10: user, 01: supervisor, 00: kernel.

0x0 Read/Write

2 ERL Error Level.
0: normal, 1: error.

1 Read/Write

1 EXL Exception Level.
0: normal, 1: exception.

0 Read/Write

0 IE Interrupt Enable.
0: disable, 1: enable.

0 Read/Write

TX49/H2 Architecture

7-14

Status Register Modes and Access States
Fields of the Status register set the modes and access states described in the section

that follow.

! Interrupt Enable: Interrupts are enabled when all of the following conditions are met:

• IE = 1

• EXL = 0

• ERL = 0

If these conditions are met, the settings of the IM bits enable the interrupt.

! Operation Modes: The following CPU Status register bit settings are required for
User, Kernel and Supervisor modes (see Section 8.3, Operation Modes, for more
information about operating modes).

• The processor is in User mode when KSU = 102, EXL = 0, and ERL = 0.

• The processor is in Supervisor mode when KSU = 012, EXL = 0 and ERL = 0.

• The processor is in Kernel mode when KSU = 002, or EXL= 1, or ERL =1.

! 32- and 64-bit Modes: The following CPU Status register settings select 32- or 64-bit
operation for User, Kernel, and Supervisor operating modes. Enabling 64-bit
operation permits the execution of 64-bit opcodes and translation of 64-bit addresses.
64-bit operation for User, Kernel and Supervisor modes can be set independently.

• 64-bit addressing for Kernel mode is enabled when KX = 1. 64-bit operations are
always valid in Kernel mode.

• 64-bit addressing and operations are enabled for Supervisor mode when SX = 1.

• 64-bit addressing and operations are enabled for User mode when UX = 1.

! Kernel Address Space Accesses: Access to the kernel address space is allowed when
the processor is in Kernel mode.

! Supervisor Address Space Accesses: Access to the supervisor address space is allowed
when the processor is in Kernel or Supervisor mode, as described above in the section
above titled Operating Modes.

! User Address Space Accesses: Access to the user address is allowed in any of the
three operating modes.

Status Register Reset

The contents of the Status register are undefined at reset, except for the following bits
in the Diagnostic Status field:

• ERL and BEV = 1

The SR bit distinguishes between the Reset exception and the Soft Reset exception
(caused by Nonmaskable Interrupt [NMI]).

TX49/H2 Architecture

7-15

7.2.12 Cause Register (Reg#13)

The Cause register holds the cause of the most recent exception. This register is read-
only, except for the IP[1~0] bits. Figure 7-12 shows the format of the Cause register and
Table 7-12 describes the Cause register field.

31 30 29 28 27 16 15 8 7 6 2 1 0
BD 0 CE 0 IP 0 ExcCode 0

Figure 7-12 Cause Register Format

Table 7-12 Cause Register Field Descriptions

Bit Field Description Cold Reset Read/Write
31 BD Indicates whether or not the last exception was taken while

executing in a branch delay slot.
0: normal, 1: delay slot.

0 Read

30 0 Reserved 0 Read
29~28 CE Indicates the coprocessor unit number referenced when a

coprocessor unusable exception is taken.
00: coprocessor 0, 01: coprocessor 1,
10: coprocessor 2, 11: coprocessor 3.

0x0 Read

27~16 0 Reserved 0x0 Read
15~10 IP [7~2] Indicates whether an interrupt is pending.

0: not pending, 1: pending.
INT[5:0] Read

9~8 IP [1~0] Software interrupts.
0: reset, 1: set.

0x0 Read/Write

7 0 Reserved 0 Read
6~2 ExcCode Exception Code field.

0: Int: Interrupt.
1: Mod: TLB modification exception.
2: TLBL: TLB exception (load or instruction fetch)
3: TLBS: TLB exception (Store)
4: AdEL: Address error exception (load or instruction fetch)
5: AdES: Address error exception (store)
6: IBE: Bus error exception (instruction fetch)
7: DBE: Bus error exception (data reference: load or Store)
8: Sys: Syscall exception
9: Bp: Breakpoint exception
10: RI: Reserved instruction exception
11: CpU: Coprocessor Unusable exception
12: Ov: Arithmetic Overflow exception
13: Tr: Trap exception
14: Reserved:
15: FPE: Floating-Point exception
16-31: Reserved :

0x0 Read

1~0 0 Reserved 0x0 Read

TX49/H2 Architecture

7-16

7.2.13 EPC Register (Reg#14)

The Exception Program Counter (EPC) register is a read/write register. This register
contents the address at which processing resumes after an exception has been serviced.

For synchronous exceptions, this register contains either;

• the virtual address of the instruction that was the direct cause of the exception.

• the virtual address of the immediately preceding branch or jump instruction
(when the instruction is in a branch delay slot, and the Branch Delay bit in the
Cause register is set).

The processor does not write to the EPC register when EXL bit in the Status register is
set to 1. Figure 7-13 shows the formats of the EPC register and Table 7-13 describes the
EPC register field.

31 0
EPC

(32-bit mode)

63 0
EPC

(64-bit mode)

Figure 7-13 EPC Register Formats

Table 7-13 EPC Register Field Description
32-bit mode

Bit Field Description Cold Reset Read/Write
31~0 EPC Exception program counter Undefined Read/Write

64-bit mode

Bit Field Description Cold Reset Read/Write
63~0 EPC Exception program counter Undefined Read/Write

TX49/H2 Architecture

7-17

7.2.14 PRId Register (Reg#15)

The Processor Revision Identifier (PRId) register is a read-only register. This register
contents information identifying the implementation and revision level of the CPU and
CP0. Figure 7-14 shows the format of the PRId register and Table 7-14 describes the
PRId register field.

31 16 15 8 7 0
0 Imp Rev

Figure 7-14 PRId Register Format

Table 7-14 PRId Register Field Descriptions

Bit Field Description Cold Reset Read/Write
31~16 0 Reserved 0x0 Read
15~8 Imp Implementation number 0x2d means “TX49 family”. 0x2d Read
7~0 Rev Revision number +. + Read

+ Value is shown in product sheet

TX49/H2 Architecture

7-18

7.2.15 Config Register (Reg#16)

The Config register is a read-only register; except for HALT, ICE#, DCE# and K0 fields.
This register specifies various configuration options selected on the TX49.

EC, BE, IC, DC, IB and DB fields are set by the hardware during reset and are included
in this register as read-only status bits for the software to access. Figure 7-15 shows the
format of the Config register and Table 7-15 describes the Config register field.

31 30 28 27 24 23 19 18 17 16 15 14

13

12 11 9 8 6 5 4 3 2 0

0 EC 0 0 HALT ICE# DCE# BE 1 0 IC DC IB DB 0 K0

Figure 7-15 Config Register Format

Table 7-15 Config Register Field Descriptions

Bit Field Description Cold Reset Read/Write
31 0 Reserved 0 Read
30~28 EC GBUS clock rate:

0: processor clock frequency divided by 2
1: processor clock frequency divided by 3
2: processor clock frequency divided by 4
7: processor clock frequency divided by 2.5
3, 4, 5, 6 : reserved

pin Read

27 0 Reserved pin Read/Write
26~24 0 Reserved pin Read
23~19 0 Reserved 0 Read
18 HALT Wait mode.

0: Halt
1: Doze
Indicates the power-down behavior of the TX49 when WAIT
instruction is executed. The TX49 stalls the pipeline both in
halt and doze mode. Cache snoops are possible during
Doze mode but not possible during Halt mode. Halt mode
reduces power consumption to a greater extent than Doze
mode.

0 Read/Write

17 ICE# Instruction Cache Enable
0: Instruction cache enable
1: Instruction cache disable

0 Read/Write

16 DCE# Data Cache Enable
0: Data cache enable
1: Data cache disable

0 Read/Write

15 BE Big Endian
0: Little Endian
1: Big Endian

pin Read

14~13 1 Reserved 11 Read
12 0 Reserved 0 Read

TX49/H2 Architecture

7-19

Bit Field Description Cold Reset Read/Write
11~9 IC Instruction cache size. In the TX49, this is set to 8 KB (001),

16 KB (010) or 32 KB (011).
001, 010 or
011

Read

8~6 DC Data cache size. In the TX49, this is set to 8 KB (001),
16 KB (010) or 32 KB (011).

001, 010 or
011

Read

5 IB Primary I-Cache line Size
1:32 bytes (8 words)

1 Read

4 DB Primary D-cache line Size
1:32 bytes (8 words)

1 Read

3 0 Reserved 0 Read
2~0 K0 kseg0 coherency algorithm

0: Cacheable, noncoherent, write-through, no-WA
1: Cacheable, noncoherent, write-through, WA
2: Uncached
3: Cacheable, noncoherent, write-back, WA
4-7: Reserved

0x0 Read/Write

TX49/H2 Architecture

7-20

7.2.16 LLAddr Register (Reg#17)

The Load Linked Address (LLAddr) register is a read/wirte register, and contains the
physical address read by the most recent Load Linked (LL/LLD) instruction. This register
is for diagnostic purposes only, and serves no function during normal operation. Figure
7-16 shows the format of the LLAddr register and Table 7-16 describes the LLAddr
register field.

31 0
pAddr (35~4)

Figure 7-16 LLAddr Register Format

Table 7-16 LLAddr Register Field Description

Bit Field Description Cold Reset Read/Write
31~0 pAddr Physical address bits 35~4 0x0 Read/Write

TX49/H2 Architecture

7-21

7.2.17 XContext Register (Reg#20)

The XContext register is a read/write register, and contains a pointer to an entry in the
page table entry (PTE) array, an operating system data structure that stores virtual to
physical address translations. When there is a TLB miss, the operating system software
loads the TLB with the missing translation from the PTE array. However the contents of
this register duplicates some information of the BadVAddr register, it is arranged in a
form that is more useful for TLB exception handler by a software. This register is for use
with the XTLB refill handler, which loads TLB entries for references to a 64-bit address
space, and is included solely for operating system use. The operating system sets the PTE
base field in the register, as needed. Normally, the operating system uses this register to
address the current page map which resides in the Kernel mapped segment, kseg3.

The BadVPN2 field of 27 bits has bit [39~13] of the virtual address that caused the TLB
miss; bit 12 is excluded because a single TLB entry maps to an even-odd page pair. For a
4 KByte page size, this format may be used directly to access the pair-table of 8 Byte
PTEs. For other page sizes and PTE sizes, shifting and masking this value produces the
appropriate address.

Figure 7-17 shows the format of the XContext register and Table 7-17 describes the
XContext register field.

63 33 32 31 30 4 3 0
PTEBase R BadVPN2 0

Figure 7-17 XContext Register Format

Table 7-17 XContext Register Field Description

Bit Field Description Cold Reset Read/Write
63~33 PTEBase Page table entry base pointer

This field is normally written with a value that allows the
operation system to use the Context register as a pointer
into the current PTE array in memory.

Undefined Read/Write

32~31 R The Region field contains bits 63 to 62 of the virtual address.
00: user, 01: supervisor, 11: kernel

Undefined Read/Write

30~4 BadVPN2 Bad virtual page number divided by two.
This field is written by hardware on a miss. It contains the
VPN of the most recent invalidly translated virtual address.

Undefined Read

3~0 0 Reserved 0x0 Read

TX49/H2 Architecture

7-22

7.2.18 Debug Register (Reg#23)

The Debug register is a read-only; except for TLF, BsF, SSt and JtagRst fields. This
register holds the information for debug handler. Figure 7-18 shows the format of the
Debug register and Table 7-18 describes the Debug register field.

31 30 29 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

D
BD D
M 0 N
IS

TR
S

O
ES TL

F

Bs
F 0 SS
t

Jt
ag

R
st

0

D
IN

T

D
IB

D
D

BS

D
D

BL

D
Bp

D
SS

Figure 7-18 Debug Register Format

Table 7-18 Debug Register Field Descriptions

Bit Field Description Cold Reset Read/Write
31 DBD Debug Branch Delay; When a debug exception occurs while

an instruction in the branch delay slot is executing, this bit is
set to 1.

0 Read

30 DM Debug Mode; It indicates that a debug exception has taken
place. This bit is set when a debug exception is taken, and
is cleared upon return from the exception (DERET). While
this bit is set all interrupts, including NMI, TLB exception ,
BUS error exception, and debug exception are masked and
cache line locking function is disabled.
0: Debug handler not running.
1: Debug handler running.

0 Read

29~15 0 Reserved 0x0 Read
14 NIS Non-maskable Interrupt Status; When this bit is set

indicating that a non-maskable interrupt has occurred at the
same time as a debug exception. In this case the Status,
Cause, EPC, and BadVAddr registers assumes the usual
status after occurrence of a non-maskable interrupt, but the
address in DEPC is not the non-maskable exception vector
address (0xbfc0 0000). Instead, 0xbfc0 0000 is put in DEPC
by the debug handler software after which processing
returns directly from the debug exception to the non-
maskable interrupt handler.

0 Read

13 TRS TLB Miss Status; When this bit is set indicating the Debug
Exception and TLB/XTLB refill exception has occurred at the
same time. In this case the Status, Cause, EPC, and
BadVAddr registers assumes the usual status after
occurrence of TLB/XTLB refill. The address in the DEPC is
not the other exception vector address. Instead, 0xbfc0
0200 (if BEV = 1) in case of TLB refill exception and 0xbfc0
0280 (if BEV = 1) in case of XTLB refill exception or 0x8000
0000 (if BEV = 0) in case of TLB refill exception and 0x8000
0080 (if BEV = 0) in case of XTLB refill exception is put in
DEPC by the debug exception handler software, after which
processing returns directly from the debug exception to the
other exception handler.

0 Read

TX49/H2 Architecture

7-23

Bit Field Description Cold Reset Read/Write
12 OES Other Exception Status; When this bit is set indicates

exception other than reset, NMI, or TLB/XTLB refill has
occurred at the same time as a debug exception. In this
case the Status, Cause, EPC, and BadVAddr registers
assume the usual status after occurrence of such an
exception, but the addressing the DEPC is not the other
exception Vector address. Instead, 0xbfc0 0380 (if BEV = 1)
or 0x8000 0180 (if BEV = 0) is put in DEPC by the debug
exception handler software, after which processing returns
directly from the other exception handler.

0 Read

11 TLF TLB Exception Flag; This bit is set to 1 when TLB related
exception occurs for immediately preceding load or store
instruction while a debug exception handler is running (DM =
1). TLB exception will set this bit to 1 regardless of writing
zero. It is cleared by writing 0 and writing 1 is ignored.

0 Read/Write

10 BsF Bus Error Exception Flag; This bit is set to 1 when a bus
error exception occurs for a load or store instruction while a
debug exception handler is running (DM = 1). Bus error
exception will set this bit to 1 regardless of writing zero. It is
cleared by writing 0 and writing 1 is ignored.

0 Read/Write

9 0 Reserved 0 Read
8 SSt Single Step; Set to 1 indicates the single step debug function

is enable (1) or disabled (0). The function is disable when
the DM bit is set to 1 while the debug exception is running.

0 Read/Write

7 JtagRst JTAG Reset; When this bit is set to 1 the processor reset the
JTAG unit.

0 Read/Write

6 0 Reserved 0 Read
5 DINT Debug Interrupt Break Exception Status; set to 1 when

debug interrupts occurs.
0 Read

4 DIB Debug Instruction Break Exception Status; Set to 1 on
instruction address break.

0 Read

3 DDBS Debug Data Break Store Exception Status; Set to 1 on data
address break at store operation.

0 Read

2 DDBL Debug Data Break Load Exception Status; Set to 1 on data
address break at load operation.

0 Read

1 DBp Debug Breakpoint Exception Status; This bit is set when
executing SDBBP instruction.

0 Read

0 DSS Debug Single Step Exception Status; Set to 1 indicate Single
Step Exception.

0 Read

TX49/H2 Architecture

7-24

7.2.19 DEPC Register (Reg#24)

The DEPC register holds the address where processing resumes after the debug
exception routine has finished. The address that has been loaded in the DEPC register is
the virtual address of the instruction that caused the debug exception. If the instruction
is in the branch delay slot, the virtual address of the immediately preceding branch or
jump instruction is placed in this register. Execution of the DERET instruction causes a
jump to the address in the DEPC. If the DEPC is both written from software (by MTC0)
and by hardware (debug exception) then the DEPC is loaded by the value generated by
the hardware.

Figure 7-19 shows the formats of the DEPC register and Table 7-19 describes the DEPC
register field.

31 0
DEPC

(32-bit mode)

63 0
DEPC

(64-bit mode)

Figure 7-19 DEPC Register Formats

Table 7-19 DEPC Register Field Description
32-bit mode

Bit Field Description Cold Reset Read/Write
31~0 DEPC Debug exception program counter. Undefined Read/Write

64-bit mode

Bit Field Description Cold Reset Read/Write
63~0 DEPC Debug exception program counter. Undefined Read/Write

TX49/H2 Architecture

7-25

7.2.20 TagLo Register (Reg#28) and TagHi Register (Reg#29)

The TagLo and TagHi registers are a read/write registers. These registers hold the
primary cache tag for cache lock function or cache diagnostics. These registers are
written by the CACHE/MTC0 instruction. Figure 7-20 shows the formats of the TagLo
and TagHi registers and Table 7-20 describes the TagLo and TagHi registers field.

31 8 7 6 5 3 2 1 0
PTagLo PState RWNT Lock F0 0

(TagLo)

31 30 29 0
F1 PtagLo1 0

(TagHi)

Figure 7-20 TagLo and TagHi Register Formats

Table 7-20 TagLo and TagHi Register Field Descriptions
TagLo

Bit Field Description Cold Reset Read/Write
31~8 PTagLo Bits 35~12 of the physical address 0x0 Read/Write
7~6 PState Specifies the primary cache state

0: Invalid 1: Reserved
2: Reserved 3: Valid

0x0 Read/Write

5~3 RWNT Read/Write bits required for Windows NT 0x0 Read/Write

2 Lock Lock bit (0: not locked, 1: locked) 0 Read/Write
1 F0 FIFO Replace bit 0 (indicates the set to be replaced) 0 Read/Write
0 0 Reserved 0 Read

TagHi

Bit Field Description Cold Reset Read/Write
31 F1 FIFO Replace bit 1 (indicates the set to be replaced) 0 Read/Write
30 PTagLo1 Bit 11 of the physical address 0 Read/Write
29~0 0 Reserved 0x0 Read

F1 and F0 are concatenated and indicate the set to be replaced.

F1 F0

0 0 : way0

0 1 : way1

1 0 : way2

1 1 : way3

TX49/H2 Architecture

7-26

7.2.21 ErrorEPC Register (Reg#30)

The ErrorEPC is a read/write register, and is similar to the EPC register. This register
is used to store the program counter (PC) on ColdReset, SoftReset and NMI exceptions.

This register contains the virtual address at which instruction processing can resume
after servicing an error. This address can be;

• The virtual address of the instruction that caused the exception

• The virtual address of the immediately preceding branch or jump instruction,
when this address is in a branch delay slot.

There is no branch delay slot indication for this register. Figure 7-21 shows the formats
of the ErrorEPC register and Table 7-21 describes the ErrorEPC register field.

31 0
ErrorEPC

(32-bit mode)

63 0
ErrorEPC

(64-bit mode)

Figure 7-21 ErrorEPC Register Formats

Table 7-21 ErrorEPC Register Field Descriptions

32-bit mode

Bit Field Description Cold Reset Read/Write
31~0 ErrorEPC Error Exception Program Counter. Undefined Read/Write

64-bit mode

Bit Field Description Cold Reset Read/Write
63~0 ErrorEPC Error Exception Program Counter. Undefined Read/Write

TX49/H2 Architecture

7-27

7.2.22 DESAVE Register (Reg#31)

This register is used by the debug exception handler to save one of the GPRs, that is
then used to save the rest of the context to a pre-determined memory are, e.g. in the
processor probe. This register allows the safe debugging of exception handlers and other
types of code where the existence of a valid stack for context saving cannot be assumed.

Figure 7-22 shows the formats of the DESAVE register and Table 7-22 describes the
DESAVE register field.

Note: This register can use for ICE system only.

63 0
DESAVE

Figure 7-22 DESAVE Register Format

Table 7-22 DESAVE register Field Description

32/64-bit mode

Bit Field Description Cold Reset Read/Write
63~0 DESAVE Save one of the GPRs Undefined Read/Write

TX49/H2 Architecture

7-28

7.2.23 The Initialization of CP0 Registers in SoftReset Exception

Table 7-23 shows the values of the registers that be initialized by SoftReset exception.

Table 7-23 The Initial Value by SoftReset Exception

Register Bit Field SoftRest Description
22 BEV 1 Same value as ColdReset
20 SR 1 ColdReset has priority over SoftResetStatus (Reg#12)
2 ERL 1 Same value as ColdReset

TX49/H2 Architecture

8-1

8. Memory Management System

8.1 Introduction

The TX49 provides a full-featured memory management unit (MMU) which uses an on-chip
translation look aside buffer (TLB) to translate virtual addresses into physical addresses.

8.2 Address Space Overview
The TX49 physical address space is 64 Gbyte using a 36-bit address. The virtual

address is either 64 or 32 bits wide depending on whether the processor is operating in 64-
or 32-bit mode. In 32-bit mode, addresses are 32-bits wide and the maximum user process
size is 2 Gbyte (2**31). In 64-bit mode, addresses are 64-bit wide and the maximum user
process is 1 Tbyte (2**40). The virtual address is extended with an Address Space
Identifier (ASID) to reduce the frequency of TLB flushing when switching context. The
size of the ASID field is 8 bits. The ASID is contained in the CP0 EntryHi register.

8.2.1 Virtual Address Space

The processor virtual address can be either 32 or 64 bits wide, depending on whether
the processor is operating in 32-bit or 64-bit mode.

• In 32-bit mode, addresses are 32 bits wide.

The maximum user process size is 2 gigabytes (231).

• In 64-bit mode, addresses are 64 bits wide.

The maximum user process size is 1 terabyte (240).

Figure 8-1 shows the translation of a virtual address into a physical address.

3. The Offset, which does not pass through the
TLB, is then concatenated to the PFN.

2. If there is a match, the page frame number
(PFN) representing the upper bits of the
physical address (PA) is output from the
TLB.

Physical address

Virtual address

1. Virtual address (VA) represented by the virtual
page number (VPN) is compared with tag in
the TLB.

VPNASIDG

VPNASIDG

PFN

TLB

OffsetPFN

TLB
Entry

Offset

Figure 8-1 Overview of a Virtual-to-Physical Address Translation

As shown in Figure 8-2 and Figure 8-3, the virtual address is extended with an 8-bit
address space identifier (ASID), which reduces the frequency of TLB flushing when
switching contexts. This 8-bit ASID is in the CP0 EntryHi register, described later in this
chapter. The Global bit (G) is in the EntryLo0 and EntryLo1 registers, described later in
this chapter.

TX49/H2 Architecture

8-2

8.2.2 Physical Address Space

Using a 36-bit address, the processor physical address space encompasses 64 Gbytes.
The section following describes the translation of a virtual address to a physical address.

8.2.3 Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing the virtual
address from the processor with the virtual addresses in the TLB; there is a match when
the virtual page number (VPN) of the address is the same as the VPN field of the entry,
and either:

• the Global (G) bit of the TLB entry is set, or

• the ASID field of the virtual address is the same as the ASID field of the TLB
entry.

This match is referred to as a TLB hit. If there is no match, a TLB Miss exception is
taken by the processor and software is allowed to refill the TLB from a page table of
virtual/physical addresses in memory.

If there is a virtual address match in the TLB, the physical address is output from the
TLB and concatenated with the Offset, which represents an address within the page
frame space. The Offset does not pass through the TLB.

Virtual-to-physical translation is described in greater detail throughout the remainder
of this chapter; Figure 8-8 is a flow diagram of the process shown at the end of this
chapter. The next two sections describe the 32-bit and 64-bit address translations.

TX49/H2 Architecture

8-3

8.2.4 32-bit Mode Address Translation

Figure 8-2 shows the virtual-to-physical-address translation of a 32-bit mode address.
This figure illustrates two of the possible page sizes: a 4-Kbyte page (12 bits) and a 16-
Mbyte page (24 bits).

• The top portion of Figure 8-2 shows a virtual address with a 12-bit, or 4-Kbyte,
page size, labeled Offset. The remaining 20 bits of the address represent the
VPN, and Index the 1M-entry page table.

• The bottom portion of Figure 8-2 shows a virtual address with a 24-bit, or 16-
Mbyte, page size, labeled Offset. The remaining 8 bits of the address represent
the VPN, and index the 256-entry page table.

Offset passed
unchanged to
physical
memory

Offset passed
unchanged to
physical
memory

Virtual-to-physical
translation in TLB

Bits 31, 30 and 29 of the virtual
address select user, supervisor,
or kernel address spaces.

Virtual-to-physical
translation in TLB

Virtual Address with 256 (28) 16-Mbyte pages

Virtual Address with 1M (220) 4-Kbyte pages

TLB

20 bits = 1 M pages

VPNASID

12208

01112282939 32 31

Offset

36-bit Physical Address

035
PFN Offset

8 bits = 256 pages

VPNASID

2488

02324282939 32 31

Offset

TLB

Figure 8-2 32-bit Mode Virtual Address Translation

TX49/H2 Architecture

8-4

8.2.5 64-bit Mode Address Translation

Figure 8-3 shows the virtual-to-physical-address translation of a 64-bit mode address.
This figure illustrates two of the possible page sizes: a 4-Kbyte page (12 bits) and a 16-
Mbyte page (24 bits).

• The top portion of Figure 8-3 shows a virtual address with a 12-bit, or 4-Kbyte,
page size, labelled Offset. The remaining 28 bits of the address represent the
VPN, and index the 256M-entry page table.

• The bottom portion of Figure 8-3 shows a virtual address with a 24-bit, or 16-
Mbyte, page size, labelled Offset. The remaining 16 bits of the address represent
the VPN, and index the 64K-entry page table.

Offset passed
unchanged to
physical
memory

Offset passed
unchanged to
physical
memory

Virtual-to-physical
translation in TLB

Bits 62 and 63 of the virtual
address select user, supervisor,
or kernel address spaces.

Virtual-to-physical
translation in TLB

Virtual Address with 64 K (216) 16-Mbyte pages

Virtual Address with 256 M (228) 4-Kbyte pages

28 bits = 256M pages

VPN0 or -1ASID

1228248

0111239406171 64 6263

Offset

36-bit Physical Address
035

PFN Offset

16 bits = 64 K pages

VPN0 or -1ASID

2416248

023243940616271 64 63

Offset

TLB

TLB

 Figure 8-3 64-bit Mode Virtual Address Translation

TX49/H2 Architecture

8-5

8.3 Operating Modes

The TX49 has the three operating modes, User mode, Supervisor mode and Kernel mode, for
32- and 64-bit operation. The KSU, EXL and ERL bit in the Status register select User,
Supervisor or Kernel mode. The UX, SX and KX bit in the Status register select 32- or 64-bit
addressing in user, supervisor and kernel mode respectively.

KSU EXL ERL UX SX KX Mode
10 0 0 0 - - 32-bit addressing in user mode
10 0 0 1 - - 64-bit addressing in user mode
01 0 0 - 0 - 32-bit addressing in supervisor mode
01 0 0 - 1 - 64-bit addressing in supervisor mode
00 - - - - 0 32-bit addressing in kernel mode
- 1 - - - 0 32-bit addressing in kernel mode
- - 1 - - 0 32-bit addressing in kernel mode

00 - - - - 1 64-bit addressing in kernel mode
- 1 - - - 1 64-bit addressing in kernel mode
- - 1 - - 1 64-bit addressing in kernel mode

8.3.1 User Mode Operations

In User mode, a single, uniform virtual address space-labelled User segment-is
available; its size is:

• 2 Gbytes (231 bytes) in 32-bit mode (useg)

• 1 Tbyte (240 bytes) in 64-bit mode (xuseg)

Figure 8-4 shows User mode virtual address space.

0x 0000 0000 0000 0000

0x 0000 0100 0000 0000

0x FFFF FFFF FFFF FFFF

xuseguseg

0x 0000 0000

0x 8000 0000

0x FFFF FFFF

64-bit32-bit*

2 GB
Mapped

Cacheable

Address
Error

1 TB
Mapped

Cacheable

Address
Error

Figure 8-4 User Mode Virtual Address Space

*Note: In 32-bit mode, bit 31 is sign-extended through bits 63~32. Failure results in an
address error exception.

The User segment starts at address 0 and the current active user process resides in
either useg (in 32-bit mode) or xuseg (in 64-bit mode). The TLB identically maps all
references to useg/xuseg from all modes, and controls cache accessibility.

The processor operates in User mode when the Status register contains the following
bit-values:

• KSU bits = 102

• EXL = 0

• ERL = 0

TX49/H2 Architecture

8-6

In conjunction with these bits, the UX bit in the Status register selects between 32- or
64-bit User mode addressing as follows:

• when UX = 0, 32-bit useg space is selected and TLB misses are handled by the 32-
bit TLB refill exception handler

• when UX = 1, 64-bit xuseg space is selected and TLB misses are handled by the
64-bit TLB refill exception handler

Table 8-1 lists the characteristics of the two user mode segments, useg and xuseg.

Table 8-1 32-bit and 64-bit User Mode Segments

Status Register
Bit ValuesAddress Bit

Values
KSU EXL ERL UX

Segment
Name Address Range Segment Size

32-bit
A (31) = 0

102 0 0 0 useg
0x0000 0000

through
0x7FFF FFFF

2 Gbyte
(231 bytes)

64-bit
A (63~40) = 0

102 0 0 1 xuseg
0x0000 0000 0000 0000

through
0x0000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

32-bit User Mode (useg)

In User mode, when UX = 0 in the Status register, User mode addressing is
compatible with the 32-bit addressing model shown in Figure 8-4, and a 2-Gbyte user
address space is available, labelled useg.

All valid User mode virtual addresses have their most-significant bit cleared to 0;
any attempt to reference an address with the most-significant bit set while in User
mode causes an Address Error exception.

The system maps all references to useg through the TLB, and bit settings within
the TLB entry for the page determine the cacheability of a reference.

64-bit User Mode (xuseg)

In User mode, when UX = 1 in the Status register, User mode addressing is
extended to the 64-bit model shown in Figure 8-4 . In 64-bit User mode, the processor
provides a single, uniform address space of 240 bytes, labelled xuseg.

All valid User mode virtual addresses have bits 63~40 equal to 0; an attempt to
reference an address with bits 63~40 not equal to 0 causes an Address Error
exception.

The system maps all reference to xuseg through the TLB, and bit settings within
the TLB entry for the page determine the cacheability of a reference.

TX49/H2 Architecture

8-7

8.3.2 Supervisor Mode Operations

Supervisor mode is designed for layered operating systems in which a true kernel runs
in TX49 Kernel mode, and the rest of the operating system runs in Supervisor mode.

The processor operates in Supervisor mode when the Status register contains the
following bit-values:

• KSU = 012

• EXL = 0

• ERL = 0

In conjunction with these bits, the SX bit in the Status register selects between 32- or
64-bit Supervisor mode addressing:

• when SX = 0, 32-bit supervisor space is selected and TLB misses are handled by
the 32-bit TLB refill exception handler

• when SX = 1, 64-bit supervisor space is selected and TLB misses are handled by
the 64-bit XTLB refill exception handler

The system maps all references through the TLB, and bit settings within the TLB entry
for the page determine the cacheability of a reference.

Figure 8-5 shows Supervisor mode address mapping. Table 8-2 lists the characteristics
of the supervisor mode segments; descriptions of the address spaces follow.

0x FFFF FFFF E000 0000

0x 0000 0000 0000 0000

0x 0000 0100 0000 0000

0x 4000 0000 0000 0000

0x 4000 0100 0000 0000

0x FFFF FFFF C000 0000

0x FFFF FFFF FFFF FFFF

xsuseg

xsseg

csseg

suseg

sseg

0x 0000 0000

0x 8000 0000

0x A000 0000

0x C000 0000

0x E000 0000

0x FFFF FFFF

32-bit*

2 GB
Mapped

Cacheable

0.5 GB
Mapped

Cacheable

Address
error

Address
error

Address
error

64-bit

0.5 GB
Mapped

Cacheable

1 TB
Mapped

Cacheable

1 TB
Mapped

Cacheable

Address
error

Address
error

Address
error

Figure 8-5 Supervisor Mode Address Space

*Note: In 32-bit mode, bit31 is sign-extended through bits 63~32. Failure results in an
address error exception.

TX49/H2 Architecture

8-8

Table 8-2 32-bit and 64-bit Supervisor Mode Segments

Status Register
Bit ValuesAddress Bit

Values
KSU EXL ERL SX

Segment
Name Address Range Segment Size

32-bit
A (31) = 0

012 0 0 0 suseg
0x0000 0000

through
0x7FFF FFFF

2 Gbyte
(231 bytes)

32-bit
A (31~29) = 1102

012 0 0 0 ssseg
0xC000 0000

through
0xDFFF FFFF

512 Mbytes
(229 bytes)

64-bit
A (63~62) = 002

012 0 0 1 xsuseg
0x0000 0000 0000 0000

through
0x0000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

64-bit
A (63~62) = 012

012 0 0 1 xsseg
0x4000 0000 0000 0000

through
0x4000 00FF FFFF FFFF

1 Tbyte
(240 bytes)

64-bit
A (63~62) = 112

012 0 0 1 csseg
0xFFFF FFFF C000 0000

through
0xFFFF FFFF DFFF FFFF

512 Mbytes
(229 bytes)

32-bit Supervisor Mode, User Space (suseg)

In Supervisor mode, when SX = 0 in the Status register and the most-significant bit
of the 32-bit virtual address is set to 0, the suseg virtual address space is selected; it
covers the full 231 bytes (2 Gbytes) of the current user address space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique virtual
address. This mapped space starts at virtual address 0x0000 0000 and runs through
0x7FFF FFFF.

32-bit Supervisor Mode, Supervisor Space (sseg)

In Supervisor mode, when SX = 0 in the Status register and the three most-

significant bits of the 32-bit virtual address are 1102, the sseg virtual address space is
selected; it covers 229 bytes (512 Mbytes) of the current supervisor address space. The
virtual address is extended with the contents of the 8-bit ASID field to form a unique
virtual address. This mapped space begins at virtual address 0xC000 0000 and runs
through 0xDFFF FFFF.

64-bit Supervisor Mode, User Space (xsuseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63:62 of the virtual

address are set to 002, the xsuseg virtual address space is selected; it covers the full
240 bytes (1 Tbyte) of the current user address space. The virtual address is extended
with the contents of the 8-bit ASID field to form a unique virtual address. This
mapped space starts at virtual address 0x0000 0000 0000 0000 and runs through
0x0000 00FF FFFF FFFF.

64-bit Supervisor Mode, Current Supervisor Space (xsseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63~62 of the

virtual address are set to 012, the xsseg current supervisor virtual address space is
selected. The virtual address is extended with the contents of the 8-bit ASID field to
form a unique virtual address. This mapped space begins at virtual address 0x4000
0000 0000 0000 and runs through 0x4000 00FF FFFF FFFF.

TX49/H2 Architecture

8-9

64-bit Supervisor Mode, Separate Supervisor Space (csseg)

In Supervisor mode, when SX = 1 in the Status register and bits 63~62 of the

virtual address are set to 112, the csseg separate supervisor virtual address space is
selected. Addressing of the csseg is compatible with addressing sseg in 32-bit mode.
The virtual address is extended with the contents of the 8-bit ASID field to form a
unique virtual address. This mapped space begins at virtual address 0xFFFF FFFF
C000 0000 and runs through 0xFFFF FFFF DFFF FFFF.

8.3.3 Kernel Mode Operations

The processor operates in Kernel mode when the Status register contains one or more of
the following values:

• KSU = 002

• EXL = 1

• ERL = 1

In conjunction with these bits, the KX bit in the Status register selects between 32- or
64-bit Kernel mode addressing:

• when KX = 0, 32-bit kernel space is selected and all TLB misses are handled by
the 32-bit TLB refill exception handler

• when KX = 1, 64-bit kernel space is selected and all TLB misses are handled by
the 64-bit XTLB refill exception handler

The processor enters Kernel mode whenever an exception is detected and it remains in
Kernel mode until an Exception Return (ERET) instruction is executed and results in
ERL and/or EXL = 0. The ERET instruction restores the processor to the mode existing
prior to the exception.

Kernel mode virtual address space is divided into regions differentiated by the high-
order bits of the virtual address, as shown in Figure 8-6. Table 8-3 lists the
characteristics of the 32-bit kernel mode segments, and Table 8-4 lists the characteristics
of the 64-bit kernel mode segments.

TX49/H2 Architecture

8-10

kuseg

kseg0

kseg1

ksseg

kseg3

0x 0000 0000

0x 8000 0000

0x A000 0000

0x C000 0000

0x E000 0000

0x FFFF FFFF

32-bit*

2 GB
Mapped

Cacheable

0.5 GB
Mapped

Cacheable

0.5 GB
Mapped

Cacheable

0.5 GB
Unmapped
Cacheable

0.5 GB
Unmapped
Uncached

0x FFFF FFFF E000 0000

0x 0000 0000 0000 0000

0x 0000 0100 0000 0000

0x 4000 0000 0000 0000

0x 4000 0100 0000 0000

0x 8000 0000 0000 0000

0x C000 0000 0000 0000

0x C000 00FF 8000 0000

0x FFFF FFFF 8000 0000

0x FFFF FFFF A000 0000

0x FFFF FFFF C000 0000

0x FFFF FFFF FFFF FFFF

xkuseg

xksseg

xkphys

xkseg

cksseg

ckseg0

ckseg1

ckseg3

64-bit

0.5 GB
Mapped

Cacheable

0.5 GB
Mapped

Cacheable

1 TB
Mapped

Cacheable

1 TB
Mapped

Cacheable

Mapped
Cacheable

Unmapped
(For details

see figure 8-7)

Address
error

Address
error

Address
error

0.5 GB
Unmapped
Uncached

0.5 GB
Unmapped
Cacheable

Figure 8-6 Kernel Mode Address Space

*Note 1: In 32-bit mode, bit 31 is sign-extended through bits 63~32. Failure results in an address error
exception.

*Note 2: 0xff00_0000 through 0xff3f_ffff in 32-bit mode and 0xffff_ffff_ff00_0000 through 0xffff_ffff_ff3f_ffff
in 64-bit mode are reserved (unmapped, uncached) for use by registers in the Debug Support
Unit and TX49 MCU peripherals.

TX49/H2 Architecture

8-11

0xBFFF FFFF FFFF FFFF

4* 64 GB
Unmapped
Reserved

64 GB
Unmapped
Cacheable

noncoherent
WB

64 GB
Unmapped
Uncached

64 GB
Unmapped
Cacheable

noncoherent
WT-WA

64 GB
Unmapped
Cacheable

noncoherent
WT-no-WA

0x9FFF FFFF FFFF FFFF
0xA000 0000 0000 0000

0x97FF FFFF FFFF FFFF
0x9800 0000 0000 0000

0x8FFF FFFF FFFF FFFF
0x9000 0000 0000 0000

0x87FF FFFF FFFF FFFF
0x8800 0000 0000 0000

0x8000 0000 0000 0000

Figure 8-7 xkphys Address Space

TX49/H2 Architecture

8-12

Table 8-3 32-bit Kernel Mode Segments

Status Register
 Is One Of These ValuesAddress

Bit Values KSU EXL ERL KX

Segment
Name Address Range Segment Size

A (31) = 0 0 Kuseg
0x0000 0000

through
0x7FFF FFFF

2 Gbyte
(231 bytes)

A (31~29) = 1002 0 Kseg0
0x8000 0000

through
0x9FFF FFFF

512 Mbytes
(229 bytes)

A (31~29) = 1012 0 Kseg1
0xA000 0000

through
0xBFFF FFFF

512 Mbytes
(229 bytes)

A (31~29) = 1102 0 Ksseg
0xC000 0000

through
0xDFFF FFFF

512 Mbytes
(229 bytes)

A (31~29) = 1112 0 Kseg3
0xE000 0000

through
0xFFFF FFFF

512 Mbytes-4 Mbytes
(229 bytes)

KSU = 002
 or
EXL = 1
or
ERL = 1

0 (Reserved)
0xFF00 0000

through
0xFF3F FFFF

4 Mbytes

32-bit Kernel Mode, User Space (kuseg)

In Kernel mode, when KX = 0 in the Status register, and the most-significant bit of
the virtual address, A31, is cleared, the 32-bit kuseg virtual address space is selected;
it covers the full 231 bytes (2 Gbytes) of the current user address space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique virtual
address. When ERL = 1 in the Status register, the user address region becomes a 231

bytes unmapped (that is, mapped directly to physical addresses) uncached address
space.

32-bit Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when KX = 0 in the Status register and the most-significant three

bits of the virtual address are 1002, 32-bit kseg0 virtual address space is selected; it is
the 229 bytes (512 Mbyte) kernel physical space. References to kseg0 are not mapped
through the TLB; the physical address selected is defined by subtracting 0x8000 0000
from the virtual address. The K0 field of the Config register, described in this
chapter, controls cacheability and coherency.

TX49/H2 Architecture

8-13

32-bit Kernel Mode, Kernel Space 1 (kseg1)

In Kernel mode, when KX = 0 in the Status register and the most-significant three

bits of the 32-bit virtual address are 1012, 32-bit kseg1 virtual address space is
selected; it is the 229 bytes (512 Mbyte) kernel physical space. References to kseg1 are
not mapped through the TLB; the physical address selected is defined by subtracting
0xA000 0000 from the virtual address. Caches are disabled for accesses to these
addresses, and physical memory (or memory-mapped I/O device registers) are
accessed directly.

32-bit Kernel Mode, Supervisor Space (ksseg)

In Kernel mode, when KX = 0 in the Status register and the most-significant three

bits of the 32-bit virtual address are 1102, the ksseg virtual address space is selected;
it is the current 229 bytes (512 Mbyte) supervisor virtual space. The virtual address is
extended with the contents of the 8-bit ASID field to form a unique virtual address.

32-bit Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when KX = 0 in the Status register and the most-significant three

bits of the 32-bit vital address are 1112, the kseg3 virtual address space is selected; it
is the current 229 bytes (512 Mbyte-4 Mbyte) kernel virtual space. The virtual
address is extended with the contents of the 8-bit ASID field to form a unique virtual
address.

Note: These is the 4 Mbytes Reserved area, begin at virtual address 0xFF00_0000 and runs
through 0xFF3F_FFFF.

TX49/H2 Architecture

8-14

Table 8-4 64-bit Kernel Mode Segments

Status Register
Is One Of These ValuesAddress

Bit Values
KSU EXL ERL KX

Segment
Name Address Range Segment Size

A (63~62) = 002 1 xkuseg
0x0000 0000 0000 0000

through
0x0000 00FF FFFF FFFF

1 Tbytes
(240 bytes)

A (63~62) = 012 1 xksseg
0x4000 0000 0000 0000

through
0x4000 00FF FFFF FFFF

1 Tbytes
(240 bytes)

A (63~62) = 102 1 xkphys
0x8000 0000 0000 0000

through
0xBFFF FFFF FFFF FFFF

8*232 bytes

A (63~62) = 112 1 xkseg
0xC000 0000 0000 0000

through
0xC000 00FF 7FFF FFFF

240 –231 bytes

A (63~62) = 112
A (61~31) = -1

1 ckseg0
0xFFFF FFFF 8000 0000

through
0xFFFF FFFF 9FFF FFFF

512 Mbytes
(229 bytes)

A (63~62) = 112
A (61~31) = -1

1 ckseg1
0xFFFF FFFF A000 0000

through
0xFFFF FFFF BFFF FFFF

512 Mbytes
(229 bytes)

A (63~62) = 112
A (61~31) = -1

1 cksseg
0xFFFF FFFF C000 0000

through
0xFFFF FFFF DFFF FFFF

512 Mbytes
(229 bytes)

A (63~62) = 112
A (61~31) = -1

1 ckseg3
0xFFFF FFFF E000 0000

through
0xFFFF FFFF FFFF FFFF

512 Mbytes
-4 Mbyte

KSU = 002
or
EXL = 1
or
ERL = 1

1 (Reserved)
0xFFFF FFFF FF00 0000

through
0xFFFF FFFF FF3F FFFF

4 Mbytes

64-bit Kernel Mode, User Space (xkuseg)

In Kernel mode, when KX = 1 in the Status register and bits 63~62 of the 64-bit

virtual address are 002, the xkuseg virtual address space is selected; it covers the
current user address space. The virtual address is extended with the contents of the
8-bit ASID field to form a unique virtual address.

When ERL = 1 in the Status register, the user address region becomes a 231 bytes
unmapped (that is, mapped directly to physical addresses) uncached address space.

64-bit Kernel Mode, Current Supervisor Space (xksseg)

In Kernel mode, when KX = 1 in the Status register and bits 63~62 of the 64-bit

virtual address are 012, the xksseg virtual address space is selected; it is the current
supervisor virtual space. The virtual address is extended with the contents of the 8-
bit ASID field to form a unique virtual address.

TX49/H2 Architecture

8-15

64-bit Kernel Mode, Physical Spaces (xkphys)

In Kernel mode, when KX = 1 in the Status register and bits 63~62 of the 64-bit

virtual address are 102, one of the two unmapped xkphys address spaces are selected,
either cached or uncached. Accesses with address bits 58~36 not equal to 0 cause an
address error.

References to this space are not mapped; the physical address selected is taken
from bits 35~0 of the virtual address. Bits 61~59 of the virtual address specify the
cacheability and coherency attributes, as shown in Table 8-5.

Table 8-5 Cacheability and Coherency Attributes

Value(61~59) Cacheability and Coherency Attributes Starting Address
0 Cacheable, non-coherent, write-through, no write

allocate
0x8000 0000 0000 0000

1 Cacheable, non-coherent, write-through, no write
allocate

0x8800 0000 0000 0000

2 Uncached 0x9000 0000 0000 0000
3 Cacheable, non-coherent 0x9800 0000 0000 0000

4-7 Reserved 0xA000 0000 0000 0000

64-bit Kernel Mode, Kernel Space (xkseg)

In Kernel mode, when KX = 1 in the Status register and bits 63~62 of the 64-bit

virtual address are 112, the address space selected is one of the following:

• kernel virtual space, xkseg, the current kernel virtual space; the virtual address
is extended with the contents of the 8-bit ASID field to form a unique virtual
address

• one of the four 32-bit kernel compatibility spaces, as described in the next section.

64-bit Kernel Mode, Compatibility Spaces (ckseg1~0, cksseg, ckseg3)

In Kernel mode, when KX = 1 in the Status register, bits 63~62 of the 64-bit virtual

address are 112, and bits 61~31 of the virtual address equal-1, the lower two bytes of
address, as shown in Figure 8-6, select one of the following 512 Mbytes compatibility
spaces.

• ckseg0. This 64-bit virtual address space is an unmapped region, compatible with
the 32-bit address model kseg0. The K0 field of the Config register,
described in this chapter, controls cacheability and coherency.

• ckseg1. This 64-bit virtual address space is an unmapped and uncached region,
compatible with the 32-bit address model kseg1.

• cksseg. This 64-bit virtual address space is the current supervisor virtual space,
compatible with the 32-bit address model ksseg.

• ckseg3. This 64-bit virtual address space is kernel virtual space, compatible with
the 32-bit address model kseg3.

TX49/H2 Architecture

8-16

8.4 Translation Lookaside Buffer

8.4.1 Joint TLB

The TX49 has a fully associative TLB which maps 48 pairs (odd/even entry) of virtual
pages to their corresponding physical addresses.

8.4.2 TLB Entry format

32-bit addressing
127 121 120 109 108 96

0 MASK 0
95 77 76 75 72 71 64

VPN2 G 0 ASID
63 62 61 38 37 35 34 33 32

0 PFN C D V 0
31 30 29 6 5 3 2 1 0

0 PFN C D V 0

64-bit addressing
255 217 216 205 204 192

0 MASK 0
191 190 189 168 167 141 140 139 136 135 128

R 0 VPN2 G 0 ASID
127 94 93 70 69 67 66 65 64

0 PFN C D V 0
63 30 29 6 5 3 2 1 0

0 PFN C D V 0

MASK : Page comparison mask. This field sets the variable page size for each TLB entry.

VPN2 : Virtual page number divided by two (maps to two pages)

ASID : Address space ID field.

R : Region. (00: user, 01: supervisor, 11: kernel) used to match Vaddr63~62.

PFN : Page frame number; upper bits of the physical address.

C : Specifies the cache algorithm to be used (see the “C” field of the EntryLo0, 1).

D : Dirty. If this bit is set, the page is marked as dirty and therefore, writable. This bit is
actually a write-protect bit that software can use to prevent alteration of data.

V : Valid. If this bit is set, it indicates that the TLB entry is valid. If a cache hit occurs
through a TLB entry when this bit is cleared, a TLB invalid exception occurs.

G : Global. If this bit is set in both Lo0 and Lo1, then ignore the ASID during TLB lookup.

0 : Reserved. Returns zeroes when read.

TX49/H2 Architecture

8-17

8.4.3 Instruction-TLB

The TX49 has a 2-entry instruction TLB (ITLB). Each ITLB entry is a subset of any
single JTLB entry. The ITLB is completely invisible to software.

8.4.4 Data-TLB

The TX49 has a 4-entry data TLB (DTLB). Each DTLB entry is a subset of any single
JTLB entry. The DTLB is completely invisible to software.

TX49/H2 Architecture

8-18

8.5 Virtual-to-Physical Address Translation Process

During virtual-to-physical address translation, the CPU compares the 8-bit ASID (if the
Global bit, G, is not set) of the virtual address to the ASID of the TLB entry to see if there is a
match. One of the following comparisons are also made:

• In 32-bit mode, the highest 7 to 19 bits (depending upon the page size) of the virtual
address are compared to the contents of the TLB VPN2 (virtual page number divided
by two).

• In 64-bit mode, the highest 15 to 27 bits (depending upon the page size) of the virtual
address are compared to the contents of the TLB VPN2 (virtual page number divided
by two).

If a TLB entry matches, the physical address and access control bits (C, D, and V) are
retrieved from the matching TLB entry. While the V bit of the entry must be set for a valid
translation to take place, it is not involved in the determination of a matching TLB entry.

Figure 8-8 illustrates the TLB address translation process.

Access
Cache

XTLB
Refill

TLB
Refill

TLB
Invalid

TLB
Mod Uncached?

Write?

32-bit
address?

D
= 1?

V
= 1?

G
= 1?

ASID
Match?

VPN
Match?

Mapped
Address?

Legal
Address?

Sup
Mode?

User
Mode?

Legal
Address?

Legal
Address?

For valid
address space, see
the section describing
Operating Modes
in this chapter.

Virtual Address (Input)

ExceptionException

ExceptionException

Address
Error

No

Physical Address (Output)

No

No

No

No

No

NoNo

No

Dirty

Global

Yes

Yes

Yes

YesYes

Yes

Yes

Yes

Yes

Yes

Yes

No

No Yes

YesYes NoNoNo

Access
Main

Memory

Address
Error

Address
Error

VPN
and

ASID

Figure 8-8 TLB Address Translation

TX49/H2 Architecture

8-19

TLB Misses
If there is no TLB entry that matches the virtual address, a TLB refill exception occurs.

(TLB refill exceptions are described in Chapter 11.) If the access control bits (D and V)
indicate that the access is not valid, a TLB modification or TLB invalid exception occurs.

If the C bits equal 0102, the physical address that is retrieved accesses main memory,
bypassing the cache.

TLB Instructions

Table 8-6 lists the instructions that the CPU provides for working with the TLB. See
Appendix A for a detailed description of these instructions.

Table 8-6 TLB Instructions

Op Code Description of Instruction
TLBP Translation Lookaside Buffer Probe
TLBR Translation Lookaside Buffer Read
TLBWI Translation Lookaside Buffer Write Index
TLBWR Translation Lookaside Buffer Write Random

TX49/H2 Architecture

8-20

TX49/H2 Architecture

9-1

9. Cache Organization

9.1 Introduction

This chapter describes the cache memory of TX49. This processor has two on-chip primary
caches for instruction and data. Both caches are configured as either 8 K-byte, 16 K-byte or 32
K-byte in size.

9.2 Instruction Cache (I-Cache)
The TX49 primary I-cache has the following characteristics:

• Cache size: 8 KB/ 16 KB/ 32 KB (fixed in each products)

• Four-way set associative

• FIFO replacement

• Indexed with a virtual address

• Checked with a physical tag

• Block (line) size: 8 words (32 bytes)

• Burst refill size: 8 words (32 bytes)

• Lockable on a per-line basis (way1, way2 and way3)

• All valid bits, lock and FIFO bits are cleared by a Reset exception

9.2.1 Instruction Cache Address Field

Figure 9-1 shows the instruction cache address field. When 4-KB page size is used in
32 KB Instruction cache, the bit 12 of the Physical Address and the Virtual Address must
be same value.

35 11 10 5 4 3 2 0 (8 KB)
Physical Tag

(25 bits)
Cache Tag Index

(6 bits)
Word

(2 bits)
Byte

(3 bits)

35 12 11 5 4 3 2 0 (16 KB)
Physical Tag

(24 bits)
Cache Tag Index

(7 bits)
Word

(2 bits)
Byte

(3 bits)

35 12 11 5 4 3 2 0 (32 KB)
Physical Tag

(24 bits)
Cache Tag Index

(8 bits)
Word

(2 bits)
Byte

(3 bits)

Figure 9-1 Instruction Cache Address Field

TX49/H2 Architecture

9-2

9.2.2 Instruction Cache Configuration

Each line in the 4 ways of the instruction cache share FIFO replacement bits. Figure
9-2 shows the format of replacement bits. These bits are shared by way0, way1, way2 and
way3 for 8 KB/ 16 KB/ 32 KB cache, and indicate next set to which replacement will be
directed; when lock bit is set to 1, indicate this set is not locked.

Each line of instruction cache data has an associated 27-bit (8 KB)/26-bit (16 KB/32 KB)
tag that contains a 25-bit (8 KB)/24-bit (16 KB/32 KB) physical address, a single Lock bit
and a single valid bit, except for the line in way0, which has an 26-bit (8 KB)/25-bit
(16 KB/32 KB) tag that excludes a lock bit. Figure 9-3 shows the formats of tag and data
pair.

1 0
F1 F0

F0: FIFO replace bit 0
F1: FIFO replace bit 1

Figure 9-2 Format of Replacement Bits

25 24 0 63 0 63 0 63 0 63 0
V PTag Data Data Data Data

Format for way0 (8 KB)

24 23 0 63 0 63 0 63 0 63 0
V PTag Data Data Data Data

Format for way0 (16 KB/32 KB)

26 25 24 0 63 0 63 0 63 0 63 0
L V PTag Data Data Data Data

Format for way1, 2 and 3 (8 KB)

25 24 23 0 63 0 63 0 63 0 63 0
L V PTag Data Data Data Data

Format for way1, 2 and 3 (16 KB/32 KB)

L: Lock bit (1: enable, 0: disable)
V: Valid bit (1: valid, 0: invalid)
PTag: Physical tag (bit 35∼ 12 of the physical address)
Data: Instruction cache data

Figure 9-3 Format of Tag and Data Pair for I-cache

9.3 Data Cache

The TX49 primary D-cache has the following characteristics:

• Cache size: 8 KB/ 16 KB/ 32 KB (fixed in each products)

• Four-way set associative

• FIFO replacement

• Indexed with a virtual address

• Checked with a physical tag

• Block (line) size: 8 words (32 bytes)

• Burst refill size: 8 words (32 bytes)

TX49/H2 Architecture

9-3

• Lockable on a per-line basis (way1, way2 and way3)

• Store buffer

• Selectable write-back and write-through on a page basic

• All W, CS, FIFO and Lock bits are cleared by a Reset exception

9.3.1 Data Cache Address Field

Figure 9-4 shows the data cache address field. When 4-KB page size is used in 32 KB
Instruction cache, the bit 12 of the Physical Address and the Virtual Address must be
same value.

35 11 10 5 4 3 2 0 (8 KB)
Physical Tag

(25 bits)
Cache Tag Index

(6 bits)
Word

(2 bits)
Byte

(3 bits)

35 12 11 5 4 3 2 0 (16 KB)
Physical Tag

(24 bits)
Cache Tag Index

(7 bits)
Word

(2 bits)
Byte

(3 bits)

35 12 11 5 4 3 2 0 (32 KB)
Physical Tag

(24 bits)
Cache Tag Index

(8 bits)
Word

(2 bits)
Byte

(3 bits)

Figure 9-4 Data Cache Address Field

9.3.2 Data Cache Configuration

Each line in the 4 ways of the data cache share F1, F0 replacement bits. Figure 9-5
shows the format of replacement bits. These bits are shared by way0, way1, way2 and
way3 for 8 KB/ 16 KB/ 32 KB cache, and indicate next set to which replacement will be
directed; when lock bit is set to 1, indicate this set is not locked.

Each line of data cache data has an associated 29-bit/28-bit tag that contains a 25-
bit/24-bit physical address, a single Lock bit, a single write-back bit and a 2-bit cache
state, except for the line in way0, which has an 28-bit/27-bit tag that excludes a Lock bit.
Figure 9-6 shows the formats of tag and data pair.

1 0
F1 F0

F0: FIFO replace bit 0
F1: FIFO replace bit 1

Figure 9-5 Format of Replacement Bits

TX49/H2 Architecture

9-4

27 26 2524 0 63 0 63 0 63 0 63 0
W CS PTag Data Data Data Data

Format for way0 (8 KB)

26 25 2423 0 63 0 63 0 63 0 63 0
W CS PTag Data Data Data Data

Format for way0 (16 KB/ 32 KB)

28 27 26 2524 0 63 0 63 0 63 0 63 0
L W CS PTag Data Data Data Data

Format for way1, 2 and 3 (8 KB)

27 26 25 2423 0 63 0 63 0 63 0 63 0
L W CS PTag Data Data Data Data

Format for way1, 2 and 3 (16 KB/ 32 KB)

L: Lock bit (1: enable, 0: disable)
W: Write-back bit (set if cache line has written)
CS: Primary cache state

(0: Invalid, 1: Reserved, 2: Reserved, 3: Valid)
PTag: Physical tag (bit 35~12 of the physical address)
Data: Data cache data

Figure 9-6 Format of Tag and Data Pair for D-cache

In the TX49, the W (write-back) bit, not the cache state, indicates when the primary
cache contents modified data that must be written back to memory. The states Invalid
and Valid are used to describe the cache line. That is, there is no hardware support for
cache coherency.

9.3.3 Data Cache Policies

The TX49 provides three write policy options for the data cache: two write-through
modes and one write-back mode. Selection of a write policy is done by the K0 bit in the
Config register for the kseg0 segment and the C bit within each TLB entry for the other
segments. For a description of the K0 bit, see Table 7-15; for a description of the C bit, see
Table 7-3.

The write policy should not be changed once the cache is initialized; otherwise, the
contents of the data cache are not guaranteed.

a) Write-through modes (write allocate/no write allocate)
In write-through, the data is written to cache and to main memory at the same
time. On a cache store miss, a write-through without write-allocate causes data
to be sent only to main memory, whereas a write-through with write-allocate
causes the relevant cache line to be replaced before being sent to the data cache
and main memory.

b) Write-back mode
In the write-back policy, a copy of the data is written to cache by the processor,
but not to main memory. The data will be written to main memory only if cache’s
copy is about to be replaced.

TX49/H2 Architecture

9-5

9.4 FIFO Replacement Algorithm

The TX49 uses the FIFO (first in, first out) policy when overwriting the blocks of data in its
instruction and data caches.

• Typically, data items in way0, way1, way2 and way3 are replaced in this order.

• The FIFO[1:0] bits do not point at locked and valid lines.

• Invalid lines, if any, are replaced first.

• The FIFO replacement bits are altered when external data is written to the cache or
via the CACHE instruction.

Figure 9-7 shows several examples of how the FIFO replacement bits change due to cache
line replacements.

A)

Way0
Invalid

Way1
Invalid

Way2
Invalid

Way3
Invalid B)

C) D)

Way0
Invalid

Way1
Invalid
Lock

Way2
Invalid

Way3
Invalid

Way0
Invalid

Way1
Invalid

Way2
valid

Way3
Invalid

Way0
Invalid

Way1
valid
Lock

Way2
Invalid

Way3
valid

E) F)
Way0
Invalid

Way1
valid
Lock

Way2
valid
Lock

Way3
valid
Lock

Way0
valid

Way1
valid

Way2
valid
Lock

Way3
valid

Figure 9-7 FIFO Replacement Policy

9.5 Lock function

The lock function can be used to locate critical instruction/data in one instruction/data cache
set and they are not replaced when the lock bit is set.

9.5.1 Lock bit setting and clearing

Setting the Lock bit in each line cache enable the instruction/data cache lock function.
When the lock function is enabled, the instruction/data in the valid line is locked and
never be replaced. The set to be locked is pointed by FIFO bit. Refilled instruction/data
during the lock function is enabled is locked. When a store miss occurs for the write-
through data cache without write allocate, the store data is not written to the cache and
will therefore not be locked.

The lock function is disabled by clearing the Lock bit in each line.

In order to clear or set the Lock bit in the cache, Cache instructions (Index store I-cache
/D-cache Tag) can be used, and in order to load the instruction/data to cache from
memory, another Cache instructions (Fill I-cache/D-cache) can be used (refer to Cache
instruction).

TX49/H2 Architecture

9-6

Clear the lock bit as follows when data written to a locked line should be stored in main
memory.

(1) Read the locked data from cache memory

(2) Clear the lock bit

(3) Store the data that was read

9.5.2 Operation During Lock

After the lock bit is set for a line, the line can be replaced only when it’s line state is
invalid. The locked valid line can never be replaced. FIFO bit should point only to the set
of locked invalid line or unlocked line.

A write access to a locked valid line takes place only to the cache not to the memory at
Write Back mode. Both of the cache and the memory are replaced at Write Through
mode.

9.5.3 Example of Data Cache Locking

During the load operation to the locked line of the cache, any interrupt should be
disabled in order to avoid to lock the wrong data.

To lock data cache lines, the following sequence of codes could be used.

....................... /* Disable the interrupt */

mtc0 t0, TagLo /* Load data into TagLo reg */

cache 2 (D), offset (base) /* Invalidate and lock line in desired set using

Index_Store_Tag cache instruction */

cache 7 (D), offset (base) /* Fill the cache line from desired memory location */

....................... / Enable the interrupt */

9.5.4 Example of Instruction Cache Locking

To lock instruction cache lines, the following sequence of codes could be used:

....................... /* Disable the interrupt */

mtc0 t0, TagLo /* Load data into TagLo reg */

cache 2 (I), offset (base) /* Invalidate and lock line in desired set using

Index_Store_Tag cache instruction */

cache 5 (I), offset (base) /* Fill the cache line from desired memory location */

....................... /* Enable the interrupt */

TX49/H2 Architecture

9-7

9.6 The Primary Cache Accessing

Figure 9-8 shows the virtual address (VA) index to the primary cache. Each instruction and
data cache size is 8 KB, 16 KB or 32 KB. The virtual address bits be used to index into the
primary cache decided by the cache size.

Tags

Tag line Data line

Data

32KB:VA(12∼ 5)
16KB:VA(11∼ 5)
 8KB:VA(10∼ 5)

64
W State Tag

VA(12∼ 5)
 to
VA(10∼ 5)

Figure 9-8 Primary Cache Data and Tag Organization

9.7 Cache States

The section describes about the state of a cache line. The cache line in the TX49 is in one of
states described in Table 9-1.

The I-Cache line is in one of the following states:

• invalid

• valid

The D-Cache line is in one of the following states:

• invalid

• valid

Table 9-1 Cache States

Cache line State Description
Invalid A cache line that does not contain valid information must be marked

invalid, and cannot be used. A cache line in any other state than invalid
is assumed to contain valid information.

Valid A Valid cache line contains valid information. The cache line may or not
be consistent with memory and is owned by the processor (see Cache
Line Ownership in this chapter).

TX49/H2 Architecture

9-8

9.8 Cache Line Ownership

The TX49 becomes the owner of a cache line after it writes to that cache line (that is, by
entering the Valid), and is responsible for providing the contents of that line on a read
request. There can only be one owner for each cache line.

9.9 Cache Multi-Hit Operation
The TX49 is not guaranteed the operation for the multi-hit of primary cache.

Thus, in case of locking the specified program/data in the primary cache, the program/data
must be used after locked in the cache by Fill instruction.

Such as the previous description the cache multi hit does not guarantee in the TX49.

9.10 Cache Test Function

9.10.1 Cache Disabling

The Config register bits ICE# (Instruction Cache Enable) and DCE# (Data Cache
Enable) are used to enable and disable the instruction and data cache, respectively.

When a cache is disabled, all cache accesses are misses and there is no refill (nor is
there any burst bus cycle; this is the same as accessing a non-cacheable area). The Valid
bit (V) or Cache State bit (CS) for each entry cannot be modified.

Notes:
When the instruction cache is disabled:

• Every instruction fetch causes a cache miss, and external memory accesses are
performed using single-read bus cycles.

• The CACHE instruction can still operate on the instruction cache.

Notes:
When the data cache is disabled:

• Every load or store instruction causes a cache miss. Data cache refills are
disabled, and external memory accesses occur using single-read or single-write
transactions.

• The CACHE instruction can still operate on the data cache.

Notes:
How to disable the instruction cache:

• When disabling the instruction cache, instruction streaming should be
discontinued by placing a jump instruction following the MTC0 instruction.

Example: MTC0 Rn, Config (Set the ICE# bit to 1)
J L1 (Jump to L1 and disable instruction streaming)
NOP (Branch delay slot)

L1: CACHE IndexIncaliate, offset (base)

TX49/H2 Architecture

9-9

9.10.2 Cache Flushing

Both the instruction and data cache are flushed when a ColdReset/SoftReset exception
is raised (all valid bits are cleared to 0).

The instruction cache is flushed by the CACHE instruction Index_Invalidate
/Hit_Invalidate. The data cache is flushed by the CACHE instruction
IndexWriteBackInvalidate/HitInvalidate/HitWriteBackInvalidate.

The processor writes the cache line back to main memory during the execution of Index
Writeback Invalidate, Hit Writeback Invalidate or Hit Writeback CACHE instruction or
when the modified cache line is replaced. In write-back mode, software is responsible for
ensuring cache coherency.

TX49/H2 Architecture

9-10

TX49/H2 Architecture

10-1

10. Write Buffer
The TX49 contains a write buffer to improve the performance of writes to the external memory.

Every write to external memory uses this on-chip write buffer. The write buffer holds up to four
64-bit address and data pairs.

For a cache miss write-back, the entire buffer is used for the write-back data and allows the
processor to proceed in parallel with the memory update. For uncached and write-through stores,
the write buffer uncouples the CPU from the write to memory. If the write buffer is full,
additional stores will stall until there is room for them in the write buffer.

The TX49 processor core might issue a read request while the write buffer is performing a
write operation. Multiple read/write operations are serviced in the following order:

• If there is only a write request, the data in the write buffer is written to an external
device.

• If there is only a read request, a read operation is performed to bring in data from an
external device.

• If a read request and a write request occur simultaneously, the read request is
serviced first, except for the following cases:

• when the processor issues a read request to the target address of one of the write
buffer entries

• when the processor issues an uncacheable read reference while the write buffer
has uncacheable write data

The BC0T and BC0F instructions can be used to determine whether any data is present in the
write buffer:

If there is data in the write buffer, the coprocessor condition signal is false (0).

If there is no data in the write buffer, the coprocessor condition signal is true (1).

Following is the assembly language code to freeze the processor until the write buffer becomes
empty.

SW

NOP

NOP

Loop: BC0F Loop

NOP

The following sequence of instructions also causes the TX49 to perform the same action.
Appended to a store instruction, the SYNC instruction ensures that the store instruction
initiated prior to this instruction is completed before any instruction after this instruction is
allowed to start.

SW

SYNC

TX49/H2 Architecture

10-2

TX49/H2 Architecture

11-1

11. CPU Exception

11.1 Introduction

This chapter describes the explanation of CPU exception processing. The chapter concludes
with a description of each exception’s cause, together with the manner in which the CPU
processes and services these exceptions.

11.2 Exception Vector Locations
Exception vector addresses are stored in an area of kseg0 or kseg1 except for Debug

exception vector. The vector address of the ColdReset, SoftReset and NMI exception is always
in a non-cacheable area of kseg1. Vector addresses of the other exceptions depend on the BEV
bit of Status register. When BEV is 0, these exceptions are vectored to a cacheable area of
kseg0. When BEV is 1, all vector addresses are in a non-cacheable area of kseg1.

Table 11-1 shows the list of the exception vector locations.

Table 11-1 Exception Vector Locations

Exception
TX49 Vector Address (virtual address)
(BEV = 0) (BEV = 1)

ColdReset, SoftReset, NMI 0xffff_ffff_bfc0_0000 0xffff_ffff_bfc0_0000
TLB refill, EXL = 0 0xffff_ffff_8000_0000 0xffff_ffff_bfc0_0200

XTLB refill, EXL = 0
(X = 64 bit TLB) 0xffff_ffff_8000_0080 0xffff_ffff_bfc0_0280

Others (common exception) 0xffff_ffff_8000_0180 0xffff_ffff_bfc0_0380

Exception
TX49 Vector Address (physical address)

(BEV = 0) (BEV = 1)
ColdReset, SoftReset, NMI 0x0_1fc0_0000 0x0_1fc0_0000

TLB refill, EXL = 0 0x0_0000_0000 0x0_1fc0_0200
XTLB refill, EXL = 0

(X = 64 bit TLB)
0x0_0000_0080 0x0_1fc0_0280

Others (common exception) 0x0_0000_0180 0x0_1fc0_0380

The cache error exception is not occurred because the TX49 does not have the parity bit into
the primary cache. Debug exception needs the care, it has the special address. (See 14.9.5)
Table 11-2 shows the list of the debug exception vector locations.

Table 11-2 Debug Exception Vector Locations

Exception
TX49 Debug Exception Vector Address (virtual address)

(ProbEnb = 0) (ProbEnb = 1)
Debug 0xffff_ffff_bfc0_0400 0xffff_ffff_ff20_0200

Exception
TX49 Debug Exception Vector Address (physical

address)
(ProbEnb = 0) (ProbEnb = 1)

Debug 0x0_1fc0_0400 0xf_ff20_0200

TX49/H2 Architecture

11-2

11.3 Priority of Exception

More than one exception may be raised for the same instruction, in which case only the
exception with the highest priority is reported. The TX49 Processor Core instruction
exception priority is shown in Table 11-3.

Table 11-3 Priority of Exception

Priority Exception Mnemonic
Cold Reset
Soft Reset
NMI
Address error Inst. Fetch AdEL
TLB refill Inst. Fetch TLBL
TLB invalid Inst. Fetch TLBL
Bus error Inst. Fetch IBE
Integer overflow, Trap, System Call, Breakpoint,
Reserved Instruction, Coprocessor Unusable, or
Floating-Point Exception

Ov, Tr, Sys,
Bp, RI, CpU,
FPE

Address error Data access AdEL/AdES
TLB refill Data access TLBL/TLBS
TLB invalid Data access TLBL/TLBS
TLB modified Data write Mod
Bus error Data access DBE

High

Low

Interrupt Int

General exceptions (i.e., exceptions other than debug exceptions) are prioritized as follows:

1. If more than one exception condition occurs for a signal instruction, only the exception
with the highest priority is reported, as shown in Table 11-3 (from highest to lowest
priority).

2. If two instructions cause exception conditions in the M and E stages of the pipeline
simultaneously, the instruction in the M stage causes the processor to take an
exception.

3. When 64-bit instructions are executed in 32-bit mode, the Reserved Instruction (RI)
exception can occur simultaneous with other exception, as shown below. In that case,
the RI exception is given precedence.

• RI and CpU

• RI and Ov

• RI and AdEL/S (data)

• RI and TLBL/S (data)

General and debug exceptions are prioritized as follows:

1. If a general exception condition and a debug exception condition occur for a single
instruction, the debug exception is serviced first, and then the general exception is
serviced.

2. If two instructions cause exception conditions in the M and E stages of the pipeline
simultaneously, only the instruction in the M stage generates an exception.

For details on debug exceptions, see Section 14.9.

TX49/H2 Architecture

11-3

11.4 ColdReset Exception

11.4.1 Cause

This ColdReset exception occurs when the GCOLDRESET* signal is asserted and then
deasserted. This exception is not maskable.

11.4.2 Processing

A special interrupt vector that resides in an unmapped and uncached area is used. It is
therefore not necessary for hardware to initialize TLB and cache memory in order to
process this exception. The vector location of this exception is;

• In 32 bit mode, 0xbfc0 0000 (virtual address), 0x0_1fc0_0000 (physical address)

• In 64 bit mode, 0xffff ffff bfc0 0000 (virtual address), 0x0_1fc0_0000 (physical
address)

The most register’s contents are cleared when this exception occurs. The values of
these bits are listed into the table of Section 7.

Valid bits, Lock bits and FIFO replacement bits in the instruction cache are all cleared
to 0. W bits, CS bits, Lock bits and FIFO replacement bits in the data cache are all cleared
to 0.

If a ColdReset exception occurs during bus cycle, the current bus cycle is aborted and an
exception is taken.

11.4.3 Servicing

The ColdReset exception is serviced by;

• initializing all registers, coprocessor registers, caches and the memory system

• performing diagnostic tests

• bootstrapping the operating system

TX49/H2 Architecture

11-4

11.5 SoftReset Exception

11.5.1 Cause

This SoftReset exception occurs when the GRESET* signal is asserted and then
deasserted. This exception is not maskable.

11.5.2 Processing

A special interrupt vector that resides in an unmapped and uncached area is used. It is
therefore not necessary for hardware to initialize TLB and cache memory in order to
process this exception. The vector location of this exception is;

• In 32 bit mode, 0xbfc0 0000 (virtual address), 0x0_1fc0_0000 (physical address)

• In 64 bit mode, 0xffff ffff bfc0 0000 (virtual address), 0x0_1fc0_0000 (physical
address)

All register contents are retained except for the following.

• ErrorEPC register, which contains the restart PC

• ERL, SR and BEV bits of Status register, which are set to “1”

Because Soft-reset exception can abort cache and bus operations, cache and memory
state is undefined when this exception occurs.

11.5.3 Servicing

The SoftReset exception is serviced by saving the current processor state for diagnostic
purposes, and reinitializing for the ColdReset exception.

TX49/H2 Architecture

11-5

11.6 NMI (Non-maskable Interrupt) Exception

11.6.1 Cause

The NMI (Non-maskable Interrupt) exception occurs at the falling edge of the GNMI*
signal. This interrupt is not maskable, and occurs regardless of the EXL, ERL and IE bits
of the Status register.

11.6.2 Processing

The same special interrupt vector as for Cold-reset/Soft-reset exception (0xbfc0_0000/
0xffff_ffff_bfc0_0000). This vector is located within unmapped and uncached area so that
the cache and TLB need not be initialized to process this exception. When this exception
occurs, the SR bit of Status register is set.

Because NMI exception can occur in the midst of another exception, it is not normally
possible to continue program execution after servicing NMI exception.

Unlike the Cold-reset/Soft-reset exception, but like other exceptions, this exception
occurs at an instruction boundary. The state of the primary cache and memory system
are preserved by this exception.

All register contents are retained except for the following.

• ErrorEPC register, which contains the restart PC
If the exception-causing instruction is in a branch delay slot, the ErrorEPC
register points at the preceding branch instruction, and the BD bit of the Cause
register is set as indication.

• ERL, SR and BEV bits of the Status register, which is set to 1.

11.6.3 Servicing

The NMI exception is serviced by saving the current processor state for diagnostic
purposes, and reinitializing the system for the ColdReset exception.

TX49/H2 Architecture

11-6

11.7 Address Error Exception

11.7.1 Cause

The Address Error exception occurs when an attempt is made to execute one of the
following.

• load or store a doubleword that is not aligned on a doubleword boundary

• load, fetch or store a word that is not aligned on a word boundary

• load or store a halfword that is not aligned on a halfword boundary

• reference Kernel mode address while in User or Supervisor mode

• reference Supervisor mode address while in User mode

This exception is not maskable.

11.7.2 Processing

The common exception vector is used. ExcCode AdEL or AdES in Cause register is set
depending on whether the memory access attempt was a load or store. When this
exception is raised, the misalign virtual address causing the exception, or the protected
virtual address that was illegally referenced, is placed in BadVAddr register. The
contents of the VPN field of Context and EntryHi registers are undefined, as are the
contents of EntryLo register.

If EXL bit of Status register is only set to 0, the following operation is executed. EPC
register points to the address of the instruction causing the exception. If, however, the
affected instruction was in the branch delay slot (for execution during a branch), the
immediately preceding branch instruction address is retained in EPC register and BD bit
of Cause register is set to “1”.

11.7.3 Servicing

The process executing at the time is handed a segmentation violation signal. This error
is usually fatal to the process incurring the exception.

TX49/H2 Architecture

11-7

11.8 TLB Refill Exception

11.8.1 Cause

The TLB refill exception occurs when there is no TLB entry to match a reference to a
mapped address. This exception is not maskable.

11.8.2 Processing

There are two special exception vectors for this exception; one for references to 32-bit
virtual address, and one for references to 64-bit virtual address. The KX, SX and UX bits
of Status register determine whether the User, Supervisor or Kernel address referenced
are 32-bit mode or 64-bit mode. When EXL bit of Status register is set to “0”, all
references use these vectors. When this exception occurs, TLBL or TLBS code is set in the
ExcCode field of Cause register. This code indicates whether the instruction, as shown by
EPC register and BD bit of Cause register, caused the miss by an instruction reference,
load operation, or store operation.

When this exception occurs;

• BadVAddr, Context, XContext and EntryHi registers hold the virtual address
failed address translation

• EntryHi register contains ASID from which the translation fault occurred, too

• A valid address in which to place the replacement TLB entry is contained into
Random register

• The contents of EntryLo register are undefined

If EXL bit of Status register is only set to 0, the following operation is executed. EPC
register points to the address of the instruction causing the exception. If, however, the
affected instruction was in the branch delay slot (for execution during a branch), the
immediately preceding branch instruction address is retained in EPC register and BD bit
of Cause register is set to “1”.

11.8.3 Servicing

To service this exception, the contents of the Context or XContext register are used as a
virtual address to fetch memory locations containing the physical page frame and access
control bits for a pair of TLB entries. The two entries are placed into the
EntryLo0/EntryLo1 register; the EntryHi and EntryLo registers are written into the TLB.

It is possible that the virtual address used to obtain the physical address and access
control information is on a page that is not resident in the TLB. This condition is
processed by allowing a TLB refill exception in the TLB refill handler. This second
exception goes to the common exception vector because the EXL bit of the Status register
is set.

TX49/H2 Architecture

11-8

11.9 TLB Invalid Exception

11.9.1 Cause

The TLB Invalid exception occurs when a virtual address reference matches a TLB entry
that is marked invalid (TLB valid bit cleared). This exception is not maskable.

11.9.2 Processing

The common exception vector is used for this exception. When this exception occurs,
TLBL or TLBS code is set in the ExcCode field of Cause register. This code indicates
whether the instruction, as shown by EPC register and BD bit of Cause register, caused
the miss by an instruction reference, load operation, or store operation.

When this exception occurs;

• BadVAddr, Context, XContext and EntryHi registers hold the virtual address
failed address translation

• EntryHi register contains ASID from which the translation fault occurred, too

• A valid address in which to place the replacement TLB entry is contained into
Random register

• The contents of EntryLo register are undefined

If EXL bit of Status register is only set to 0, the following operation is executed. EPC
register points to the address of the instruction causing the exception. If, however, the
affected instruction was in the branch delay slot (for execution during a branch), the
immediately preceding branch instruction address is retained in EPC register and BD bit
of Cause register is set to “1”.

11.9.3 Servicing

A TLB entry is typically marked invalid when one of the following is true;

• a virtual address does not exist

• the virtual address exists, but is not in main memory (a page fault)

• a trap is desired on any reference to the page (for example, to maintain a
reference bit or during debug)

After servicing the cause of a TLB Invalid exception, the TLB entry is located with TLB
Probe (TLBP) instruction, and replaced by an entry with that entry’s Valid bit set.

TX49/H2 Architecture

11-9

11.10 TLB Modified Exception

11.10.1 Cause

The TLB Modified exception occurs when a store operation virtual address reference to
memory matches a TLB entry that is marked valid but is not dirty and therefore is not
writable. This exception is not maskable.

11.10.2 Processing

The common exception vector is used for this exception, and Mod code in Cause register
is set.

When this exception occurs;

• BadVAddr, Context, XContext and EntryHi registers hold the virtual address
failed address translation

• EntryHi register contains ASID from which the translation fault occurred, too

• The contents of EntryLo register are undefined

If EXL bit of Status register is only set to 0, the following operation is executed. EPC
register points to the address of the instruction causing the exception. If, however, the
affected instruction was in the branch delay slot (for execution during a branch), the
immediately preceding branch instruction address is retained in EPC register and BD bit
of Cause register is set to 1.

11.10.3 Servicing

The kernel uses the failed virtual address or virtual page number to identify the
corresponding access control information. The page identified may or may not permit
write accesses; if writes are not permitted, a write protection violation occurs.

If write accessed are permitted, the page frame is marked dirty/writable by the kernel
in its own data structures. The TLB Probe (TLBP) instruction places the index of the
TLB entry that must be altered into the Index register. The EntryLo register is loaded
with a word containing the physical page frame and access control bits (with the D bit
set), and the EntryHi and EntryLo registers are written into the TLB.

TX49/H2 Architecture

11-10

11.11 Bus Error Exception

11.11.1 Cause

The Bus Error exception occurs when GBUSERR* signal is asserted during a memory
read bus cycle. This exception is raised by board-level circuitry for events such as bus
time-out, backplane bus parity errors, and invalid physical memory addresses or access
types. This occurs during execution of the instruction causing the bus error. The memory
bus cycle ends upon notification of a bus error. When a bus error is raised during a burst
refill, the following refill is not performed. A bus error request made by asserting
GBUSERR* signal will be ignored if TX49 is executing a cycle other than a bus cycle. It is
therefore not possible to raise a Bus Error exception in a write access using a write buffer.
A general interrupt must be used instead. This exception is not maskable.

11.11.2 Processing

The common interrupt vector is used for a Bus Error exception. The IBE or DBE code
in the ExcCode field of the Cause register is set, signifying whether the instruction (as
indicated by the EPC register and BD bit in the Cause register) caused the exception by
an instruction reference, load operation, or store operation.

The EPC register contains the address of the instruction that caused the exception,
unless it is in a branch delay slot, in which case the EPC register contains the address of
the preceding branch instruction and the BD bit of the Cause register is set.

11.11.3 Servicing

The physical address at which the fault occurred can be computed from information
available in the CP0 registers.

• If the IBE code in the Cause register is set (indicating an instruction fetch
reference), the virtual address is contained in the EPC register (or 4+ the
contents of the EPC register if the BD bit of the Cause register is set).

• If the DBE code is set (indicating a load or store reference), the instruction that
caused the exception is located at the virtual address contained in the EPC
register (or 4+ the contents of the EPC register if the BD bit of the Cause register
is set).

The virtual address of the load and store reference can then be obtained by interpreting
the instruction. The physical address can be obtained by using the TLB Probe (TLBP)
instruction and reading the EntryLo register to compute the physical page number.

The process executing at the time of this exception is handed a bus error signal, which
is usually fatal.

TX49/H2 Architecture

11-11

11.12 Integer Overflow Exception

11.12.1 Cause

The Integer Overflow exception occurs when ADD, ADDI, SUB, DADD, DADDI or
DSUB instruction results in a 2’s complement overflow. This exception is not maskable.

11.12.2 Processing

The common exception vector is used for this exception, and the Ov code in Cause
register is set.

 If EXL bit of Status register is only set to 0, the following operation is executed. EPC
register points to the address of the instruction causing the exception. If, however, the
affected instruction was in the branch delay slot (for execution during a branch), the
immediately preceding branch instruction address is retained in EPC register and BD bit
of Cause register is set to 1.

11.12.3 Servicing

The process executing at the time of the exception is handed a floating-point
exception/integer overflow signal. This error is usually fatal to the current process.

TX49/H2 Architecture

11-12

11.13 Trap Exception

11.13.1 Cause

The Trap exception occurs when TGE, TGEU, TLT, TLTU, TEQ, TNE, TGEI, TGEIU,
TLTI, TLTIU, TEQI or TNEI instruction results in a TRUE condition. This exception is
not maskable.

11.13.2 Processing

The common exception vector is used for this exception, and the Tr code in Cause
register is set.

If EXL bit of Status register is only set to 0, the following operation is executed. EPC
register points to the address of the instruction causing the exception. If, however, the
affected instruction was in the branch delay slot (for execution during a branch), the
immediately preceding branch instruction address is retained in EPC register and BD bit
of Cause register is set to 1.

11.13.3 Servicing

The process executing at the time of a Trap exception is handed a floating-point
exception/integer overflow signal. This error is usually fatal.

TX49/H2 Architecture

11-13

11.14 System Call Exception

11.14.1 Cause

The System Call exception occurs during an attempt to execute the SYSCALL
instruction. This exception is not maskable.

11.14.2 Processing

The common exception vector is used for this exception, and the Sys code in Cause
register is set.

If EXL bit of Status register is only set to 0, the following operation is executed. EPC
register points to the address of the SYSCALL instruction. If, however, the affected
instruction was in the branch delay slot (for execution during a branch), the immediately
preceding branch instruction address is retained in EPC register.

If the SYSCALL instruction is in a branch delay slot, BD bit of Status register is set,
otherwise this bit is cleared.

11.14.3 Servicing

When this exception occurs, control is transferred to the applicable system routine.

To resume execution, the EPC register must be altered so that the SYSCALL
instruction does not re-execute; this is accomplished by adding a value of 4 to the EPC
register (EPC register + 4) before returning.

If a SYSCALL instruction is in a branch delay slot, a more complicated algorithm,
beyond the scope of this description, may be required.

TX49/H2 Architecture

11-14

11.15 Breakpoint Exception

11.15.1 Cause

The Breakpoint exception occurs when an attempt is made to execute the BREAK
instruction. This exception is not maskable.

11.15.2 Processing

The common exception vector is used for this exception, and the Bp code in Cause
register is set.

If EXL bit of Status register is only set to 0, the following operation is executed. EPC
register points to the address of the BREAK instruction. If, however, the affected
instruction was in the branch delay slot (for execution during a branch), the immediately
preceding branch instruction address is retained in EPC register.

If the BREAK instruction is in a branch delay slot, BD bit of Status register is set,
otherwise this bit is cleared.

11.15.3 Servicing

When the Breakpoint exception occurs, control is transferred to the applicable system
routine. Additional distinctions can be mode by analyzing the unused bits of the BREAK
instruction (bits 25~6), and loading the contents of the instruction whose address the EPC
register contains. A value of 4 must be added to the contents of the EPC register (EPC
register + 4) to locate the instruction if it resides in a branch delay slot.

To resume execution, the EPC register must be altered so that the BREAK instruction
does not re-execute; this is accomplished by adding a value of 4 to the EPC register (EPC
register + 4) before returning.

If a BREAK instruction is in a branch delay slot, interpretation of the branch
instruction is required to resume execution.

TX49/H2 Architecture

11-15

11.16 Reserved Instruction Exception

11.16.1 Cause

The Reserved Instruction exception occurs when one of the following condition occurs:

• an attempt is made to execute an instruction with an undefined major opecode
(bit 31~26)

• an attempt is made to execute a SPECIAL instruction with an undefined minor
opcode (bit 5~0)

• an attempt is made to execute a REGIMM instruction with an undefined minor
opcode (bit20~16)

• an attempt is made to execute 64-bit operations in 32-bit mode when in User or
Supervisor modes

• an attempt is made to execute a COPz rs instruction with an undefined minor
opcode (bit25~21)

• an attempt is made to execute a COPz rt instruction with an undefined minor
opcode (bit20~16)

64-bit operations are always valid in Kernel mode regardless of the value of the KX bit
in Status register. This exception is not maskable.

11.16.2 Processing

The common exception vector is used for this exception, and the RI code in Cause
register is set.

If EXL bit of Status register is only set to 0, the following operation is executed. EPC
register points to the address of the instruction causing the exception. If, however, the
affected instruction was in the branch delay slot (for execution during a branch), the
immediately preceding branch instruction address is retained in EPC register and the BD
bit of Cause register is set to 1.

11.16.3 Servicing

No instruction in the MIPS ISA are currently interpreted. The process executing at the
time of this exception is handed an illegal instruction/reserved operand fault signal. This
error is usually fatal.

TX49/H2 Architecture

11-16

11.17 Coprocessor Unusable Exception

11.17.1 Cause

The Coprocessor Unusable exception occurs when an attempt is made to execute a
coprocessor instruction for either.

• attempting to execute a coprocessor CPz instruction when its corresponding CUz
bit in Status register.

• in User or Supervisor mode attempting to execute a CP0 instruction when CU0
bit is cleared to “0”. (In Kernel mode, an exception is not raised when a CP0
instruction is issued , regardless of the CU0 bit setting)

• an attempt is made to execute a FPU instruction in TX49 without FPU

11.17.2 Processing

The common exception vector is used for this exception, and the CpU code in Cause
register is set. The coprocessor number referred to at the time of the exception is stored
in Cause register CE (Coprocessor Error) field.

If EXL bit of Status register is only set to 0, the following operation is executed. EPC
register points to the address of the instruction causing the exception. If, however, the
affected instruction was in the branch delay slot (for execution during a branch), the
immediately preceding branch instruction address is retained in EPC register and BD bit
of Cause register is set to 1.

11.17.3 Servicing

The coprocessor unit to which an attempted reference was mode is identified by the
Coprocessor Usage Error field, which results in one of the following situations:

• If the process is entitled access to the coprocessor, the coprocessor is marked
usable and the corresponding user state is restored to the coprocessor.

• If the process is entitled access to the coprocessor, but the coprocessor does not
exist or has failed, interpretation of the coprocessor instruction is possible.

• If the BD bit is set in the Cause register, the branch instruction must be
interpreted; then the coprocessor instruction can be emulated and execution
resumed with the EPC register advanced past the coprocessor instruction.

• If the process is not entitled access to the coprocessor, the process executing at
the time is handed an illegal instruction/privileged instruction fault signal. This
error is usually fatal.

TX49/H2 Architecture

11-17

11.18 Floating-Point Exception

11.18.1 Cause

The Floating-Point exception is used by the floating-point coprocessor. This exception is
not maskable.

11.18.2 Processing

The common exception vector is used for this exception, and the FPE code in Cause
register is set. The contents of the Floating-Point Control/Status register indicate the
cause of this exception.

If EXL bit of Status register is only set to 0, the following operation is executed. EPC
register points to the address of the instruction causing the exception. If, however, the
affected instruction was in the branch delay slot (for execution during a branch), the
immediately preceding branch instruction address is retained in EPC register and the BD
bit of Cause register is set to 1.

11.18.3 Servicing

This exception is cleared by clearing the appropriate bit in the Floating-Point
Control/Status register.

For an unimplemented instruction exception, the kernel should emulate the instruction;
for other exceptions, the kernel should pass the exception to the user program that caused
the exception.

TX49/H2 Architecture

11-18

11.19 Interrupt Exception

11.19.1 Cause

The Interrupt exception is raised by any of eight interrupts (two software and six
hardware). A hardware interrupt is raised when GINT* signal goes active. A software
interrupt is raised by setting the IP[1]/IP[0] bit in Cause register. The significance of
these interrupts is dependent upon the specific system implementation.

Each of the eight interrupts can be masked individually by clearing its corresponding
bit in the IM(Interrupt Mask) field of Status register, and all interrupts can be masked at
once by clearing IE bit of Status register to “0”.

If the GTINTDIS is low when a Reset exception occurred, GINT[5]* is disabled and the
timer exception is enabled.

11.19.2 Processing

The common exception vector is used as following;

• In 32 bit mode, 0x8000 0180 (BEV = 0)

0xbfc0 0380 (BEV = 1)

• In 64 bit mode, 0xffff ffff 8000 0180 (BEV = 0)

0xffff ffff bfc0 0380 (BEV = 1)

11.19.3 Servicing

If the interrupt is caused by one of the two software-generated exceptions (SW1 or
SW0), the interrupt condition is cleared by setting the corresponding Cause register bit to
0.

If the interrupt is hardware-generated, the interrupt condition is cleared by correcting
the condition causing the interrupt pin to be asserted.

If the timer interrupt is caused, the interrupt condition is cleared by changing the value
of the Compare register or setting the corresponding Cause register bit (IP[7]) to 0.

Interrupts are not acceptable when the settings of the Status register are EXL = 1 and
ERL = 1.

Note: due to the write buffer, a store to an external device will not necessary occur until after
other instructions in the pipeline finish. Thus, the user must ensure that the store will
occur before the return from exception instruction (ERET) is executed otherwise the
interrupt may be serviced again even though there should be no interrupt pending.

TX49/H2 Architecture

11-19

11.20 Exception Handling and Servicing Flowcharts

The remainder of this chapter contains flowcharts for the following exceptions and
guidelines for their handlers:

• general exceptions and their exception handler

• TLB/XTLB miss exception and their exception handler

• Cold Reset, Soft Reset and NMI exceptions, and a guideline to their handler.

Generally speaking, the exceptions are handled by hardware (HW); the exceptions are then
serviced by software (SW).

Exceptions other than Reset, Soft Reset, NMI or first-level miss

Note: Interrupts can be masked by IE or IMs

EXL ← 1

PC ← 0xFFFF FFFF BFC0 0200 + 180
(unmapped, uncached)

PC ← 0xFFFF FFFF 8000 0000 + 180
(unmapped, cached)

Cause 31 (BD) ← 0
EPC ← PC

Cause 31 (BD) ← 1
EPC ← (PC - 4)

= 0 (normal) = 1 (bootstrap)

Yes No

= 1

Processor forced to Kernel Mode
& interrupt disabled

= 0

Comments

To General Exception Servicing Guidelines

BEV

Instr. in
Br. Dly. Slot?

EXL
(SR1)

Check if exception within
another exception

FP Control/Status Register
is only set if the respective exception
occurs.
EnHi, X/Context are set only for
*TLB- Invalid, Modified,
& Refill exceptions
BadVA is set only for
TLB-invalid, Modified,
and Refill exceptions
Note: not set if it is a Bus Error

Set FP Control Status Resister
EnHi ← VPN2, ASID
X/Context ← VPN2
Set Cause Register
(ExcCode, CE)
Set BadVA

Figure 11-1 General Exception Handler (HW)

TX49/H2 Architecture

11-20

ERET

MTC0 -
EPC
STATUS

EXL = 1

Service Code

Check CAUSE REG. & Jump to
appropriate Service Code

MTC0 -
(Set Status Bits:)
KSU ← 00
EXL ← 0
& IE = 1

MFC0 -
X/Context
EPC
Status
Cause

Status
bit 21 (TS) (*)

= 0

= 1

Comments

Optional: Check only if 2nd-level TLB miss

(optional - only to enable Interrupts while keeping Kernel Mode)

¥After EXL = 0, all exceptions allowed.
(except interrupt if masked by IE or IM)

Reset the processor

* Save Register File

* ERET is not allowed in the branch delay slot of
another Jump Instruction

* Processor does not execute the instruction which
is in the ERET’s branch delay slot

* PC ← EPC; EXL ← 0
* LLbit ← 0

* Unmapped vector TLBMod, TLBInv,
TLB Refill exceptions not possible

* EXL = 1 so Interrupt exceptions disabled

* OS/System to avoid all other exceptions

* Only Cold Reset, Soft Reset, NMI exceptions
possible.

* Save the context (register file and so on)

(*) Reserved for TX49.

Figure 11-2 General Exception Servicing Guidelines (SW)

TX49/H2 Architecture

11-21

Vec. Off. = 0x180Vec. Off. = 0x000Vec. Off. = 0x080

EXL ← 1

EnHi ← VPN2, ASID
X/Context ← VPN2
Set Cause Reg.

ExcCode, CE and
Set BadVA

EnHi ← VPN2, ASID
X/Context ← VPN2
Set Cause Reg.

ExcCode, CE and
Set BadVA

To TLB/XTLB Exception Servicing Guidelines

Instr. in
Br. Dly. Slot?

EXL
(SR bit 1)

EXL
(SR bit 1)

XTLB
Exception?

EPC ← PC
Cause bit 31 (BD) ← 0

EPC ← (PC-4)
Cause bit 31 (BD) ← 1

BEV
(SR bit 22)

PC ← 0xFFFF FFFF 8000 0000 + Vec. Off.
(unmapped, cached)

PC ← 0xFFFF FFFF BF00 0200 + Vec. Off.
(unmapped, uncached)

= 0 (normal) = 1 (bootstrap)

Processor forced to Kernel Mode &
interrupt disabled

No

Yes

Points to General ExceptionPoints to Refill Exception

NoYes

= 0= 0

= 1= 1

Check if exception within
another exception

Figure 11-3 TLB/XTLB Miss Exception Handler (HW)

TX49/H2 Architecture

11-22

ERET

Service Code

MFC0 -

CONTEXT

Comments

* ERET is not allowed in the branch delay slot of
another Jump Instruction

* Processor does not execute the instruction which is
in the ERET’s branch delay slot

* PC ← EPC; EXL = 0

* LLbit ← 0

* Load the mapping of the virtual address in Context Reg.
Move it to ENLO and Write into the TLB

* There could be a TLB miss again during the mapping
of the data or instruction address. The processor will
jump to the general exception vector since the EXL is 1.
(Option to complete the first level refill in the general
exception handler or ERET to the original instruction
and take the exception again)

* Unmapped vector TLBMod, TLBInv,
TLB Refill exceptions not possible

* EXL = 1 so Interrupt exceptions disabled

* OS/System to avoid all other exceptions

* Only Cold Reset, Soft Reset, NMI exceptions
possible.

Figure 11-4 TLB/XTLB Exception Servicing Guidelines (SW)

TX49/H2 Architecture

11-23

PC ← 0xFFFF FFFF BFC0 0000

ErrorEPC ← PC

ERET
Cold Reset Service CodeSoft Reset Service Code

NMI Service Code Status bit 20
(SR)

Yes

= 0

(Optional)

No

= 1

C
ol

d
R

es
et

, S
of

t R
es

et
 &

 N
M

I S
er

vi
ci

ng
G

ui
de

lin
es

 (S
W

)

Cold Reset ExceptionSoft Reset or NMI Exception
C

ol
d

R
es

et
, S

of
t R

es
et

 &
 N

M
I E

xc
ep

tio
n

H
an

dl
in

g
(H

W
)

Note: There is no indication from the
proessor to differentiate between
NMI & Soft Reset;
there must be a system level indication.

NMI?

Status:

BEV ← 1
TS ← 0 (*)
SR ← 1
ERL ← 1

Random ← TLBENTRIES-1
Wired ← 0
Status:

BEV ← 1
TS ← 0 (*)
SR ← 0
ERL ← 1

(*) Reserved for TX49

Figure 11-5 Cold Reset, Soft Reset & NMI Exception Handling (HW) and

Servicing Guidelines (SW)

TX49/H2 Architecture

11-24

TX49/H2 Architecture

12-1

12. Floating-Point Unit, CP1
This chapter describes the floating-point operations, including the programming model,

instruction set and formats.

The floating-point operations fully conform to the requirements of ANSI/IEEE Standard 754-
1985, IEEE Standard for Binary Floating-Point Arithmetic.

12.1 Overview

All floating-point instructions, as defined in the MIPS ISA for the floating-point coprocessor,
CP1, are processed by the other hardware unit that executes integer instructions.

The execution of floating-point instructions can be disabled by the coprocessor usability CU
bit defined in the CP0 Status register.

12.2 Floating Point Register

12.2.1 Floating-Point General Registers (FGRs)

CP1 has a set of Floating-Point General Purpose registers (FGRs) that can be accessed
in the following ways:

• As 32 general purpose registers (32 FGRs), each of which is 32 bits wide when the
FR bit in the CPU Status register equals 0; or as 32 general purpose registers (32
FGRs), each of which is 64-bits wide when FR equals 1. The CPU accesses these
registers through MOVE, LOAD, and STORE instructions.

• As 16 floating-point registers (see the next section for a description of FPRs), each
of which is 64-bits wide, when the FR bit in the CPU Status register equals 0.
The FPRs hold values in either single- or double-precision floating-point format.
Each FPR corresponds to adjacently numbered FGRs as shown in Figure 12-1.

• As 32 floating-point registers (see the next section for a description of FPRs), each
of which is 64-bits wide, when the FR bit in the CPU Status register equals 1.
The FPRs hold values in either single- or double-precision floating-point format.
Each FPR corresponds to an FGR as shown in Figure 12-1.

Floating-point
Registers (FPR)

(FR = 0)

Floating-Point
General Purpose Registers

Floating-point
Registers (FPR)

(FR = 1)

Floating-Point
General Purpose Registers

31 (FGR) 0 63 (FGR) 0
(least) FGR0 FPR0 FGR0

FPR0
(most) FGR1 FPR1 FGR1
(least) FGR2 FPR2 FGR2

FPR2
(most) FGR3 FPR3 FGR3

• •
• •
• •

(least) FGR28 FPR28 FGR28
FPR28

(most) FGR29 FPR29 FGR29
(least) FGR30 FPR30 FGR30

FPR30
(most) FGR31 FPR31 FGR31

Floating-point
Control Registers

(FCR)
Control/Status Register Implementation/Revision Register

31 (FCR31) 0 31 (FCR0) 0

Figure 12-1 FP Registers

TX49/H2 Architecture

12-2

12.2.2 Floating-Point Control Registers

The MIPS RISC architecture defines 32 floating-point control registers (FCRs); the
TX49 processor implements two of these registers: FCR0 and FCR31. These FCRs are
described below:

• The Implementation/Revision register (FCR0) holds revision information.

• The Control/Status register (FCR31) controls and monitors exceptions, holds the
result of compare operations, and establishes rounding modes.

• FCR1 to FCR30 are reserved.

Table 12-1 lists the assignments of the FCRs.

Table 12-1 Floating-Point Control Register Assignments

FCR Number Use
FCR0 Coprocessor implementation and revision register
FCR1 to FCR30 Reserved
FCR31 Rounding mode, cause, trap enables, and flags

Implementation and Revision Register, (FCR0)

The read-only Implementation and Revision register (FCR0) specifies the
implementation and revision number of CP1. This information can determine the
coprocessor revision and performance level, and can also be used by diagnostic software.

Figure 12-2 shows the layout of the register; Table 12-2 describes the Implementation
and Revision register (FCR0) fields.

Implementation/Revision Register (FCR0)
31 16 15 8 7 0

0 Imp Rev
16 8 8

Figure 12-2 Implementation/Revision Register

Table 12-2 FCR0 Fields

Field Description
Imp Implementation number
Rev Revision number in the form of y. x
0 Reserved. Returns zeroes when read.

The revision number is a value of the form y. x, where:

• y is a major revision number held in bits 7:4.

• x is a minor revision number held in bits 3:0.

Control/Status Register (FCR31)

The Control/Status register (FCR31) contains control and status information that can
be accessed by instructions in either Kernel or User mode. FCR31 also controls the
arithmetic rounding mode and enables User mode traps, as well as identifying any
exceptions that may have occurred in the most recently executed floating-point
instruction, along with any exceptions that may have occurred without being trapped.

Figure 12-3 shows the format of the Control/Status register, and Table 12-3 describes
the Control/Status register fields. Figure 12-4 shows the Control/Status register Cause,
Flag, and Enable fields.

TX49/H2 Architecture

12-3

Control/Status Register (FCR31)
31 25 24 23 22 18 17 12 11 7 6 2 1 0

0 FS C 0
Cause

EVZOUI
Enables
VZOUI

Flags
VZOUI

RM

7 1 1 5 6 5 5 2

Figure 12-3 FP Control/Status Register Bit Assignments

Table 12-3 Control/Status Register Fields

Field Description
FS When set, denormalized results can be flushed instead of causing

an unimplemented operation exception.
C Condition bit. Stores the result of compare instruction. See

description of Control/Status register Condition bit.
Cause Cause bits. These bits identify the exceptions raised by the most

recently executed floating-point instruction. See Figure 12-4 and the
description of Control/Status register Cause, Flag, and Enable bits.

Enables Enable bits. When set, these bits trap any floating-point exceptions
to indicate that they have been passed to the CPU. See Figure 12-4
and the description of Control/Status register Cause, Flag, and
Enable bits.

Flags Flag bits. These bits indicate that an exception was raised. See
Figure 12-4 and the description of Control/Status register Cause,
Flag, and Enable bits.

RM Rounding mode bits. See Table 12-5 and the description of
Control/Status register Rounding Mode Control bits.

Bit# 17 16 15 14 13 12
E V Z O U I

Bit# 11 10 9 8 7
V Z O U I

Bit# 6 5 4 3 2
V Z O U I

Inexact Operation
Underflow

Overflow
Division by Zero

Invalid Operation
Unimplemented Operation

Cause
Bits

Enable
Bits

Flag
Bits

Figure 12-4 Control/Status Register Cause, Flag, and Enable Fields

TX49/H2 Architecture

12-4

Control/Status Register FS Bit
The FS bit enables the flushing of denormalized values. When the FS bit is set and the

Underflow and Inexact Enable bits are not set, denormalized results are flushed instead
of causing an Unimplemented Operation exception. Results are flushed either to 0 or the
minimum normalized value, depending upon the rounding mode (see Table 12-4 below),
and the Underflow and Inexact Flag and Cause bits are set.

Table 12-4 Flush Values of Denormalized Results
Flushed Result Rounding ModeDenormalized

Result RN RZ RP RM
Positive +0 +0 +2Emin +0
Negative -0 -0 -0 -2Emin

Control/Status Register Condition Bit
When a floating-point Compare operation takes place, the result is stored at bit 23, the

Condition bit. The C bit is set to 1 if the condition is true; the bit is cleared to 0 if the
condition is false. Bit 23 is affected only by compare and CTC1 instructions.

The BC1T and BC1F instructions test the C bit to decide whether or not to cause a
branch.

Control/Status Register Cause, Flag, and Enable Fields

Figure 12-4 illustrates the Cause, Flag, and Enable fields of the Control/Status
register. The Cause and Flag fields are updated by all conversion, computational (except
MOV. fmt), CTC1, reserved, and unimplemented instructions. All other instructions have
no affect on these fields.

Cause Bits

Bits 17:12 in the Control/Status register contain Cause bits, as shown in Figure
12-4, which reflect the results of the most recently executed floating-point
instruction. The Cause bits are a logical extension of the CP0 Cause register; they
identify the exceptions raised by the last floating-point operation. If the
corresponding Enable bit is set at the time of the exception a floating-point exception
and interrupt is raised. If more than one exception occurs on a single instruction,
each appropriate bit is set.

The Cause bits are updated by most floating-point operations. The
Unimplemented Operation (E) bit is set to 1 if software emulation is required,
otherwise it remains 0. The other bits are set to 0 or 1 to indicate the occurrence or
non-occurrence (respectively) of an IEEE 754 exception. Within the set of floating-
point instructions that update the Cause bits, the Cause field indicates the exceptions
raised by the most-recently-executed instruction.

When a floating-point exception is taken, no results are stored, and the only state
affected is the Cause bit. Therefore, software emulation routines can use the original
values to emulate the exception-causing floating-point operation.

Enable Bits

A floating-point exception is generated any time a Cause bit and the corresponding
Enable bit are set. A floating-point operation that sets an enabled Cause bit forces
an immediate floating-point exception, as does setting both Cause and Enable bits

TX49/H2 Architecture

12-5

with CTC1. Software can also emulate above.

There is no enable for Unimplemented Operation (E). An Unimplemented
exception always generates a floating-point exception.

Before returning from a floating-point exception, software must first clear the
enabled Cause bits with a CTC1 instruction to prevent a repeat of the interrupt.
Thus, User mode programs can never observe enabled Cause bits set; if this
information is required in a User mode handler, it must be passed somewhere other
than the Status register.

For a floating-point operation that sets only unenabled Cause bits, no floating-
point exception occurs and the default result defined by IEEE 754 is stored. In this
case, the exceptions that were caused by the immediately previous floating-point
operation can be determined by reading the Cause field.

Flag Bits

The Flag bits are cumulative and indicate the exceptions that were raised by the
operations that were executed since the bits were explicitly reset. Flag bits are set to
1 if an IEEE 754 exception is raised, otherwise they remain unchanged. The Flag
bits are never cleared as a side effect of floating-point operations; however, they can
be set or cleared by writing a new value into the Status register, using a CTC1
instruction.

Control/Status Register Rounding Mode Control Bits

Bits 1 and 0 in the Control/Status register constitute the Rounding Mode (RM) field.

As shown in Table 12-5, these bits specify the rounding mode that CP1 uses for all
floating-point operations.

Table 12-5 Rounding Mode Bit Decoding

Rounding
ModeRM

(1:0)
Mnemonic Description

0 RN Round result to nearest representable value; round to value with least-significant
bit 0 when the two nearest representable values are equally near.

1 RZ Round toward 0: round to value closest to and not greater in magnitude than the
infinitely precise result.

2 RP Round toward +∞: round to value closest to and not less than the infinitely precise
result.

3 RM Round toward −∞: round to value closest to and not greater than the infinitely
precise result.

12.2.3 Accessing the FP Control and Implementation/Revision Registers

The Control/Status and the Implementation/Revision registers are read by a Move
Control From Coprocessor 1 (CFC1) instruction.

The bits in the Control/Status register can be set or cleared by writing to the register
using a Move Control To Coprocessor 1 (CTC1) instruction. The Implementation/Revision
register is a read-only register. There are no pipeline hazards (between any instructions)
associated with floating-point control registers.

TX49/H2 Architecture

12-6

12.3 Floating-Point Formats

CP1 performs both 32-bit (single-precision) and 64-bit (double-precision) IEEE standard
floating-point operations. The 32-bit single-precision format has a 24-bit signed-magnitude
fraction field (f+s) and an 8-bit exponent (e), as shown in Figure 12-5.

31 30 23 22 0
s

Sign
e

Exponent
f

Fraction
1 8 23

Figure 12-5 Single-Precision Floating-Point Format

The 64-bit double-precision format has a 53-bit signed-magnitude fraction field (f+s) and an
11-bit exponent, as shown in Figure 12-6.

63 62 5251 0
s

Sign
e

Exponent
f

Fraction
1 11 52

Figure 12-6 Double-Precision Floating-Point Format

As shown in the above figures, numbers in floating-point format are composed of three
fields:

• sign field, s

• biased exponent, e = E + bias

• fraction, f = b1b2....bp-1

The range of the unbiased exponent E includes every integer between the two values Emin

and Emax inclusive, together with two other reserved values:

• Emin − 1 (to encode 0 and denormalized numbers)

• Emax + 1 (to encode ∞ and NaNs [Not a Number])

For single-and double-precision formats, each representable nonzero numerical value has
just one encoding. For single-and double-precision formats, the value of a number, v, is
determined by the equations shown in Table 12-6.

Table 12-6 Equations for Calculating Values in Single and Double-Precision Floating-Point Format

No. Equation
(1) if E = Emax+1 and f ≠ 0, then v is NaN, regardless of s
(2) if E = Emax+1 and f = 0, then v = (−1)s∞

(3) if Emin ≤ E ≤ Emax, then v = (−1)s2E(1.f)
(4) if E = Emin−1 and f ≠ 0, then v = (−1)s2Emin(0.f)
(5) if E = Emin−1 and f = 0, then v = (−1)s0

For all floating-point formats, if v is NaN, the most-significant bit of f determines whether
the value is a signaling or quiet NaN: v is a signaling NaN if the most-significant bit of f is set,
otherwise, v is a quiet NaN.

Table 12-7 defines the values for the format parameters; minimum and maximum floating-
point values are given in Table 12-8.

TX49/H2 Architecture

12-7

Table 12-7 Floating-Point Format Parameter Values
Format

Parameter
Single Double

Emax +127 +1023
Emin –126 –1022
Exponent bias +127 +1023
Exponent width in bits 8 11
Integer bit hidden hidden
Fraction width in bits 23† 52†
Format width in bits 32 64

† Excluding the sign bit.

Table 12-8 Minimum and Maximum Floating-Point Values

Type Value
Single-precision Minimum 1.40129846e-45

Single-precision Minimum Norm 1.17549435e-38

Single-precision Maximum 3.40282347e+38

Double-precision Minimum 4.9406564584124654e-324

Double-precision Minimum Norm 2.2250738585072014e-308

Double-precision Maximum 1.7976931348623157e+308

12.4 Binary Fixed-Point Format
Binary fixed-point values are held in 2's complement format. Unsigned fixed-point values

are not directly provided by the floating-point instruction set. Figure 12-7 illustrates binary
single fixed-point format and Figure 12-8 illustrates binary long fixed-point format; Table 12-9
lists the binary fixed-point format fields.

31 30 0
Sign Integer

1 31

Figure 12-7 Binary Single Fixed-Point Format

63 62 0
Sign Integer

1 63

Figure 12-8 Binary Long Fixed-Point Format

Field assignments of the binary fixed-point format are:

Table 12-9 Binary Fixed-Point Format Fields

Field Description
sign sign bit
integer integer value (2’s complement)

TX49/H2 Architecture

12-8

12.5 Floating-Point Instruction Set Summary

Each instruction is 32 bits long, and aligned on a word boundary. This section describes
the overview of instructions for floating-point unit. A detailed description of each instruction
is provided in Appendix B.

12.5.1 Load, Move and Store Instructions (Table 12-10)

Load and Store instructions move data between memory and FPU general purpose
registers, and Move instructions move data directly between CPU and FPU general
purpose registers. These instructions are not perform format conversions and therefore
never cause floating-point exceptions. The instruction immediately following a load can
use the contents of the loaded register. However, in such case the hardware interlocks,
requiring additional real cycles. Thus, the scheduling of load delay slots is required to
avoid the interlocking.

Data Alignment

All processor loads and stores reference the following aligned data items:

• For word loads and stores, the access type is always WORD, and the low-order 2 bits
of the address must always be 0.

• For doubleword loads and stores, the access type is always DOUBLEWORD, and the
low-order 3 bits of the address must always be 0.

Endian

Regardless of byte-numbering order (endianness) of the data, the address specifies the
byte that has the smallest byte address in the addressed field. For a big-endian system, it
is the leftmost byte; for a little-endian system, it is the rightmost byte.

Table 12-10 FPU Instruction Set (Optional): Load, Move and Store Instruction

Instruction Description Note
LWC1 Load Word to FPU (coprocessor 1) MIPS I
SWC1 Store Word from FPU (coprocessor 1) MIPS I
MTC1 Move Word to FPU (coprocessor 1) MIPS I
CTC1 Move Control Word to FPU (coprocessor 1) MIPS I
MFC1 Move Word from FPU (coprocessor 1) MIPS I
CFC1 Move Control Word from FPU (coprocessor 1) MIPS I

TX49/H2 Architecture

12-9

12.5.2 Conversion Instructions (Table 12-11)

Conversion instructions perform conversion operations between the various data
formats such as single- or double-precision, fixed- or floating-point formats. Table 12-11
list conversion instructions.

Table 12-11 FPU Instruction Set(Optional): Conversion Instruction

Instruction Description Note
CVT.S.fmt Floating-Point Convert to Single FP Format MIPS I
CVT.W.fmt Floating-Point Convert to Single Fixed-Point Format MIPS I
ROUND.W.fmt Floating-point Round MIPS II
TRUNC.W.fmt Floating-point Truncate MIPS II
CEIL.W.fmt Floating-point Ceiling MIPS II
FLOOR.W.fmt Floating-point Floor MIPS II

12.5.3 Computational Instructions (Table 12-12)

Computational instructions perform arithmetic operations on floating-point values in
the FPU registers. These are two categories of computational instructions:

• 3-Operand Register-Type instructions, which perform floating-point addition,
multiplication, division, and square root operations

• 2-Operand Register-Type instructions, which perform floating-point absolute
value, move, negate, and square root operation.

Table 12-12 FPU Instruction Set(Optional): Computational Instruction

Instruction Description Note
ADD.fmt Floating-point Add MIPS I
SUB.fmt Floating-point Subtract MIPS I
MUL.fmt Floating-point Multiply MIPS I
DIV.fmt Floating-point Divide MIPS I
ABS.fmt Floating-point Absolute Value MIPS I
MOV.fmt Floating-point Move MIPS I
NEG.fmt Floating-point Negate MIPS I
SQRT.fmt Floating-point Square root MIPS II

TX49/H2 Architecture

12-10

12.5.4 Compare and Branch Instructions (Table 12-13)

Compare instructions perform comparisons of the contents of registers and set a
conditional bit based on the results. Branch on FPU Condition instructions perform a
branch to the specified target if the specified coprocessor condition is met.

Table 12-13 FPU Instruction Set(Optional): Compare and Branch Instruction

Instruction Description Note
C.cond.fmt Floating-point Compare MIPS I
BC1T Branch on FPU True MIPS I
BC1F Branch on FPU False MIPS I
BC1TL Branch on FPU True Likely MIPS II
BC1FL Branch on FPU False Likely MIPS II

The floating-point compare (C.fmt.cond) instructions interpret the contents of two FPU
registers (fs, ft) in the specified format (fmt) and arithmetically compare them. A result is
determined based on the comparison and conditions (cond) specified in the instruction.

Table 12-4 lists the mnemonics for the compare instruction conditions.

Table 12-14 Mnemonics and Definitions of Compare Instruction Conditions
Mnemonic Definition Mnemonic Definition

F False T True
UN Unordered OR Ordered
EQ Equal NEQ Not Equal
UEQ Unordered or Equal OLG Ordered or Less than or Greater than
OLT Ordered Less Than UGE Unordered or Greater than or Equal
ULT Unordered or Less Than OGE Ordered Greater than or Equal
OLE Ordered Less Than or Equal UGT Unordered or Greater Than
ULE Unordered or Less than or Equal OGT Ordered Greater Than
SF Signaling False ST Signaling True
NGLE Not Greater than or Less than or Equal GLE Greater than, or Less than or Equal
SEQ Signaling Equal SNE Signaling Not Equal
NGL Not Greater than or Less than GL Greater than or Less Than
LT Less Than NLT Not Less Than
NGE Not Greater than or Equal GE Greater than or Equal
LE Less than or Equal NLE Not Less than or Equal
NGT Not Greater Than GT Greater Than

TX49/H2 Architecture

13-1

13. Floating-Point Exception

13.1 Introduction

This chapter describes floating-point exceptions, including FPU exception type, exception
trap processing, exception flags, saving and restoring state when handling an exception, and
trap handlers for IEEE Standard 754 exceptions.

13.2 Exception Types
The FP Control/Status register described in Chapter 12 contains an Enable bit for each

exception type; exception Enable bits determine whether an exception will cause the FPU to
initiate a trap or set a status flag.

• If a trap is taken, the FPU remains in the state found at the beginning of the
operation and a software exception handling routine executes.

• If no trap is taken, an appropriate value is written into the FPU destination register
and execution continues.

The FPU supports the five IEEE Standard 754 exceptions:

• Inexact (I)

• Underflow (U)

• Overflow (O)

• Division by Zero (Z)

• Invalid Operation (V)

Cause bits, Enables, and Flag bits (status flags) are used.

The FPU adds a sixth exception type, Unimplemented Operation (E). This exception
indicates the use of a software implementation. The Unimplemented Operation exception has
no Enable or Flag bit; whenever this exception occurs, an unimplemented exception trap is
taken.

Figure 13-1 shows the Control/Status register bits that support exceptions.

Bit # 17 16 15 14 13 12
E V Z O U I Cause Bits

Bit #
|

11
|

10
|
9

|
8

|
7

V Z O U I Enable Bits

Bit #
|
6

|
5

|
4

|
3

|
2

V Z O U I Flag Bits
|

Unimplemented

|
Invalid

|
Division by

Zero

|
Overflow

|
Underflow

|
Inexact

Figure 13-1 Control/Status Register Exception/Flag/Trap/Enable Bits

TX49/H2 Architecture

13-2

13.3 Exception Trap Processing

When a floating-point exception trap is taken, the Cause register indicates the floating-point
coprocessor is the cause of the exception trap.

The Floating-Point Exception (FPE) code is used, and the Cause bits of the floating-point
Control/Status register indicate the reason for the floating-point exception. These bits are, in
effect, an extension of the system coprocessor Cause register.

13.4 Flags

A Flag bit is provided for each IEEE exception. This Flag bit is set to a 1 on the assertion of
its corresponding exception, with no corresponding exception trap signaled.

When no exception trap is signaled, floating-point coprocessor takes a default action,
providing a substitute value for the exception-causing result of the floating-point operation.
The particular default action taken depends upon the type of exception. Table 13-1 lists the
default action taken by the FPU for each of the IEEE exceptions.

Table 13-1 Default FPU Exception Actions

Field Description Rounding
Mode Default Action

I Inexact exception ANY Supply a rounded result.
U Underflow

exception
ANY Supply a rounded result.

O Overflow
exception

RN Modify overflow values to ∞ with the sign of the
intermediate result.

RZ Modify overflow values to the format’s largest finite
number with the sign of the intermediate result.

RP Modify negative overflows to the format’s most negative
finite number; modify positive overflows to + ∞

RM Modify positive overflows to the format’s largest finite
number; modify negative overflows to – ∞

Z Division by zero ANY Supply a properly signed ∞
V Invalid operation ANY Supply a quiet Not a Number (NaN).

The FPU detects the eight exception causes internally. When the FPU encounters one of
these unusual situations, it causes either an IEEE exception or an Unimplemented Operation
exception (E).

Table 13-2 lists the exception-causing situations and contrasts the behavior of the FPU with
the requirements of the IEEE Standard 754.

TX49/H2 Architecture

13-3

Table 13-2 FPU Exception-Causing Conditions

FPA Internal
Result

IEEE Standard
754 Trap Enable Trap Disable Notes

Inexact result I I I Loss of accuracy
Exponent overflow O, I* O, I O, I Normalized exponent > Emax
Division by zero Z Z Z Zero is (exponent = Emin – 1, mantissa = 0)
Overflow on convert V V E Source out of integer range
Signaling NaN
source

V V E Quiet NaN result generated from quiet NaN
source

Invalid operation V V E 0/0, etc.
Exponent underflow U E E Normalized exponent < Emin
Denormalized or
QNaN

None E E Denormalized is (exponent = Emin – 1 and
mantissa < > 0)

* The IEEE Standard 754 specifies an inexact exception on overflow only if the overflow trap is
disabled.

13.5 FPU Exceptions

The following sections describe the conditions that cause the FPU to generate each of its
exceptions, and details the FPU response to each exception-causing condition.

Inexact Exception (I)

The FPU generates the Inexact exception if one of the following occurs:

• the rounded result of an operation is not exact, or

• the rounded result of an operation overflows, or

• the rounded result of an operation underflows and both the Underflow and Inexact
Enable bits are not set and the FS bit is set.

Trap Enabled Results: If Inexact exception traps are enabled, the result register is not
modified and the source registers are preserved.

Trap Disabled Results: The rounded or overflowed result is delivered to the destination
register if no other software trap occurs.

Invalid Operation Exception (V)

The Invalid Operation exception is signaled if one or both of the operands are invalid for an
implemented operation. When the exception occurs without a trap, the MIPS ISA defines the
result as a quiet Not a Number (qNaN). The invalid operations are:

• Addition or subtraction: magnitude subtraction of infinities, such as: (+ ∞) + (−∞) or
(−∞) − (−∞)

• Multiplication: 0 times ∞, with any signs

• Division: 0/0, or ∞/∞, with any signs

• Comparison of predicates involving ‘<’ or ‘>’ without ‘?’, when the operands are
unordered

• Any arithmetic operation, when one or both operands is a signaling NaN. A move
(MOV) operation is not considered to be an arithmetic operation, but absolute value
(ABS) and negate (NEG) are.

• Comparison or a Convert From Floating-point Operation on a signaling NaN.

• Square root:

x

, where x is less than zero.

Software can simulate the Invalid Operation exception for other operations that are invalid
for the given source operands. Examples of these operations include IEEE Standard 754-

TX49/H2 Architecture

13-4

specified functions implemented in software, such as Remainder: x REM y, where y is 0 or x
is infinite; conversion of a floating-point number to a decimal format whose value causes an
overflow, is infinity, or is NaN; and transcendental functions, such as ln (−5) or cos−1 (3).
Refer to Appendix B for examples or for routines to handle these cases.

Trap Enabled Results: The result register is not modified, and the source registers are
preserved.

Trap Disabled Results: A quiet NaN is delivered to the destination register if no other
software trap occurs.

Divide-by-Zero Exception (Z)

The Division-by-Zero exception is signaled on an implemented divide operation if the
divisor is zero and the dividend is a finite nonzero number. Software can simulate this
exception for other operations that produce a signed infinity, such as In (0), sec (π/2), csc (0),
or 0-1

Trap Enabled Results: The result register is not modified, and the source registers are
preserved.

Trap Disabled Results: The result, when no trap occurs, is a correctly signed infinity.

Overflow Exception (O)

The Overflow exception is signaled when the magnitude of the rounded floating-point
result, with an unbounded exponent range, is larger than the largest finite number of the
destination format. (This exception also signals an Inexact exception.)

Trap Enabled Results: The result register is not modified, and the source registers are
preserved.

Trap Disabled Results: The result, when no trap occurs, is determined by the rounding
mode and the sign of the intermediate result (as listed in Table

12-1).

Underflow Exception (U)

Two related events contribute to the Underflow exception:

• creation of a tiny nonzero result between ±2Emin which can cause some later exception
because it is so tiny

• extraordinary loss of accuracy during the approximation of such tiny numbers by
denormalized numbers.

IEEE Standard 754 allows a variety of ways to detect these events, but requires they be
detected the same way for all operations.

Tininess can be detected by one of the following methods:

• after rounding (when a nonzero result, computed as though the exponent range were
unbounded, would lie strictly between ±2Emin)

• before rounding (when a nonzero result, computed as though the exponent range and
the precision were unbounded, would lie strictly between ±2Emin).

The MIPS architecture requires that tininess be detected after rounding.

Loss of accuracy can be detected by one of the following methods:

• denormalization loss (when the delivered result differs from what would have been
computed if the exponent range were unbounded)

• inexact result (when the delivered result differs from what would have been computed
if the exponent range and precision were both unbounded).

TX49/H2 Architecture

13-5

The MIPS architecture requires that loss of accuracy be detected as an inexact result.

Trap Enabled Results: If Underflow or Inexact traps are enabled, or if the FS bit is not
set, then an Unimplemented exception (E) is generated, and the
result register is not modified.

Trap Disabled Results: If Underflow and Inexact traps are not enabled and the FS bit is
set, the result is determined by the rounding mode and the sign of
the intermediate result (as listed in Table 12-1).

Unimplemented Instruction Exception (E)

Any attempt to execute an instruction with an operation code or format code that has been
reserved for future definition sets the Unimplemented bit in the Cause field in the FPU
Control/Status register and traps. The operand and destination registers remain
undisturbed and the instruction is emulated in software. Any of the IEEE Standard 754
exceptions can arise from the emulated operation, and these exceptions in turn are
simulated.

The Unimplemented Instruction exception can also be signaled when unusual operands or
result conditions are detected that the implemented hardware cannot handle properly.
These include:

• Denormalized operand, except for Compare instruction

• Quiet Not a Number operand, except for Compare instruction

• Denormalized result or Underflow, when either Underflow or Inexact Enable bits are
set or the FS bit is not set.

• Reserved opcodes

• Unimplemented formats

• Operations which are invalid for their format (for instance, CVT.S.S)

Note: Denormalized and NaN operands are only trapped if the instruction is a convert or
computational operation. Moves do not trap if their operands are either denormalized or
NaNs.

The use of this exception for such conditions is optional; most of these conditions are newly
developed and are not expected to be widely used in early implementations. Loopholes are
provided in the architecture so that these conditions can be implemented with assistance
provided by software, maintaining full compatibility with the IEEE Standard 754.

Trap Enabled Results: The result register is not modified, and the source registers are
preserved.

Trap Disabled Results: This trap cannot be disabled.

TX49/H2 Architecture

13-6

13.6 Saving and Restoring State

Sixteen doubleword† coprocessor load or store operations save or restore the coprocessor
floating-point register state in memory. The remainder of control and status information can
be saved or restored through CFC1/CTC1 instructions, and saving and restoring the processor
registers. Normally, the Control/Status register is saved first and restored last.

When state is restored, state information in the Control/Status register indicates the
exceptions that are pending. Writing a zero value to the Cause field of Control/Status register
clears all pending exceptions, permitting normal processing to restart after the floating-point
register state is restored.

13.7 Trap Handlers for IEEE Standard 754 Exceptions

The IEEE Standard 754 strongly recommends that users be allowed to specify a trap
handler for any of the five standard exceptions that can compute; the trap handler can either
compute or specify a substitute result to be placed in the destination register of the operation.

By retrieving an instruction using the processor Exception Program Counter (EPC) register,
the trap handler determines:

• exceptions occurring during the operation

• the operation being performed

• the destination format

On Overflow or Underflow exceptions (except for conversions), and on Inexact exceptions,
the trap handler gains access to the correctly rounded result by examining source registers
and simulating the operation in software.

On Overflow or Underflow exceptions encountered on floating-point conversions, and on
Invalid Operation and Divide-by-Zero exceptions, the trap handler gains access to the operand
values by examining the source registers of the instruction.

The IEEE Standard 754 recommends that, if enabled, the overflow and underflow traps
take precedence over a separate inexact trap. This prioritization is accomplished in software;
hardware sets the bits for both the Inexact exception and the Overflow or Underflow
exception.

† 32 doublewords if the FR bit is set to 1.

TX49/H2 Architecture

14-1

14. Debug Support Unit

14.1 Features

1. Utilizes JTAG interface compatible with IEEE Std. 1149.1.

2. Additional Status pins and debug clock in conjunction with JTAG pins provide Real-Time
Trace information.

3. Processor access to external processor probe to execute from the external trace memory
during debug exception and boot time. This is to eliminate system memory for debugging
purpose.

4. Supports DMA access through JTAG interface to internal processor bus to access internal
registers, host system peripherals and system memory.

5. Debug functions

• Instruction Address Break

• Data Bus break

• Processor Bus Break

• Hardware Debug Interrupt

• Reset, NMI, Interrupt Mask

6. Instructions for Debug

• SDBBP, DERET, CTC0, CFC0

7. CP0 Registers for Debug

• Debug, DEPC, DESAVE

14.2 EJTAG interface
This interface consists of two modes of operation a Run Time Mode and a Real Time Mode.

The Run Time mode provides functions such as processor Run, Stop, Single Step, and access to
internal registers and system memory. The Real Time mode provides additional status pins
used in conjunction with JTAG pins for Real Time Trace information.

Pins In/Out Description
GTCK I Test Clock Input
GDCLK O Debug Clock (1/3 CPU Clock)
GTDI/GDINT I Test Data Input (GTDI) at Run Time mode

/Debug Interrupt Input (GDINT) at Real Time mode
GTDO/GTPC[0] O Test Data Output (GTDO)

/PC Output (GTPC)
GTMS I Test Mode Select Input
GTRST* I Reset
GPCST[8∼ 0] O PC Trace Status Information
GTPC[3∼ 1] O PC Output

 TX49/H2 Architecture

14-2

14.3 JTAG Interface

Standard JTAG interface is used for on chip debugging during Run Time mode. The TX49
Debug Support Unit has following registers.

• Instruction Register

• Bypass Register

• Boundary-Scan Register

• Device Identification Register

• Implementation Register

• JTAG_Data_register

• JTAG_Address_Register

• JTAG_Control_Register

14.4 Processor Access Overview

The core processor can access external processor probe for reading and writing to external
monitor memory, registers and other external resources.

In addition the processor can execute from the external monitor memory located from
0xf_ff20 0000 to 0xf_ff2f ffff when the ProbEnb bit is set and the processor probe is turned ON.
Any access to the monitor location from 0xf_ff20 0000 to 0xf_ff3f ffff are only allowed when the
processor is in the debug mode (DM = 1).

14.5 Instruction

The instruction is a 8 bit field. Instructions for the TX49 Debug Support Unit are encoded
between 0x80 and 0x9f and other codes are reserved for Toshiba Standard JTAG instructions
(Includes EXTEST, SAMPLE/PRELOAD, INTEST, IDCODE and HI-Z) and so on.
Instructions are decoded as follows.

Hex Value Instruction Description
0x83 EJTAG_ImpCode Select Implementation Register
0x88 JTAG_ADDRESS_IR Select JTAG_Address Register
0x89 JTAG_DATA_IR Select JTAG_Data Register
0x8A JTAG_CONTROL_IR Select JTAG_Control Register
0x8B JTAG_ALL_IR Select JTAG_All Register
0x90 PCTRACE PCTRACE Instruction

Any unused instruction between 0x80 and 0x9f defaulted to BYPASS instruction.

TX49/H2 Architecture

14-3

14.6 Debug Unit

14.6.1 Extended Instructions

• SDBBP

• DERET

• CTC0

• CFC0

14.6.2 Extended Debug Registers in CP0

• Debug Register

• Debug Exception PC (DEPC)

• Debug SAVE

14.7 Register Map

Address Mnemonic Description
0xf ff30 0000 DCR Debug Control Register
0xf ff30 0008 IBS Instruction Break Status
0xf ff30 0010 DBS Data Break Status
0xf ff30 0018 PBS Processor Break Status

0xf ff30 0100 IBA0 Instruction Break Address 0
0xf ff30 0108 IBC0 Instruction Break Control 0
0xf ff30 0110 IBM0 Instruction Break Address Mask 0

0xf ff30 0300 DBA0 Data Break Address 0
0xf ff30 0308 DBC0 Data Break Control 0
0xf ff30 0310 DBM0 Data Break Address Mask 0
0xf ff30 0318 DB0 Data Break Value 0

0xf ff30 0600 PBA0 Processor Bus Break Address 0
0xf ff30 0608 PBD0 Processor Bus Break Data 0
0xf ff30 0610 PBM0 Processor Bus Break Mask 0
0xf ff30 0618 PBC0 Processor Bus Break Control 0

14.8 Processor Bus Break Function

This function is to monitor the interface to core and provide debug interruption or trace
trigger for a given physical address and data.

 TX49/H2 Architecture

14-4

14.9 Debug Exception

Three kinds of debug exception are supported.

• Debug Single Step (DSS bit)

• Debug Breakpoint Exception (SDBBP Instruction)

• JTAG Break Exception (Jtagbrk bit in JTAG_Control_Register)

Note: During real time debugging, first two functions are disabled.

14.9.1 Debug Single Step (DSS)

When the debug register DSS bit is set, this exception has been raised each time one
instruction is executed.

14.9.2 Debug Breakpoint exception (Dbp)

This exception is raised when SDBBP instruction is executed.

14.9.3 JTAG Break Exception

This exception is raised when JTAG unit set the Jtagbrk in JTAG_Control_Register.

14.9.4 Debug Exception Handling

Updates DEPC and Debug register.

Registers other than DEPC and Debug register retain their values.

14.9.5 Branching to debug handler

If the ProbEnb bit in JTAG_Control_Register[15] is set, the debug exception vector is
located at

PC: 0xffff ffff ff20 0200.

If the ProbEnb bit in JTAG_Conctrol_Register[15] is cleared, the debug exception vector
is located at

PC: 0xffff ffff bfc0 0400.

14.9.6 Exception handling when in Debug Mode (DM bit is set)

All interrupts including NMI are masked. When the NMI interrupt has occurred
during Debug mode, it is stored internally and the NMI interrupt is taken after debug
handler is finished (DM is clear).

14.10 Real Time PC TRACE Output

In real time mode non-sequential Program Counter and trace information are outputted on
GTPC[3~0] and GPCST[8~0]. at 1/3 of the processor clock speed.

TX49/H2 Architecture

15-1

15. TX49 MPU Core Signal Descriptions
The TX49 MPU core has a 64-bit bus interface that is upward compatible with the TX39 G-bus

interface.

Figure 15-1 TX49 MPU Core Interface Signals

TX49 Core

GAFM[35:0]

GBE[7:0]*

36

8
64GDFM[63:0]

GDTM[63:0]

GWR*

GACK*

GBUSERR*
GBURST*

GLAST*
GCACHE*

GID
GBUSOEN

GTRST*

GTDI/GDINT*

GTMS
GTCK
GTPC[3:1]
GTDO/GTPC[0]

GSNOOP*
GREQ*
GSREQ*
GHPGREQ*
GHPSREQ*
GGNT*
GSGNT*

GHPSGNT*
GREL*
GHAVEIT*

3

Memory Interface

Debug/JTAG Interface

Clock and System
Control Interface

GATM[35:5]

GRD*

GBSTART*

31

64

GDCLK
GPCST[8:0] 9

DMA Interface

GHPGGNT*

CPUCLK
GBUSCLK
GCRATE[1:0]
GDOZE
GHALT
GTINTDIS

GBS64*
GENDIAN

Interrupt Interface

GCOLDRESET*

GNMI*
GRESET*

GINT[5:0]*
6

GTEST[2:0]
GDIS*

Test Interface
3

GCPCOND[3:2]
2

Coprocessor Interface

GCPRD*

GCPRDACK*
GCPWR*

GCPWRACK*

2

TX49/H2 Architecture

15-2

15.1 Signal Descriptions

15.1.1 Memory Interface Signals

Table 15-1 lists the memory interface signals.

Table 15-1 Memory Interface Signals

Signal Name I/O Active
State Description

GAFM[35:0] O – Address From Bus (Output)
GAFM[35:0] is used as a 36-bit output address bus.

GATM[35:5] I – Address To Bus (Input)
GATM[35:5] is a 31-bit address input bus used for data cache snooping.

GBE[7:0]* O Low Byte Enable
GBE[7:0]* defines the valid data bytes within the 64-bit data bus. The correlation
between the byte enable signals and data bytes is as follows:

GDFM[63:0] O – Data From Master (Output)
This data bus always acts as a 64-bit output.

GDTM[63:0] I – Data to Master (Input)
This data bus always acts as a 64-bit input.

GRD* O Low Read
GRD* is an output-only strobe that is asserted during a bus read operation.

GWR* O Low Write
GWR* is an output-only strobe that is asserted during a bus write operation.

GACK* I Low Read/Write Acknowledge
GACK* is sampled with the rising edge of GBUSCLK. The TX49 MPU core ends
single-read and single-write operations in the next cycle after GACK* is recognized
as asserted. During burst-read and burst-write operations, the TX49 MPU core
increments the address at the next rising edge of GBUSCLK after GACK* is
recognized as asserted. If GACK* is sampled as deasserted, a bus wait cycle is
inserted.

GCACHE* O Cacheable
GCACHE* is an output signal that indicates whether the bus transfer in progress is
being performed on a cached or uncached address space.
H: Uncached space
L: Cached space

GID O Instruction or Data
GID is an output signal that indicates the type of bus transfer being performed.
H: Instruction
L: Data

GBSTART* O Low Bus Start
GBSTART* is an output signal that is asserted for one clock cycle to indicate that a
bus operation has started.

GBUSERR* I Low Bus Error
When GBUSERR* is asserted during a bus read operation, the TX49 MPU core
immediately terminates the ongoing transaction and takes a Bus Error exception.
GBUSERR* is valid only during bus read operations.

Byte Enable Corresponding Data Byte
GBE[7]* GDFM[63:56], GDTM[63:56]
GBE[6]* GDFM[55:48], GDTM[55:48]
GBE[5]* GDFM[47:40], GDTM[47:40]
GBE[4]* GDFM[39:32], GDTM[[39:32]
GBE[3]* GDFM[31:24], GDTM[[31:24]
GBE[2]* GDFM[23:16], GDTM[23:16]
GBE[1]* GDFM[15:8], GDTM[15:8]
GBE[0]* GDFM[7:0], GDTM[7:0]

TX49/H2 Architecture

15-3

Signal Name I/O Active
State Description

GBURST* O Low Burst
GBURST* is an output-only strobe that is asserted during burst-read and burst-
write operations.

GLAST* O Low Last
GLAST* is an output signal that indiates completion of a bus cycle.
• During a single-read or single-write, GLAST* is asserted simultaneously with

GBSTART*.
• During a burst-read or burst-write, GLAST* is asserted when the TX49 MPU

core has recognized a GACK* for the second last data read.
GBUSOEN* O Low G-Bus Output Enable

GBUSOEN* is the output enable control for the bus control signals:
While the TX49 assumes bus mastershp: Low
While the TX49 has released bus mastership: High
While GDIS* is asserted: High

TX49/H2 Architecture

15-4

15.1.2 DMA Interface Signals

Table 15-2 lists the DMA interface signals.

Table 15-2 DMA Interface Signals

Signal Name I/O Active
State Description

GSNOOP* I Low SNOOP
The TX49 samples GNSOOP* with the rising edge of GBUSCLK. When GSNOOP*
is recognized as asserted, the TX49 captures the address on GATM[35:5] and
compares it to the addresses of all data items held in the on-chip data cache. If the
snoop address hits in the data cache, the cache entry is invalidated. GSNOOP* is
valid when either GHPSGNT* or GSGNT* is asserted.

GREQ* I Low Normal Bus Request
Alternate bus masters assert this signal to request bus mastershp as per ET
concurrency protocols.

GSREQ* I Low Snoop Bus Request
Alternate bus masters assert this signal to request bus mastership as per ST
concurrency protocols.

GHPGREQ* I Low High-Priority Normal Bus Request
In response to GHPGREQ*, the TX49 asserts GHPGGNT* to grant the bus to the
requesting bus master as per ET concurrency protocols. GHPGREQ* has priority
over GREQ* if both are asserted simultaneously.

GHPSREQ* I Low High-Priority Snoop Bus Request
In response to GHPSREQ*, the TX49 asserts GHPSGNT* to grant the bus to the
requesting bus master as per ST concurrency protocols. GHPSREQ* has priority
over GSREQ* if both are asserted simultaneously.

GGNT* O Low Normal Bus Grant
Assertion of GGNT* indicates that the TX49 has relinquished bus mastership in
response to GREQ*.

GSGNT* O Low Snoop Bus Grant
Assertion of GSGNT* indicates that the TX49 has relinquished bus mastership in
response to GSREQ*.

GHPGGNT* O Low High-Priority Normal Bus Request
Assertion of GHPGGNT* indicates that the TX49 has relinquished bus mastership
in response to GHPGREQ*.

GHPSGNT* O Low High-Priority Snoop Bus Grant
Assertion of GHPSGNT* indicates that the TX49 has relinquished bus mastership
in response to GHPSREQ*.

GREL* O Low Release Request
This output signal indicates to an external bus master that the TX49 wants to regain
bus mastership. The TX49 asserts GREL* 1) when higher-priority GHPGREQ* is
asserted while lower-priority GSGNT* is asserted and 2) when a bus request is
generated from the TX49 processor core while GHPGGNT* is asserted.

GHAVEIT* I Low Have IT
This is a bus grant acknowledge signal used by an external bus master to indicate
that it has assumed bus mastership. The external bus master can release the bus
by asserting and deasserting GHAVEIT* while keeping a bus request signal
asserted. In a single-bus-master system, GHAVEIT* may be tied high.

TX49/H2 Architecture

15-5

15.1.3 Coprocessor Interface Signals

Table 15-3 lists the coprocessor interface signals.

Table 15-3 Coprocessor Interface Signals

Signal Name I/O Active
State Description

GCPRD* O Low Coprocessor Read
GCPRD* is an output-only strobe that is asserted during a coprocessor read
operation.

GCPWR* O Low Coprocessor Write
GCPWR* is an output-only strobe that is asserted during a coprocessor write
operation.

GCPRDACK* I Low Coprocessor Read Acknowledge
A coprocessor asserts this signal to indicate to the TX49 processor core that the
coprocessor read request has been acknowledged.

GCPWRACK* I Low Coprocessor Write Acknowledge
A coprocessor asserts this signal to indicate to the TX49 processor core that the
coprocessor write request has been acknowledged.

GCPCOND[3:2] I – Coprocessor Condition
Coprocessor branch instructions use the GCPCOND[z] signal as the coprocessor
z’s condition signal: GCPCOND[3] is for CP3, and GCPCON[2] is for CP2.

15.1.4 Interrupt Interface Signals

Table 15-4 lists the interrupt interface signals.

Table 15-4 Interrupt Interface Signals

Signal Name I/O Active Description
GCOLDRESET* I Low Coldreset

Assertion of this input signal initiates a cold reset and forces the TX49 to enter Cold
Reset exception processing.

GRESET* I Low Reset
Assertion of this input signal initiates a soft reset and forces the TX49 to enter Soft
Reset exception processing.

GNMI* I Low Nonmaskable Interrupt
Assertion of this input signal forces the TX49 to enter Nonmaskable Interrupt
exception processing.

GINT[5:0]* I Low Interrupt
Assertion of any of these interrupt request inputs causes a general Interrupt
exception unless the corresponding bit is masked in the Status register.
GINT[5] can be configured for either a general interrupt input or a timer interrupt
input during Reset exception processing. If the GTINTDIS input is zero during a
reset sequence, GINT[5] is configured for the timer interrupt input.

TX49/H2 Architecture

15-6

15.1.5 Test Interface Signals

Table 15-5 lists the test interface signals.

Table 15-5 Test Interface Signals

Signal Name I/O Active
State Description

GTEST[2:0] I – Test
The GTEST[2:0] inputs are used to set up the TX49 in test mode. A value of 2’b000
at GTEST[2:0] puts the TX49 in normal operation mode.

GDIS* I – Disable output
This input must be tied high.

15.1.6 Debug Interface Signals

Table 15-6 lists the debug interface signals.

Table 15-6 Debug Interface Signals

Signal Name I/O Active
State Description

GTRST* I Low Test Reset Input
Assertion of this input initializes the on-chip Debug Support Unit (DSU).

GTDI/GDINT* I – Test Data Input / Debug Interrupt
Run-Time mode: Functions as a serial data input to the EJTAG instruction

register.
Real-Time mode: Switches the debug unit mode from Real-Time mode to Run-

Time mode.
GTMS I – Test Mode Select Input

The GTMS input controls the transitions of the TAP controller in conjunction with
the rising edge of GTCK.

GTCK I – Test Clock Input
GTCK is used to shift test data into or out of JTAG logic for EJTAG instructions.
GTCK is independent of CPUCLK.

GTPC[3:1] O – Trace PC Output.
GTPC[3:1] provide non-sequential program counter output at the GDCLK speed.

GTDO/GTPC[0] O – Test Data Output
Run-Time mode: Shifts serial output data from the EJTAG data or instruction

register.
Real-Time mode: Provides a non-sequential program counter.

GPCST[8:0] O – PC Trace Status
The GPCST[8:0] outputs provide PC trace status information and serial monitor bus
mode.

GDCLK O – Debug Clock
Output clock for EJTAG debug.

TX49/H2 Architecture

15-7

15.1.7 Clock and System Control Interface Signals

Table 15-7 lists the clock and system control interface signals.

Table 15-7 Clock and System Control Interface Signals

Signal Name I/O Active
State Description

CPUCLK I – CPU Clock Input
The TX49 processor core operates at the same frequency as CPUCLK.

GBUSCLK I – GBUS Clock Input
GBUSCLK is the clock input for the G-Bus interface.
A divided-down clock must be applied to GBUSCLK according the value of
GCRATE[1:0]. Otherwise, correct operation is not guaranteed.

GCRATE [1:0] I – GBUS Clock Rate Input from External Pin
GCRATE[1:0] selects the frequency at which the G-Bus interface runs with respect
to the TX49 processor core. The frequency division factor can be one of the
following; it must not be changed while the processor is running.
GCRATE[1:0]
1/2
1/3
1/4
1/2.5

GDOZE O High Doze
GDOZE follows the state programmed into the Doze bit in the Config register.
GDOZE=1 when the TX49 is in Doze mode.

GHALT O High Halt
GHALT follows the state programmed into the Halt bit in the Config register.
GHALT=1 when the TX49 is in Halt mode.

GTINTDIS I – Timer interrupt disable Input from External Pin
GTINTDIS is specifies the pin function of GINT[5] during a reset sequence.
H: Disables the timer interrupt function (i.e., configures the GINT[5] pin as a general

interrupt request pin)
L: Enables the timer interrupt function (i.e., configures the GINT[5] pin as a timer

interrupt request pin.)
GENDIAN I – Endianess Input from External Pin

GENDIAN specifies byte ordering during a reset sequence.
H: Big-endian
L: Little-endian

GBS64* I – System bus size.
GBS64* specifies the G-Bus size during a reset sequence.
H: 32-bit (GDTM[31:0] and GDFM[31:0] are valid.)
L: 64-bit (GDTM[63:0] and GDFM[63:0] are valid.)

TX49/H2 Architecture

15-8

 TX49/H2 Architecture

16-1

16. Low Power Consumption Modes
The TX49 can reduce its power consumption compared to the normal mode by controlling its

internal clocks. The following two operation modes function as low power consumption modes of
the TX49:

• Halt mode

• Doze mode

16.1 Halt mode

The halt mode reduces power consumption by halting TX49 operation. By setting the HALT
bit of the Config register to 0 by the software and executing WAIT instruction, the TX49 mode
shifts from the normal operation mode to the halt mode.

Therefore, as for bus control requests in the halt mode, a bus release request is responded to
in cases of ET concurrency such as the GREQ* signal or the GHPGREQ* signal. However, the
request is not responded to in cases of ST concurrency such as the GSREQ* signal or the
GHPSREQ* signal. On the other hand, if WAIT instruction is executed while the bus is being
released, the halt mode starts in cases of ET concurrency, but in cases of ST concurrency
starts after bus ownership is granted and the GHALT signal is asserted.

If WAIT instruction is executed during a bus operation, the GHALT signal is asserted after
the bus operation is completed.

If data remain in the write buffer, the write operation is executed even after shifting to the
halt mode.

The internal halt bit is cleared by the assertion of the GINT[5~0]* signal, the GNMI* signal,
the GRESET* signal or the GCOLDRESET* signal, and the TX49 return from the halt mode.
If this is caused by the assertion of the GINT[5:0]* signal, the TX49 is released from the halt
mode irrespective of the value in the IntMask field of the Status register. If the TX49 is
brought back from the halt mode by the GCOLDRESET* signal, the GRESET* signal, the
GNMI* signal, or a non-masked GINT[5~0]* signal, the initial instruction in the
corresponding exception handler is executed. At this time, the EPC register is pointing to the
instruction following the WAIT instruction. If it is recovered by a masked GINT[5~0]* signal,
execution resumes from the instruction following the instruction that was being executed
when it shifted to the halt mode.

As shown in Figure 16-1 the TX49 outputs the status of the internal halt bit on the GHALT
signal. The memory interface output signals in the halt mode are maintained in the same
status as when no bus operation was being executed.

Note: When the condition is brought back from the Power Consumption Modes are satisfied and WAIT
instruction is executed, the TX49 does not shift to the mode.

 TX49/H2 Architecture

16-2

GBUSCLK

GHALT

Internal CPUCLK

GRD*, GWR*

 M-stage W-stage of WAIT

 HALT bit set 0 before here

Figure 16-1 Halt Mode

16.2 Doze mode
The doze mode is also a mode which halts TX49 operation in order to lower power-

consumption. However, the difference from the halt mode is that bus control requests (both
ST concurrency and ET concurrency) from an external bus master can be responded to.
Snooping operation of the data cache can also performed in ST concurrency. By setting the
HALT bit of the Config register to 1 by the software and executing WAIT instruction, the
TX49 mode shifts from the normal operation mode to the doze mode. Then, the TX49
Processor Core that is built into the TX49 halts operation while retaining the pipeline status.

As mentioned above, bus control requests are responded to while in the doze mode in cases
of ET concurrency such as the GREQ* signal and the GHPGREQ* signal, and in cases of ST
concurrency such as the GSREQ* signal and the GHPSREQ* signal. On the other hand, if
WAIT instruction is executed while the bus is being released, the doze mode starts in cases of
ET concurrency, but in cases of ST concurrency starts after bus ownership is granted and the
GDOZE signal is asserted. If WAIT instruction is executed during a bus operation, the
GDOZE signal is asserted after the bus operation is completed. The snooping of an external
bus master is done by ST concurrency when the TX49 is in the doze mode. For the bus that is
released by the assertion of the SGNT* signal or the GHPSGNT* signal, snooping of the data
cache can be performed by the GSNOOP* signal and the GA[35~0] signal. When an external
bus master deasserts the GSREQ* signal or the GHPSREQ* signal, the TX49 deasserts the
GSGNT* signal or the GHPSGNT* signal.

By asserting the GINT[5~0]* signal, the GNMI* signal, the GRESET* signal or the
GCOLDRESET* signal, the internal doze bit is cleared and the TX49 returns from the doze
mode. If this is caused by the assertion of the GINT[5~0]* signal, the TX49 is released from
the doze mode irrespective of the value in the IntMask field of the Status register. If the TX49
is brought back from the doze mode by the GCOLDRESET* signal, the GNMI* signal, or a
non-masked GINT[5~0]* signal, the top instruction in the corresponding exception handler is
executed. At this time, the EPC is pointing to the instruction following the WAIT instruction.
If it is recovered by a masked GINT[5~0]* signal, execution resumes from the instruction
following the instruction that was being executed when it shifted to the doze mode.

 TX49/H2 Architecture

16-3

As shown in Figure 16-2, the TX49 outputs the status of the internal doze bit on the GDOZE
signal. The memory interface output signals in the doze mode are maintained in the same
status as when no bus operation was executed.

Note: When the condition is brought back from the Power Consumption Modes are satisfied and WAIT
instruction is executed, the TX49 does not shift to the mode.

GBUSCLK

GDOZE

Internal
CPUCLK
(except snoop clock)
GRD*, GWR*

W-stage

before here

of WAITM-stage

HALT bit set 1

Figure 16-2 Doze Mode

16.3 Status Shifts

Figure 16-3 shows the status shifts in the operation mode of the TX49.

Interrupt or Reset

Interrupt or

Reset

Interrupt or

Reset

HALT bit = 1 & WAIT instHALT bit = 0 & WAIT inst.

Halt

Mode

Normal
Operation

Mode

Doze

Mode

Figure 16-3 Status Shift Among Normal Operation Mode and Low Power Consumption Modes

When operation status shifts from the normal operation mode to the halt mode, it is
returned to the normal operation mode by an interrupt or a reset. Similarly, when it shifts
from the normal operation mde to the doze mode, it is returned to the normal operation mode
by an interrupt or a reset. After a reset, the TX49 is initialized to the normal operation mode.

 TX49/H2 Architecture

16-4

 TX49/H2 Architecture

A-1

Appendix A: CPU Instruction Set Details
This appendix provides a detailed description of the operation of each TX49 instruction in both

32- and 64-bit modes. The instructions are listed in alphabetical order.

The exceptions that may occur due to the execution of each instruction are listed after the
description of each instruction. The description of the immediate causes and manner of handling
exceptions is omitted from the instruction descriptions in this chapter.

Figures at the end of this appendix list the bit encoding for the constant fields of each
instruction, and the bit encoding for each individual instruction is included with that instruction.

For a detailed description of the FPU instructions, refer to Appendix B.

A.1 Instruction Classes

The TX49 has some classes of CPU instructions, as follows.

• Load and Store

• Computational

• Jump and Branch

• Coprocessor

• Special

• Exception

• Multiply and Divide

• Debug

• Others

 TX49/H2 Architecture

A-2

A.1.1 Instruction Formats

Every instruction consists of a single word (32 bits) aligned on a word boundary. The
main instruction formats are shown in Figure A-1.

J-Type (Jump)

I-Type (Immediate)

immediateop rs rt

15162021252631 0

op target

252631 0

R-Type (Register)

functshamtrdop rs rt

56101115162021252631 0

where:

op is a 6-bit operation code
rs is a 5-bit source register specifier
rt is a 5-bit target (source/destination) register or branch condition
immediate is a 16-bit immediate, branch displacement or address

displacement
target is a 26-bit jump target address
rd is a 5-bit destination register specifier
shamt is a 5-bit shift amount
funct is a 6-bit function field

Figure A-1 CPU Instruction Formats

A.1.2 Instruction Notation Conventions

In this appendix, all variable subfields in an instruction format (such as rs, rt
immediate, etc.) are shown in lowercase names.

For the sake of clarity, we sometimes use an alias for a variable subfield in the formats
of specific instructions. For example, we use rs = base in the format for load and store
instructions. Such an alias is always lower case, since it refers to a variable subfield.

Figures with the actual bit encoding for all the mnemonics are located at the end of this
Appendix, and the bit encoding also accompanies each instruction.

In the instruction descriptions that follow, the Operation section describes the operation
performed by each instruction using a high-level language notation. The TX49 can
operate as either a 32- or 64-bit microprocessor. The operation for both modes is included
with the instruction description. Special symbols used in the notation are described in
Table A-1.

 TX49/H2 Architecture

A-3

Table A-1 CPU Instruction Operation Notations

Symbol Meaning
← Assignment.
 Bit string concatenation.
xy Replication of bit value x into a y-bit string. Note: x is always a single-bit value.

xy...z Selection of bits y through z of bit string x. Little-endian bit notation is always used.
If y isess than z, this expression is an empty (zero length) bit string.

+ Two’s complement or floating-point addition.
− Two’s complement or floating-point subtraction.
* Two’s complement or floating-point multiplication.

Div Two’s complement integer division.
Mod Two’s complement modulo.

/ Floating-point division.
< Two’s complement less than comparison.

And Bitwise logic AND.
Or Bitwise logic OR.
Xor Bitwise logic XOR.
Nor Bitwise logic NOR.

GPR[x] General-Register x. The content of GPR[0] is always zero. Attempts to alter the content of
GPR[0] have no effect.

CPR[z,x] Coprocessor unit z, general register x.
CCR[z,x] Coprocessor unit z, control register x.
COC[z] Coprocessor unit z condition signal.

BigEndianMem Big-endian mode as configured at reset (0 → Little, 1 → Big). Specifies the endianess of
the memory interface (see LoadMemory and StoreMemory), and the endianess of Kernel
and Supervisor mode execution.

ReverseEndian Signal to reverse the endianess of load and store instructions. This feature is available in
User mode only, and is effected by setting the RE bit of the Status register. Thus,
ReverseEndian may be computed as (SR25 and User mode)

BigEndianCPU The endianess for load and store instructions (0 → Little, 1 →Big). In User mode, this
endianess may be reversed by setting SR25 Thus, BigEndianCPU may be computed as
BigEndianMem XOR ReverseEndian.

Llbit Bit of state to specify synchronization instructions. Set by LL, cleared by ERET and
Invalidate and read by SC.

T + i: Indicates the time steps between operations. Each of the statements within a time step are
defined to be executed in sequential order (as modified by conditional and loop constructs).
Operations which are marked T + i: are executed at instruction cycle i relative to the start of
execution of the instruction. Thus, an instruction which starts at time j executes operations
marked T + i: at time i + j. The interpretation of the order of excution between two
instructions or two operations which execute at the same time should be pessimistic; the
order is not defined.

 TX49/H2 Architecture

A-4

A.1.3 Sign Extension and Zero Extension

With some instructions the bit length may be extended; for example, a 16-bit offset may
be extended to 32 bits. This extension can take the from of either a sign extension or zero
extension.

• Sign extension

The extended part is filled with the value of the most significant bit.

(example)

1001100101011100 16 bit

11111111111111111001100101011100 32 bit

• Zero extension

The extended part is filled with zeros.

(example)

1001100101011100 16 bit

00000000000000001001100101011100 32 bit

A.1.4 Instruction Notation Examples

The Following examples illustrate the application of some of the instruction notation
conventions:

Example #1:
GPR[rt] ← immediate 016

Sixteen zero bits are concatenated with an immediate value (typically 16 bits), and the
32-bit string (with the lower 16 bits set to zero) is assigned to General-Purpose
Register rt.
Example #2:
(immediate15)16 || immediate15∼ 0
Bit 15 (the sign bit) of an immediate value is extended for 16 bit positions, and the
result is concatenated with bits 15 through 0 of the immediate value to form a 32-bit
sign extended value.

 TX49/H2 Architecture

A-5

A.2 Load and Store Instructions

In the TX49 implementation, the instruction immediately following a load may use the
contents of the register loaded. In such cases, the hardware interlocks, requiring additional
real cycles, so scheduling load delay slots is still desirable, although not required for
functional code.

Two special instructions are provided in the TX49 implementation of the MIPS ISA, Load
Linked and Store Conditional. These instructions are used in carefully coded sequences to
provide one of several synchronization primitives, including test-and-set, bit-level locks,
semaphores, and sequencers / event counts.

In the load and store operation descriptions, the functions listed in Table A-2 are used to
summarize the handling of virtual addresses and physical memory.

Table A-2 Load and Store Common Functions

Function Meaning
AddressTranslation Uses the TLB to find the physical address given the virtual address. The function fails

and an exception is taken if the required translation is not present in the TLB.

LoadMemory Uses the cache and main memory to find the contents of the word containing the
specified physical address. The low-order two bits of the address and the access type
field indicates which of each of the four bytes within the data word need to be returned.
If the cache is enabled for this access, the entire word is returned and loaded into the
cache.

StoreMemory Uses the cache, write buffer, and main memory to store the word or part of word
specified as data in the word containing the specified physical address. The low-order
two bits of the address and the access type field indicates which of each of the four
bytes within the data word should be stored.

The access type field indicates the size of the data item to be loaded or stored as shown in
Table A-3. Regardless of access type or byte-numbering order (endianness), the address
specifies the byte which has the smallest byte address of the bytes in the addressed field. For
a Big-endian machine, this is the leftmost byte and contains the sign for a 2’s-complement
number; for a Little-endian machine, this is the rightmost byte and contains the lowest
precision byte.

Table A-3 Access Type Specifications for Loads/Stores

Access Type Mnemonic Value Meaning
DOUBLEWORD 7 doubleword (64 bits)
SEPTIBYTE 6 seven bytes (56 bits)
SEXTIBYTE 5 six bytes (48 bits)
QUINTIBYTE 4 five bytes (40 bits)
WORD 3 word (32 bits)
TRIPLEBYTE 2 triple-byte (24 bits)
HALFWORD 1 halfword (16 bits)
BYTE 0 byte (8 bits)

The bytes within the addressed doubleword which are used can be determined directly from
the access type and the three low-order bits of the address, as shown in Chapter 2.

 TX49/H2 Architecture

A-6

A.3 Jump and Branch Instructions

All jump and branch instructions have an architectural delay of exactly one instruction.
That is, the instruction immediately following a jump or branch (i.e., occupying the delay slot)
is always executed while the target instruction is being fetched from storage. It is not valid
for a delay slot to be occupied itself by a jump or branch instruction; however, this error is not
detected, and the results of such an operation are undefined.

If an exception or interrupt prevents the completion of a legal instruction during a delay
slot, the hardware sets the EPC register to point at the jump or branch instruction which
precedes it. When the code is restarted, both the jump or branch instructions and the
instruction in the delay slot are reexecuted.

Because jump and branch instructions may be restarted after exceptions or interrupts, they
must be restartable. Therefore, when a jump or branch instruction stores a return link value,
register 31 (the register in which the link is stored) may not be used as a source register.

Since instructions must be word-aligned, a Jump Register or Jump and Link Register
instruction must use a register whose two low-order bits are zero. If these low-order bits are
not zero, an address exception will occur when the jump target instruction is subsequently
fetched.

A.4 Coprocessor Instructions

The MIPS architecture provides four coprocessor units, or classes. Coprocessors are
alternate execution units, which have separate register files from the CPU. R-Series
coprocessors have 2 register spaces, each with thirty-two 32-bit registers. The first space,
coprocessor general registers, may be directly loaded from memory and stored into memory,
and their contents may be transferred between the coprocessor and processor. The second,
coprocessor control registers, may only have their contents transferred directly between the
coprocessor and processor. Coprocessor instructions may alter registers in either space.
Normally, by convention, Coprocessor Control Register 0 is interpreted as a Coprocessor
Implementation And Revision register. However, the system control coprocessor (CP0) uses
Coprocessor General Register 15 for the processor / coprocessor revision register. The
register’s low-order byte (bits 7∼ 0) is interpreted as a coprocessor unit revision number. The
second byte (bits 15∼ 8) is interpreted as a coprocessor unit implementation descriptor. The
revision number is a value of the form y.x where y is a major revision number in bits 7∼ 4 and x
is a minor revision number in bits 3∼ 0.

The contents of the high-order halfword of the register are not defined (currently read as 0
and should be 0 when written).

A.5 System Control Coprocessor (CP0) Instructions
There are some special limitations imposed on operations involving CP0 that is incorporated

within the CPU. Although load and store instructions to transfer data to and from
coprocessors and move control to/from coprocessor instructions are generally permitted by the
MIPS architecture, CP0 is given a somewhat protected status since it has responsibility for
exception handling and memory management. Therefore, the move to/from coprocessor
instructions are the only valid mechanism for reading from and writing to the CP0 registers.

Several coprocessor operation instructions are defined for CP0 to directly read, write, and
probe TLB entries and to modify the operating modes in preparation for returning to User
mode or interrupt-enabled states.

 TX49/H2 Architecture

A-7

A.6 CPU Instructions

This appendix provides a detailed description of the operation of each TX49 instruction in
both 32- and 64-bit modes.

Exceptions that may occur due to the execution of each instruction are listed after the
description of each instruction.

For a detailed description of the exception of the exceptions, refer to Chapter 4.

 TX49/H2 Architecture

A-8

ADD Add ADD
rd

ADD
100000

0
00000

SPECIAL
000000 rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

ADD rd,rs,rt

Description:

The contents of general register rs and the contents of general register rt are added to form
the result. The result is placed into general register rd. In 64-bit mode, the operands must
be valid sign-extended, 32-bit values.

An overflow exception occurs if the carries out of bits 30 and 31 differ (2’s-complement
overflow). The destination register rd is not modified when an integer overflow exception
occurs.

Operation:

32 T: GPR[rd] ← GPR[rs] + GPR[rt]

64 T: temp ← GPR[rs] + GPR[rt]
GPR[rd] ← (temp31)32 temp31∼ 0

Exceptions:

Integer overflow exception

 TX49/H2 Architecture

A-9

ADDI Add Immediate ADDI
ADDI

001000 rs immediatert

1516202125

6

2631 0

5 5 16

Format:

ADDI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs to
form the result. The result is placed into general register rt. In 64-bit mode, the operand
must be valid sign-extended, 32-bit values.

An overflow exception occurs if carries out of bits 30 and 31 differ (2’s-complement
overflow). The destination register rt is not modified when an integer overflow exception
occurs.

Operation:

32 T: GPR[rt] ← GPR[rs] + (immediate15)16 immediate15∼ 0

64 T: temp ← GPR[rs] + (immediate15)48 immediate15∼ 0

GPR[rt] ← (temp31)32 temp31∼ 0

Exceptions:

Integer overflow exception

 TX49/H2 Architecture

A-10

ADDIU Add Immediate Unsigned ADDIU
ADDIU
001001 rs immediatert

1516202125

6

2631 0

5 5 16

Format:

ADDIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs to
form the result. The result is placed into general register rt. No integer overflow exception
occurs under any circumstances. In 64-bit mode, the operand must be valid sign-extended,
32-bit values.

The only difference between this instruction and the ADDI instruction is that ADDIU
never causes an overflow exception.

Operation :

32 T: GPR[rt] ← GPR[rs] + (immediate15)16 immediate15∼ 0

64 T: temp ← GPR[rs] + (immediate15)48 immediate15∼ 0

GPR[rt] ← (temp31)32 temp31∼ 0

Exceptions:

None

 TX49/H2 Architecture

A-11

ADDU Add Unsigned ADDU

rd
ADDU
100001

0
00000

SPECIAL
000000 rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

ADDU rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to form
the result. The result is placed into general register rd. No overflow exception occurs under
any circumstances. In 64-bit mode, the operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADD instruction is that ADDU never
causes an overflow exception.

Operation:

32 T: GPR[rd] ← GPR[rs] + GPR[rt]

64 T: temp ← GPR[rs] + GPR[rt]
GPR[rd] ← (temp31)32 temp31∼ 0

Exceptions:

None

 TX49/H2 Architecture

A-12

AND And AND

rd
AND

100100
0

00000
SPECIAL
000000 rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

AND rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register rt in
a bit-wise logical AND operation. The result is placed into general register rd.

Operation:

32 T: GPR[rd] ← GPR[rs] + GPR[rt]

64 T: GPR[rd] ← GPR[rs] and GPR[rt]

Exceptions:

None

 TX49/H2 Architecture

A-13

ANDI And Immediate ANDI
ANDI

001100 rs immediatert

1516202125

6

2631 0

5 5 16

Format:

ANDI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general register
rs in a bit-wise logical AND operation. The result is placed into general register rt.

Operation:

32 T: GPR[rt] ← 016 (immediate and GPR[rs]15∼ 0)

64 T: GPR[rt] ← 048 (immediate and GPR[rs]15∼ 0)

Exceptions:

None

 TX49/H2 Architecture

A-14

BCzF Branch On Coprocessor z False BCzF

offset
BCF

00000
BC

01000
COPz

0100xx*

1516202125

6

2631 0

5 5 16

Format:

BCzF offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. If coprocessor z’s
condition signal (CpCond), as sampled during the previous instruction, is false, then the
program branches to the target address with a delay of one instruction.

Because the condition line is sampled during the previous instruction, there must be at
least one instruction between this instruction and a coprocessor instruction that changes the
condition line.

Operation:

32 T-1: condition ← not COC[z]
T: target ← (offset15)14 offset 02

T + 1: if condition then
PC ← PC + target
endif

64 T-1 condition ← not COC[z]
T: target ← (offset15)46 offset 02

T + 1: if condition then
PC ← PC + target
endif

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction Opcode Bit
Encoding” at the end of Appendix A.

 TX49/H2 Architecture

A-15

BCzF Branch On Coprocessor z False
(continued) BCzF

Exceptions:

Coprocessor unusable exception

Opcode Bit Encoding

Branch conditionBC sub-opcode

BCzF

Coprocessor Unit Number

BC0F

Bit #

Opcode

0161718192021222324252627282930

0010

31

1000 0000 0000

0161718192021222324252627282930

0010

31

1010 0000 0000

0161718192021222324252627282930

0010

31

1011 0000 0000

BC1F

Bit #

BC3F

Bit #

0161718192021222324252627282930

0010

31

1001 0000 0000BC2F

Bit #

Note:

CpCond0 = Write Buffer Empty

(Empty → true (1), Not empty → false (0))

CpCond1 = FPU (See the Appendix B)

CpCond2 = External Pin condition (GCPCOND2)

CpCond3 = External Pin condition (GCPCOND3)

 TX49/H2 Architecture

A-16

BCzFL
Branch On Coprocessor

z
False Likely BCzFL

offset
BC

01000
BCFL
00010

COPz
0100xx*

1516202125

6

2631 0

5 5 16

Format:

BCzFL offset

Description :

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. If the contents of
coprocessor z’s condition line, as sampled during the previous instruction, is false, the target
address is branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Because the condition line is sampled during the previous instruction, there must be at
least one instruction between this instruction and a coprocessor instruction that changes the
condition line.

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction Opcode Bit
Encoding” at the end of Appendix A.

 TX49/H2 Architecture

A-17

BCzFL
Branch On Coprocessor
z
False Likely (continued) BCzFL

Operation:

32 T-1: condition ← not COC[z]
T: target ← (offset15)14 offset 02

T + 1: if condition then
PC ← PC + target
else
NullityCurrentInstruction
endif

64 T-1 condition ← not COC[z]
T: target ← (offset15)46 offset 02

T + 1: if condition then
PC ← PC + target
else
NullifyCurrentInstruction
Endif

Exceptions:
Coprocessor unusable exception

Opcode Bit Encoding:

Branch conditionBC sub-opcode

BCzFL

Coprocessor Unit Number

BC0FL

Bit #

Opcode

0161718192021222324252627282930

0010

31

1000 0000 0100

0161718192021222324252627282930

0010

31

1010 0000 0100

0161718192021222324252627282930

0010

31

1011 0000 0100

BC1FL

Bit #

BC3FL

Bit #

0161718192021222324252627282930

0010

31

1001 0000 0100BC2FL

Bit #

Note:
CpCond0 = Write Buffer Empty

(Empty → true (1), Not empty → false (0))

CpCond1 = FPU (See the Appendix B)

CpCond2 = External Pin condition (GCPCOND2)

CpCond3 = External Pin condition (GCPCOND3)

 TX49/H2 Architecture

A-18

BCzT Branch On Coprocessor z True BCzT

offset
BCT

00001
BC

01000
COPz

0100XX*

1516202125

6

2631 0

5 5 16

Format:

BCzT offset

Description :

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. If the coprocessor z’s
condition signal (CpCond) is true, then the program branches to the target address, with a
delay of one instruction.

Because the condition line is sampled during the previous instruction, there must be at
least one instruction between this instruction and a coprocessor instruction that changes the
condition line.

Operation :

32 T-1: condition ← COC[z]
T: target ← (offset15)14 offset 02

T + 1: if condition then
PC ← PC + target
endif

64 T-1 condition ← COC[z]
T: target ← (offset15)46 offset 02

T + 1: if condition then
PC ← PC + target

Endif

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction Opcode Bit
Encoding” at the end of Appendix A.

 TX49/H2 Architecture

A-19

BCzT Branch On Coprocessor z True
(continued) BCzT

Exceptions:

Coprocessor unusable exception

Opcode Bit Encoding:

Branch conditionBC sub-opcode

BCzT

Coprocessor Unit Number

BC0T

Bit #

Opcode

0161718192021222324252627282930

0010

31

1000 0000 1000

0161718192021222324252627282930

0010

31

1010 0000 1000

0161718192021222324252627282930

0010

31

1011 0000 1000

BC1T

Bit #

BC3T

Bit #

0161718192021222324252627282930

0010

31

1001 0000 1000BC2T

Bit #

Note:

CpCond0 = Write Buffer Empty

(Empty → true (1), Not empty → false (0))

CpCond1 = FPU (See the Appendix B)

CpCond2 = External Pin condition (GCPCOND2)

CpCond3 = External Pin condition (GCPCOND3)

 TX49/H2 Architecture

A-20

BCzTL
Branch On Coprocessor

z
True Likely BCzTL

offset
BCTL
00011

BC
01000

COPz
0100XX*

1516202125

6

2631 0

5 5 16

Format:

BCzTL offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. If the contents of
coprocessor z’s condition line, as sampled during the previous instruction, is true, the target
address is branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Because the condition line is sampled during the previous instruction, there must be at
least one instruction between this instruction and a coprocessor instruction that changes the
condition line.

Operation:

32 T-1: condition ← COC[z]
T: target ← (offset15)14 offset 02

T + 1: if condition then
PC ← PC + target
else
NullifyCurrentInstruction
endif

64 T-1 condition ← COC[z]
T: target ← (offset15)46 offset 02

T + 1: if condition then
PC ← PC + target
else
NullifyCurrentInstruction
endif

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction Opcode Bit
Encoding” at the end of Appendix A.

 TX49/H2 Architecture

A-21

BCzTL
Branch On Coprocessor
z
True Likely (continued) BCzTL

Exceptions:

Coprocessor unusable exception

Opcode Bit Encoding:

Branch conditionBC sub-opcode

BCzTL

Coprocessor Unit Number

BC0TL

Bit #

Opcode

0161718192021222324252627282930

0010

31

1000 0000 1100

0161718192021222324252627282930

0010

31

1010 0000 1100

0161718192021222324252627282930

0010

31

1011 0000 1100

BC1TL

Bit #

BC3TL

Bit #

0161718192021222324252627282930

0010

31

1001 0000 1100BC2TL

Bit #

Note:

CpCond0 = Write Buffer Empty

(Empty → true (1), Not empty → false (0))

CpCond1 = FPU (See the Appendix B)

CpCond2 = External Pin condition (GCPCOND2)

CpCond3 = External Pin condition (GCPCOND3)

TX49/H2 Architecture

A-22

A.

BEQ Branch On Equal BEQ
rs offset

BEQ
000100

1516202125

6

2631 0

5 5 16

rt

Format:

BEQ rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. The contents of
general register rs and the con-tents of general register rt are compared. If the two registers
are equal, then the program branches to the target address, with a delay of one instruction.

Operation:

32 T: condition ← (offset15)14 offset 02

condition ← (GPR[rs] = GPR[rt])
T + 1: if condition then

PC ← PC + target
endif

64 T: target ← (offset15)46 offset 02

condition ← (GPR[rs] = GPR[rt])
T + 1: if condition then

PC ← PC + target
endif

Exceptions:

None

TX49/H2 Architecture

A-23

BEQL Branch On Equal Likely BEQL
rs offset

BEQL
010100

1516202125

6

2631 0

5 5 16

rt

Format:

BEQL rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. The contents of
general register rs and the contents of general register rt are compared. If the two registers
are equal, the target address is branched to, with a delay of one instruction. If the
conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

32 T: target ← (offset15)14 offset 02

condition ← (GPR[rs] = GPR[rt])
T + 1: if condition then

PC ← PC + target
else
NullifyCurrentInstruction
endif

64 T: target ← (offset15)46 offset 02

condition ← (GPR[rs] = GPR[rt])
T + 1: if condition then

PC ← PC + target
else
NullifyCurrentInstruction
endif

Exceptions:

None

TX49/H2 Architecture

A-24

BGEZ Branch On Greater Than
Or Equal To Zero BGEZ

rs offset
BGEZ
00001

REGIMM
000001

1516202125

6

2631 0

5 5 16

Format:

BGEZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. If the contents of
general register rs have the sign bit cleared, then the program branches to the target
address, with a delay of one instruction.

Operation:

32 T: target ← (offset15)14 offset 02

condition ← (GPR[rs]31 = 0)
T + 1: if condition then

PC ← PC + target
endif

64 T: target ← (offset15)46 offset 02

condition ← (GPR[rs]63 = 0)
T + 1: if condition then

PC ← PC + target
endif

Exceptions:

None

TX49/H2 Architecture

A-25

BGEZAL
Branch On Greater

Than Or Equal To Zero
And Link BGEZAL

rs offset
BGEZAL

10001
REGIMM
000001

1516202125

6

2631 0

5 5 16

Format:

BGEZAL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. Unconditionally, the
address of the instruction after the delay slot is placed in the link register, r31 . If the
contents of general register rs have the sign bit cleared, then the program branches to the
target address, with a delay of one instruction.

General register rs may not be general register 31, because such an instruction is not
restartable. An attempt to execute this instruction is not tapped, however.

Operation:

32 T: target ← (offset15)14 offset 02

condition ← (GPR[rs]31 = 0)
GPR[31] ← PC + 8

T + 1: if condition then
PC ← PC + target
endif

64 T: target ← (offset15)46 offset 02

condition ← (GPR[rs]63 = 0)
GPR[31] ← PC + 8

T + 1: if condition then
PC ← PC + target
endif

Exceptions:

None

TX49/H2 Architecture

A-26

BGEZALL
Branch On Greater
Than Or Equal To

Zero And Link Likely BGEZALL
rs offset

BGEZALL
10011

REGIMM
000001

1516202125

6

2631 0

5 5 16

Format:

BGEZALL rs, offset

Descriptions:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. Unconditionally, the
address of the instruction after the delay slot is placed in the link register, r31 . If the
contents of general register rs have the sign bit cleared, then the program branches to the
target address, with a delay of one instruction.

General register rs may not be general register 31, because such an instruction is not
restartable. An attempt to execute this instruction is not rapped, however. If the conditional
branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

32 T: target ← (offset15)14 offset 02

condition ← (GPR[rs]31 = 0)
GPR[31] ← PC + 8

T + 1: if condition then
PC ← PC + target
Else
NullifyCurrentInstruction
Endif

64 T: target ← (offset15)46 offset 02

condition ← (GPR[rs]63 = 0)
GPR[31] ← PC + 8

T + 1: if condition then
PC ← PC + target
Else
NullifyCurrentInstruction
Endif

Exceptions:

None

TX49/H2 Architecture

A-27

BGEZL Branch On Greater Than
 Or Equal To Zero Likely BGEZL

rs offset
BGEZL
00011

REGIMM
000001

1516202125

6

2631 0

5 5 16

Format:

BGEZL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. If the contents of
general register rs have the sign bit cleared, then the program branches to the target
address, with a delay of one instruction. If the conditional branch is not taken, the
instruction in the branch delay slot is nullified.

Operation:

32 T: target ← (offset15)14 offset 02

condition ← (GPR[rs]31 = 0)
T + 1: if condition then

PC ← PC + target
else
NullifyCurrentInstruction
endif

64 T: target ← (offset15)46 offset 02

condition ← (GPR[rs]63 = 0)
T + 1: if condition then

PC ← PC + target
else
NullifyCurrentInstruction
endif

Exceptions:

None

TX49/H2 Architecture

A-28

BGTZ Branch On Greater Than Zero BGTZ
rs offset

0
00000

BGTZ
000111

1516202125

6

2631 0

5 5 16

Format:

BGTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. The contents of
general register rs are compared to zero. If the contents of general register rs have the sign
bit cleared and are not equal to zero, then the program branches to the target address, with a
delay of one instruction.

Operation:

32 T: target ← (offset15)14 offset 02

condition ← (GPR[rs]31 = 0) and (GPR[rs] ≠ 032)
T + 1: if condition then

PC ← PC + target
endif

64 T: target ← (offset15)46 offset 02

condition ← (GPR[rs]63 = 0) and (GPR[rs] ≠ 064)
T + 1: if condition then

PC ← PC + target
endif

Exceptions:

None

TX49/H2 Architecture

A-29

BGTZL Branch On Greater
Than Zero Likely BGTZL

rs offset
0

00000
BGTZL
010111

1516202125

6

2631 0

5 5 16

Format:

BGTZL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. The contents of
general register rs are compared to zero. If the contents of general register rs have the sign
bit cleared and are not equal to zero, then the program branches to the target address, with a
delay of one instruction. If the conditional branch is not taken, the instruction in the branch
delay slot is nullified.

Operation:

32 T: target ← (offset15)14 offset 02

condition ← (GPR[rs]31 = 0) and (GPR[rs] ≠032)
T + 1: if condition then

PC ← PC + target
else
NullifyCurrentInstruction
endif

64 T: target ← (offset15)46 offset 02

condition ← (GPR[rs]63 = 0) and (GPR[rs] ≠064)
T + 1: if condition then

PC ← PC + target
else
NullifyCurrentInstruction
endif

Exceptions:

None

TX49/H2 Architecture

A-30

BLEZ Branch on Less Than Or
Equal To Zero BLEZ

rs offset
0

00000
BLEZ

000110

1516202125

6

2631 0

5 5 16

Format:

BLEZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. The contents of
general register rs are compared to zero. If the contents of general register rs have the sign
bit set, or are equal to zero, then the program branches to the target address, with a delay of
one instruction.

Operation:

32 T: target ← (offset15)14 offset 02

condition ← (GPR[rs]31 = 1) or (GPR[rs] = 032)
T + 1: if condition then

PC ← PC + target
endif

64 T: target ← (offset15)46 offset 02

condition ← (GPR[rs]63 = 1) or (GPR[rs] = 064)
T + 1: if condition then

PC ← PC + target
endif

Exceptions:

None

TX49/H2 Architecture

A-31

BLEZL Branch on Less Than
Or Equal To Zero Likely BLEZL

rs offset
0

00000
BLEZL
010110

1516202125

6

2631 0

5 5 16

Format:

BLEZL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. The contents of
general register rs is compared to zero. If the contents of general register rs have the sign bit
set, or are equal to zero, then the program branches to the target address, with a delay of one
instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

32 T: target ← (offset15)14 offset 02

condition ← (GPR[rs]31 = 1) or (GPR[rs] = 032)
T + 1: if condition then

PC ← PC + target
else
NullifyCurrentInstruction
endif

64 T: target ← (offset15)46 offset 02

condition ← (GPR[rs]63 = 1) or (GPR[rs] = 064)
T + 1: if condition then

PC ← PC + target
else
NullifyCurrentInstruction
Endif

Exceptions:

None

TX49/H2 Architecture

A-32

BLTZ Branch On Less Than Zero BLTZ
rs offset

BLTZ
00000

REGIMM
000001

1516202125

6

2631 0

5 5 16

Format:

BLTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. If the contents of
general register rs have the sign bit set, then the program branches to the target address,
with a delay of one instruction.

Operation:

32 T: target ← (offset15)14 offset 02

condition ← (GPR[rs]31 = 1)
T + 1: if condition then

PC ← PC + target
endif

64 T: target ← (offset15)46 offset 02

condition ← (GPR[rs]63 = 1)
T + 1: if condition then

PC ← PC + target
endif

Exceptions:

None

TX49/H2 Architecture

A-33

BLTZAL Branch On Less
Than Zero And Link BLTZAL

rs offset
BLTZAL
10000

REGIMM
000001

1516202125

6

2631 0

5 5 16

Format:

BLTZAL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. Unconditionally, the
address of the instruction after the delay slot is placed in the link register, r31 . If the
contents of general register rs have the sign bit set, then the program branches to the target
address, with a delay of one instruction.

General register rs may not be general register 31, because such an instruction is not
restartable. An attempt to execute this instruction with register 31 specified as rs is not
trapped, however.

Operation:

32 T: target ← (offset15)14 offset 02

condition ← (GPR[rs]31 = 1)
GPR[31] ← PC + 8

T + 1: if condition then
PC ← PC + target
endif

64 T: target ← (offset15)46 offset 02

condition ← (GPR[rs]63 = 1)
GPR[31] ← PC + 8

T + 1: if condition then
PC ← PC + target
endif

Exceptions:

None

TX49/H2 Architecture

A-34

BLTZALL Branch On Less Than
Zero And Link Likely BLTZALL

rs offset
BLTZALL

10010
REGIMM
000001

1516202125

6

2631 0

5 5 16

Format:

BLTZALL rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. Unconditionally, the
address of the instruction after the delay slot is placed in the link register, r31 . If the
contents of general register rs have the sign bit set, then the program branches to the target
address, with a delay of one instruction.

General register rs may not be general register 31, because such an instruction is not
restartable. An attempt to execute this instruction with register 31 specified as rs is not
trapped, however. If the conditional branch is not taken, the instruction in the branch delay
slot is nullified.

Operation:

32 T: target ← (offset15)14 offset 02

condition ← (GPR[rs]31 = 1)
GPR[31] ← PC + 8

T + 1: if condition then
PC ← PC + target
else
NullifyCurrentInstruction
endif

64 T: target ← (offset15)46 offset 02

condition ← (GPR[rs]63 = 1)
GPR[31] ← PC + 8

T + 1: if condition then
PC ← PC + target
else
NullifyCurrentInstruction
endif

Exceptions:

None

TX49/H2 Architecture

A-35

BLTZL Branch On Less Than Zero
Likely BLTZL

rs offset
BLTZL
00010

REGIMM
000001

1516202125

6

2631 0

5 5 16

Format:

BLTZ rs, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. If the contents of
general register rs have the sign bit set, then the program branches to the target address,
with a delay of one instruction. If the conditional branch is not taken, the instruction in the
branch delay slot is nullified.

Operation:

32 T: target ← (offset15)14 offset 02

condition ← (GPR[rs]31 = 1)
T + 1: if condition then

PC ← PC + target
else
NullifyCurrentInstruction
endif

64 T: target ← (offset15)46 offset 02

condition ← (GPR[rs]63 = 1)
T + 1: if condition then

PC ← PC + target
else
NullifyCurrentInstruction
endif

Exceptions:

None

TX49/H2 Architecture

A-36

BNE Branch On Not Equal BNE
rtrs offset

BNE
000101

1516202125

6

2631 0

5 5 16

Format:

BNE rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. The contents of
general register rs and the contents of general register rt are compared. If the two registers
are not equal, then the program branches to the target address, with a delay of one
instruction.

Operation:

32 T: target ← (offset15)14 offset 02

condition ← (GPR[rs] ≠ GPR[rt])
T + 1: if condition then

PC ← PC + target
endif

64 T: target ← (offset15)46 offset 02

condition ← (GPR[rs] ≠GPR[rt])
T + 1: if condition then

PC ← PC + target
endif

Exceptions:

None

TX49/H2 Architecture

A-37

BNEL Branch On Not Equal Likely BNEL
rtrs offset

BNEL
010101

1516202125

6

2631 0

5 5 16

Format:

BNEL rs, rt, offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. The contents of
general register rs and the contents of general register rt are compared. If the two registers
are not equal, then the program branches to the target address, with a delay of one
instruction.

If the conditional branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

32 T: target ← (offset15)14 offset 02

condition ← (GPR[rs] ≠ GPR[rt])
T + 1: if condition then

PC ← PC + target
else
NullifyCurrentInstruction
endif

64 T: target ← (offset15)46 offset 02

condition ← (GPR[rs] ≠GPR[rt])
T + 1: if condition then

PC ← PC + target
else
NullifyCurrentInstruction
endif

Exceptions:

None

TX49/H2 Architecture

A-38

BREAK Breakpoint BREAK
code BREAK

001101
SPECIAL
000000

5625

6

2631 0

20 6

Format:

BREAK

Description:

A breakpoint trap occurs, immediately and unconditionally transferring control to the
exception handler.

The code field is available for use as software parameters, but is retrieved by the exception
handler only by loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: BreakpointException

Exceptions:

Breakpoint exception

TX49/H2 Architecture

A-39

CACHE Cache CACHE
base op offset

CACHE
101111

1516202125

6

2631 0

5 5 16

Format:

CACHE op, offset(base)

Description:

Generates a virtual address by sign-extending the 16-bit offset and adding the result to the
contents of register base. The virtual address is translated to a physical address using the
TLB, and the 5-bit sub-opecode designates the cache operation to be performed at that
address.

If CP0 is unusable (in User or Supervisor mode), the CP0 enable bit in the Status register
is cleared, and a Coprocessor Unusable Exception is raised. The behavior of this instruction
for operation and cache combinations other than those listed in the table below, and when
used with an uncached address, is undefined.

Cache index operations designate a cache block using part of the virtual address.

The memory address that specifies in cache instruction must be cacheable area. If
uncachable area is specified, the operation is not guaranteed for TX49. If the instruction is
issued for the line which this instruction itself exists, the following operation is not
guaranteed.

The Index operation uses part of the virtual address to specify a cache block.

The each way is chosen by LSB (bit 0..1) of the virtual address.

Virtual Address bit (1:0) Selected Way
00 Way 0
01 Way 1
10 Way 2
11 Way 3

The Hit operation accesses the specified cache as normal data references, and performs the
specified operation if the cache block contains valid data with the specified physical address
(a hit). If the cache block is invalid or contains a different address (a miss), no operation is
performed. Write back from a cache goes to memory. The address to be written is specified
by the cache tag and not the translated physical address. TLB Refill and TLB Invalid
exceptions can occur on any operation. For Index operations (where the physical address is
used to index the cache but need not match the cache tag) unmapped addresses may be used
to avoid TLB exceptions. This operation never causes TLB Modified or Virtual Coherency
exceptions. Bits 17∼ 16 of the instruction specify the cache as follows:

Code Name Cache
0 I Primary instruction
1 D Primary data
2 - reserved
3 - reserved

TX49/H2 Architecture

A-40

CACHE Cache
(continued) CACHE

Bits 20∼ 18 of the instruction specify the operation as follows:

Code Caches Name Operation
0 I Index Invalidate Set the cache state of the indexed block to invalid.
0 D Index WriteBack

Invalidate
Examine the cache state and W bit of the primary data cache block at the
invalidate index specified by the virtual address. If the state is not invalid and
the W bit is set, then write back the block to memory. The address to write is
taken from the primary cache tag. Set cache state of primary cache block to
invalid. LSB (bit 1 ∼ 0) of VA select the way.

1 I / D Index Load Tag Read the tag for the cache block at the specified index and place it into the
TagLo and TagHi CP0 registers. LSB (bit 1 ∼ 0) of VA select the way.

2 I / D Index Store Tag Write the tag for the cache block at the specified index from the TagLo and
TagHi CP0 registers. LSB (bit 1 ∼ 0) of VA select the way.

3 I Undefined Undefined
3 D Create Dirty

Exclusive
This operation is used to avoid loading data needlessly from memory when
writing new contents into an entire cache block. If the cacheblock does not
contain the specified address, and the block is dirty, write it back to the
memory. In all cases, set the cache block tag to the specified physical
address, set the cache state to Dirty Exclusive.

4 I / D Hit Invalidate If the cache block contains the specified address, mark the cache block
invalid. In case of multi-hit, lock bits of the specified line become ineffective
and all way are invalidated.

5 I Fill Fill the primary instruction cache block from memory. LSB (bit 1 ∼ 0) of VA
select the way.

5 D Hit WriteBack
Invalidate

If the cache block contains the specified address, write back the data if it is
dirty, and mark the cache block invalid.

6 I Undefined Undefined
6 D Hit WriteBack If the cache block contains the specified address, and the W bit is set, write

back the data to memory, and clear the W bit.
7 I Undefined Undefined
7 D Fill Fill the primary data cache block from memory. LSB (bit 1 ∼ 0) of VA select

the way.

TX49/H2 Architecture

A-41

CACHE Cache
(continued) CACHE

Operation:

32, 64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
CacheOp(op, cAddr, pAddr)

Exceptions:

Coprocessor unusable exception

TLB refill exception

TLB invalid exception

TX49/H2 Architecture

A-42

CFC0 Move Control From Coprocessor 0 CFC0
rd

0
000 0000 0000

CF
00010

COP0
010000 rt

10111516202125

6

2631 0

5 5 5 11

Format:

CFC0 rt, rd

Description:

For ICE system only.

Loads the contents of Monitor memory into the general-purpose register rt.

Operation:

32 T: data ← CCR[0,rd]
T + 1: GPR[rt] ← data

64 T: data ← (CCR[0,rd]31)32 CCR[0, rd]
T + 1: GPR[rt] ← data

Exceptions:

Coprocessor Unusable exception

TX49/H2 Architecture

A-43

CFCz Move Control From Coprocessor CFCz
rd

0
000 0000 0000

CF
00010

COPz
0100xx* rt

10111516202125

6

2631 0

5 5 5 11

Format:

CFCz rt, rd

Description:

The contents of coprocessor control register rd of coprocessor unit z are loaded into general
register rt.

Operation:

32 T: data ← CCR[z,rd]
T + 1: GPR[rt] ← data

64 T: data ← (CCR[z,rd]31)32 CCR[z, rd]
T + 1: GPR[rt] ← data

Exceptions:

Coprocessor unusable exception

Reserved Instruction exception (CFC3)

∗ Opcode Bit Encoding:

Coprocessor Suboperation

CFCz

Coprocessor Unit Number

CFC1

Bit #

Opcode

021222324252627282930

0010

31

0010 010

021222324252627282930

0010

31

0001 010CFC2

Bit #

Note:

CFC1 for FPU (See the Appendix B)

CFC2 for Coprocessor 2 (user define)

TX49/H2 Architecture

A-44

COPz Coprocessor z Operation COPz
cofun

CO
1

COPz
0100xx*

6

2631 0

5 25

2425

Format:

COPz cofun.

Description:

A coprocessor operation is performed. The operation may specify and reference internal
coprocessor registers, and may change the state of the coprocessor condition line, but does
not modify state within the processor or the cache / memory system. Details of coprocessor 1
operations are contained in Appendix B.

Operation:

32, 64 T: CoprocessorOperation(z, cofun)

Exceptions:

Coprocessor unusable exception

Coprocessor interrupt or Floating-Point Exception (CP1 only)

Reserved Instruction exception (COP3)

∗ Opcode Bit Encoding:

CO sub-opcode (see end of Appendix A)

COPz

Coprocessor Unit Number

COP0

Bit #

Opcode

0252627282930

0010

31

100

0252627282930

0010

31

110

0252627282930

0010

31

111

COP1

Bit #

COP3

Bit #

0252627282930

0010

31

101COP2

Bit #

Note:
COP0 for ICE system

COP1 for FPU (See the Appendix B)

COP2 for Coprocessor 2 (user define)

TX49/H2 Architecture

A-45

CTC0 Move Control To Coprocessor 0 CTC0
rd

0
000 0000 0000

CT
00110

COP0
010000 rt

10111516202125

6

2631 0

5 5 5 11

Format:

CTC0 rt, rd

Description:

For ICE system only.

Loads the contents of general-purpose register rt into the Monitor memory.

Operation:

32, 64 T: data ← GPR[rt]
T + 1: CCR[0,rd] ← data

Exceptions:

Coprocessor Unusable exception

TX49/H2 Architecture

A-46

A.

CTCz Move Control to
Coprocessor z CTCz

rd
0

000 0000 0000
CT

00110
COPz

0100xx* rt

10111516202125

6

2631 0

5 5 5 11

Format:

CTCz rt, rd

Description:

The contents of general register rt are loaded into control register rd of coprocessor unit z.

Operation:

32, 64 T: data ← GPR[rt]
T + 1: CCR[z,rd] ← data

Exceptions:

Coprocessor unusable

Reserved Instruction exception (CTC3)

* Opcode Bit Encoding:

CTCz

CTC1

Bit #

Opcode

02627282930

0010

31

10

02627282930

0010

31

01CTC2

Bit #

25

0

222324

0 11

21

0

25

0

222324

0 11

21

0

Coprocessor Suboperation

Coprocessor Unit Number

Note:

CTC1 for FPU (See the Appendix B)

CTC2 for Coprocessor 2 (user define)

∗ See “CPU Instruction Opcode Bit Encoding” at the end of Appendix A.

 TX49/H2 Architecture

A-47

DADD Doubleword Add DADD
rd DADD

101100
0

00000
SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DADD rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to form
the result. The result is placed into general register rd.

An overflow exception occurs if the carries out of bits 62 and 63 differ(2’s-complement
overflow). The destination register rd is not modified when an integer overflow exception
occurs.

Operation:

64 T: GPR[rd] ← GPR[rs] + GPR[rt]

Exceptions:

Integer overflow exception

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

TX49/H2 Architecture

A-48

DADDI Doubleword Add
Immediate DADDI

rs rt immediateDADDI
011000

1516202125

6

2631 0

5 5 16

Format:

DADDI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs to
form the result. The result is placed into general register rt.

An overflow exception occurs if carries out of bits 62 and 63 differ (2’s-complement
overflow). The destination register rt is not modified when an integer overflow exception
occurs.

Operation:

64 T: GPR [rt] ← GPR[rs] + (immediate15)48 immediate15∼ 0

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Integer overflow exception

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

 TX49/H2 Architecture

A-49

DADDIU Doubleword Add
 Immediate Unsigned DADDIU

rs rt immediateDADDIU
011001

1516202125

6

2631 0

5 5 16

Format:

DADDIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and added to the contents of general register rs to
form the result. The result is placed into general register rt. No integer overflow exception
occurs under any circumstances.

The only difference between this instruction and the DADDI instruction is that DADDIU
never causes an overflow exception.

Operation:

64 T: GPR[rt] ← GPR[rs] + (immediate15)48 immediate15∼ 0

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

TX49/H2 Architecture

A-50

DADDU Doubleword Add Unsigned DADDU
rd DADDU

101101
0

00000
SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DADDU rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are added to form
the result. The result is placed into general register rd.

No overflow exception occurs under any circumstances.

The only difference between this instruction and the DADD instruction is that DADDU
never causes an overflow exception.

Operation:

64 T: GPR [rd] ← GPR[rs] + GPR[rt]

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

 TX49/H2 Architecture

A-51

DDIV Doubleword Divide DDIV

DDIV
011110

0
00 0000 0000

SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

DDIV rs, rt

Description:

The contents of general register rs are divided by the contents of general register rt,
treating both operands as 2’s-complement values. No overflow exception occurs under any
circumstances, and the result of this operation is undefined when the divisor is zero.

This instruction is typically followed by additional instructions to check for a zero divisor
and for overflow.

When the operation completes, the quotient word of the double result is loaded into special
register LO, and the remainder word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those
instructions are undefined. Correct operation requires separating reads of HI or LO from
writes by two or more instructions.

Operation:

64 T-2: LO ← undefined
Hl ← undefined

T-1: LO ← undefined
Hl ← undefined

T: LO ← GPR[rs] div GPR[rt]
Hl ← GPR[rs] mod GPR[rt]

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

TX49/H2 Architecture

A-52

DDIVU Doubleword Divide
Unsigned DDIVU

DDIVU
011111

0
000000 0000

SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

DDIVU rs, rt

Description:

The contents of general register rs are divided by the contents of general register rt,
treating both operands as unsigned values. No integer overflow exception occurs under any
circumstances, and the result of this operation is undefined when the divisor is zero.

This instruction is typically followed by additional instructions to check for a zero divisor.

When the operation completes, the quotient word of the double result is loaded into special
register LO, and the remainder word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those
instructions are undefined. Correct operation requires separating reads of HI or LO from
writes by two or more instructions.

Operation:

64 T-2: LO ← undefined
Hl ← undefined

T-1: LO ← undefined
Hl ← undefined

T: LO ← (0 GPR[rs]) div (0 GPR[rt])
Hl ← (0 GPR[rs]) mod (0 GPR[rt])

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

 TX49/H2 Architecture

A-53

DERET Debug Exception Return DERET
DERET
011111

0
000 0000 0000 0000 0000

CO
1

COP0
010000

56

6

2631 0

1 19 6

2425

Format:

DERET

Description:

Execute a return a self-debug interrupt or exception. This instruction requires a branch
delay slot like that of the branch or jump instructions, and executes with a delay of one
instruction cycle. The DERET instruction itself cannot be put in the delay slot.

The return address stored in the DEPC register is copied to the PC, and processing returns
to the original program.

Note: If a MTC0 instruction was used to set the return address in the DEPC register, a
minimum of two instructions must be executed before executing DERET.

Operation:

32, 64 T: temp ← DEPC
T-1: PC← temp

Debug30 ← 0

Exceptions:

Coprocessor unusable exception

TX49/H2 Architecture

A-54

DIV Divide DIV
DIV

011010
0

00 0000 0000
SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

DIV rs, rt

Description:

The contents of general register rs are divided by the contents of general register rt,
treating both operands as 2’s-complement values. No overflow exception occurs under any
circumstances, and the result of this operation is undefined when the divisor is zero. In 64-
bit mode, the operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to check for a zero divisor
and for overflow.

When the operation completes, the quotient word of the double result is loaded into special
register LO, and the remainder word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those
instructions are undefined. Correct operation requires separating reads of HI or LO from
writes by two or more instructions.

Operation:

32 T-2: LO ← undefined
Hl ← undefined

T-1: LO ← undefined
Hl ← undefined

T: LO ← GPR[rs] div GPR[rt]
Hl ← GPR[rs] mod GPR[rt]

64 T-2: LO ← undefined
Hl ← undefined

T-1: LO ← undefined
Hl ← undefined

T: q ← GPR[rs]31∼ 0 div GPR[rt]31∼ 0

r ← GPR[rs]31∼ 0 mod GPR[rt]31∼ 0

LO ← (q31)32 q31∼ 0

HI ← (r31)32 r31∼ 0

Exceptions:

None

 TX49/H2 Architecture

A-55

DIVU Divide Unsigned DIVU
DIVU

011011
0

00 0000 0000
SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

DIVU rs, rt

Description:

The contents of general register rs are divided by the contents of general register rt,
treating both operands as unsigned values. No integer overflow exception occurs under any
circumstances, and the result of this operation is undefined when the divisor is zero. In 64-
bit mode, the operands must be valid sign-extended, 32-bit values. In 64-bitmode, the
operands must be valid sign-extended, 32-bit values.

This instruction is typically followed by additional instructions to check for a zero divisor.

When the operation completes, the quotient word of the double result is loaded into special
register LO, and the remainder word of the double result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of those
instructions are undefined. Correct operation requires separating reads of HI or LO from
writes by two or more instructions.

Operation:

32 T-2: LO ← undefined
Hl ← undefined

T-1: LO ← undefined
Hl ← undefined

T: LO ← (0 GPR[rs]) div (0 GPR[rt])
Hl ← (0 GPR[rs]) mod (0 GPR[rt])

64 T-2: LO ← undefined
Hl ← undefined

T-1: LO ← undefined
Hl ← undefined

T: q ← (0 GPR[rs]31∼ 0) div (0 GPR[rt]31∼ 0)
r ← (0 GPR[rs]31∼ 0) mod (0 GPR[rt]31∼ 0)
LO ← (q31)32 q31∼ 0

HI ← (r31)32 r31∼ 0

Exceptions:

None

TX49/H2 Architecture

A-56

DMFC0 Doubleword Move From
System Control Coprocessor DMFC0

rd
0

000 0000 0000
DMF

00001
COP0

010000 rt

10111516202125

6

2631 0

5 5 5 5

Format:

DMFC0 rt, rd

Description:

The contents of coprocessor register rd of the CP0 are loaded into general register rt.

This operation is defined in kernel mode regardless of the setting of the Status. KX bit.
Execution of this instruction with in supervisor mode with Status. SX = 0 or in user mode
with UX = 0, causes a reserved instruction exception. All 64-bits of the general register
destination are written from the coprocessor register source. The operation of DMFC0 on a
32-bit coprocessor 0 register is undefined.

Operation:

64 T: data ← CPR[0,rd]
T + 1: GPR[rt] ← data

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Coprocessor unusable exception

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

 TX49/H2 Architecture

A-57

DMTC0 Doubleword Move TO
System Control Coprocessor DMTC0

rd 0
000 0000 0000

DMT
00101

COP0
010000

rt

10111516202125

6

2631 0

5 5 5 11

Format:

DMTC0 rt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd of the CP0.

This operation is defined for the R4000 operating in 64-bit mode or in 32-bit kernal mode.
Execution of this instruction in 32-bit user or supervisor mode causes a reserved instruction
exception. All 64-bits of he coprocessor 0 register are written from the general register
source. The operation of DMTC0 on a 32-bit coprocessor 0 register is undefined.

Because the state of the virtual address translation system may be altered by this
instruction, the operation of load, store instructions and TLB operations immediately prior to
and after this instruction are undefined.

Operation:

64 T: data ← GPR[rt]
T + 1: CPR[0,rd] ← data

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Coprocessor unusable exception

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

TX49/H2 Architecture

A-58

DMULT Doubleword Multiply DMULT
DMULT
011100

0
00 0000 0000

SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

DMULT
011100

SPECIAL
000000

rs rt

1516202125

6

2631 0

5 5 6

rd

11

5

10

0
0 0000

5

56

Format:

DMULT rs, rt

DMULT rd, rs, rt

Description:

The contents of general registers rs and rt are multiplied, heating both operands as 2’s-
complement values. No integer overflow exception occurs under any circumstances.

When the operation completes, the low-order word of the double result is loaded into
special register LO, and the high-order word of the double result is loaded into special
register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these
instructions are undefined. Correct operation requires separating reads of HI or LO from
writes by a minimum of two other instructions.

Operation:

64 T-2: LO ← undefined
Hl ← undefined

T-1: LO ← undefined
Hl ← undefined

T: t ← GPR[rs]∗ GPR[rt]
LO ← t63∼ 0

HI ← t127∼ 64

GPR[rd] ← t63∼ 0

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

 TX49/H2 Architecture

A-59

DMULTU Doubleword Multiply
Unsigned DMULTU

DMULTU
011101

0
00 0000 0000

SPECIAL
000000

rs rt

6 5 5 10 6

DMULTU
011101

SPECIAL
000000

rs rt

1516202125

6

2631 0

5 5 6

rd

11

5

10

0
0 0000

5

56

15162021252631 056

Format:

DMULTU rs, rt

Description:

The contents of general register rs and the contents of general register rt are multiplied,
treating both operands as unsigned values. No over-flow exception occurs under any
circumstances.

When the operation completes, the low-order word of the double re-suit is loaded into
special register LO, and the high-order word of the double result is loaded into special
register HI.

If either of the two preceding instructions is MFHI or MFLO, the re-suits of these
instructions are undefined. Correct operation requires separating reads of HI or LO from
writes by a minimum of two instructions.

Operation:

64 T-2: LO ← undefined
Hl ← undefined

T-1: LO ← undefined
Hl ← undefined

T: t ← (0 GPR[rs])∗ (0 GPR[rt])
LO ← t63∼ 0

HI ← t127∼ 64

GPR[rd] ← t63∼ 0

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

TX49/H2 Architecture

A-60

DSLL Doubleword Shift
Left Logical DSLL

sard DSLL
111000

0
00000

SPECIAL
000000 rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSLL rd, rt, sa

Description:

The contents of general register rt are shifted left by sa bits, inserting zeros into the low-
order bits. The result is placed in register rd.

Operation:

64 T: s ← 0 sa
GPR[rd] ← GPR[rt](63-sa) ∼ 0 0s

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

 TX49/H2 Architecture

A-61

DSLLV Doubleword Shift Left
Logical Variable DSLLV

rd DSLLV
010100

0
00000

SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSLLV rd, rt, rs

Description:

The contents of general register rt are shifted left by the number of bits specified by the
low-order six bits contained as contents of general register rs, inserting zeros into the low-
order bits. The result is placed in register rd.

Operation :

64 T: s ← GPR[rs]5∼ 0

GPR[rd] ← GPR[rt](63-s) ∼ 0 0s

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

TX49/H2 Architecture

A-62

DSLL32 Doubleword Shift Left
Logical + 32 DSLL32

sard DSLL32
111100

0
00000

SPECIAL
000000

rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSLL32 rd, rt, sa

Description:

The contents of general register rt are shifted left by 32 + sa bits, inserting zeros into the
low-order bits. The result is placed in register rd.

Operation:

64 T: s ← 1 sa
GPR[rd] ← GPR[rt](63-s) ∼ 0 0s

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

 TX49/H2 Architecture

A-63

DSRA Doubleword Shift Right
Arithmetic DSRA

sard DSRA
111011

0
00000

SPECIAL
000000

rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSRA rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, sign-ex-tending the high-
order bits. The result is placed in register rd.

Operation:

64 T: s ← 0 sa
GPR[rd] ← (GPR[rt]63)s GPR[rt]63∼ s

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

TX49/H2 Architecture

A-64

DSRAV Doubleword Shift Right
Arithmetic Variable DSRAV

rd DSRAV
010111

0
00000

SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSRAV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the
low-order six bits of general register rs, sign-ex-tending the high-order bits. The result is
placed in register rd.

Operation:

64 T: s ← GPR[rs]5∼ 0

GPR[rd] ← (GPR[rt]63)s GPR[rt]63∼ s

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

 TX49/H2 Architecture

A-65

DSRA32 Doubleword Shift Right
Arithmetic + 32 DSRA32

sard DSRA32
111111

0
00000

SPECIAL
000000

rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSRA32 rd, rt,sa

Description:

The contents of general register rt are shifted right by 32 + sa bits, sign-extending the
high-order bits. The result us placed in register rd.

Operation:

64 T: s ← 1 sa
GPR[rd] ← (GPR[rt]63)s GPR[rt]63∼ s

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

TX49/H2 Architecture

A-66

DSRL Doubleword Shift Right
Logical DSRL

sard DSRL
111010

0
00000

SPECIAL
000000

rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSRL rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, inserting zeros into the high-
order bits. The result is placed in register rd.

Operation:

64 T: s ← 0 sa
GPR[rd] ← 0s GPR[rt] 63∼ s

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

 TX49/H2 Architecture

A-67

DSRLV Doubleword Shift Right
Logical Variable DSRLV

rd DSRLV
010110

0
00000

SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSRLV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the
low-order six bits of general register rs, inserting zeros unto the high-order bits. The result
us placed in register rd.

Operation:

64 T: s ← GPR[rs]5∼ 0

GPR[rd] ← 0s GPR[rt]63∼ s

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

TX49/H2 Architecture

A-68

DSRL32 Doubleword Shift Right
Logical + 32 DSRL32

sard DSRL32
111110

0
00000

SPECIAL
000000

rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSRL32 rd, rt, sa

Description:

The contents of general register rt are shifted right by 32 + sa bits, inserting zeros into the
high-order bits. The result is placed in register rd.

Operation:

64 T: s ← 1 sa
GPR[rd] ← 0s GPR[rt]63∼ s

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

 TX49/H2 Architecture

A-69

DSUB Doubleword Subtract DSUB
rd DSUB

101110
0

00000
SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSUB rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs to
form a result. The result is placed into general register rd.

The only difference between this instruction and the DSUBU instruction is that DSUBU
never traps on overflow.

An integer overflow exception takes place if the carries out of bits 62and 63 differ (2’s-
complement overflow). The destination register rd is not modified when an integer overflow
exception occurs.

Operation :

64 T: GPR[rd] ← GPR[rs] − GPR[rt]

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Integer overflow exception

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

TX49/H2 Architecture

A-70

DSUBU Doubleword Subtract
Unsigned DSUBU

rd DSUBU
101111

0
00000

SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DSUBU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs to
form a result. The result is placed into general register rd.

The only difference between this instruction and the DSUB instruction is that DSUBU
never taps on overflow. No integer overflow exception occurs under any circumstances.

Operation:

64 T: GPR[rd] ← GPR[rs] − GPR[rt]

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

 TX49/H2 Architecture

A-71

ERET Exception Return ERET
ERET

011000
0

000 0000 0000 0000 0000
CO
1

COP0
010000

56

6

2631 0

1 19 6

2425

Format:

ERET

Description:

ERET is the TX49 instruction for returning from an interrupt, exception, or error trap.
Unlike a branch or jump instruction, ERET does not execute the next instruction.

ERET must not itself be placed in a branch delay slot.

If the processor is servicing an error trap (SR2 = 1), then load the PC from the ErrorEPC

and clear the ERL bit of the Status register (SR2). Otherwise (SR2 = 0), load the PC from the

EPC, and clear the EXL bit of the Status register (SR1).

An ERET executed between a LL and SC also causes the SC to fail.

In case of this instruction is placed in the boundary of memory, it is necessary to keep the
branch delay slot into same memory area.

Operation:

32, 64 T: if SR2 = 1 then
PC ← ErrorEPC
SR ← SR31∼ 3 0 SR1∼ 0
else
PC ← EPC
SR ← SR31∼ 2 0 SR0
endif
LLbit ← 0

Exceptions:

Coprocessor unusable exception

TX49/H2 Architecture

A-72

J Jump J
J

000010
target

25

6

2631 0

26

Format:

J target

Description:

The 26-bit target address is shifted left two bits and combined with the high-order bits of
the address of the delay slot. The program unconditionally jumps to this calculated address
with a delay of one instruction.

Operation:

32 T: temp ← target
T + 1: PC ← PC31∼ 28 temp 02

64 T: temp ← target
T + 1: PC ← PC63∼ 28 temp 02

Exceptions:

None

 TX49/H2 Architecture

A-73

JAL Jump And Link JAL
JAL

000011
target

25

6

2631 0

26

Format:

JAL target

Description:

The 26-bit target address is shifted left two bits and combined with the high-order bits of
the address of the delay slot. The program unconditionally jumps to this calculated address
with a delay of one instruction. The address of the instruction after the delay slot is placed
in the link register, r31.

Operation:

32 T: temp ← target
GPR[31] ← PC + 8

T + 1: PC ← PC31∼ 28 temp 02

64 T: temp ← target
GPR[31] ← PC + 8

T + 1: PC ← PC63∼ 28 temp 02

Exceptions:

None

TX49/H2 Architecture

A-74

JALR Jump And Link Register JALR
rd JALR

001001
0

00000
0

00000
SPECIAL
000000

rs

5610111516202125

6

2631 0

5 5 5 5 6

Format:

JALR rs

JALR rd, rs

Description:

The program unconditionally jumps to the address contained in general register rs, with a
delay of one instruction. The address of the instruction after the delay slot is placed in
general register rd. The default value of rd, if omitted in the assembly language instruction,
is 31.

Register specifiers rs and rd may not be equal, because such an instruction does not have
the same effect when reexecuted. However, an attempt to execute this instruction is not
trapped, and the result of executing such an instruction is undefined.

Since instructions must be word-aligned, a Jump and Link Register instruction must
specify a target register (rs) whose two low-order bits are zero. If these. low-order bits are
not zero, an address exception will occur when the jump target instruction is subsequently
fetched.

Operation:

32, 64 T: temp ← GPR[rs]
GPR[rd] ← PC + 8

T + 1: PC ← temp

Exceptions:

None

 TX49/H2 Architecture

A-75

JR Jump Register JR
JR

001000
0

000 0000 0000 0000
SPECIAL
000000

rs

56202125

6

2631 0

5 15 6

Format:

JR rs

Description:

The program unconditionally jumps to the address contained in general register rs, with a
delay of one instruction.

Since instructions must be word-aligned, a Jump Register instruction must specify a target
register (rs) whose two low-order bits are zero. If these low-order bits are not zero, an
address exception will occur when the jump target instruction is subsequently fetched.

Operation:

32, 64 T: temp ← GPR[rs]
T + 1: PC ← temp

Exceptions:
None

 TX49/H2 Architecture

A-76

A.

LB Load Byte LB
offsetLB

100000
base rt

1516202125

6

2631 0

5 5 16

Format:

LB rt, offset (base)

Description:

The 16-bit offset is sign-extended and added tp the contents of general register base to form
a virtual address. The contents of the byte at the memory location specified by the effective
address are sign-extended and loaded unto general register rt.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor ReverseEndian3)
mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2∼ 0 xor BigEndianCPU3

GPR[rt] ← (mem7 + 8*byte)24 mem7 + 8*byte∼ 8*byte

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor ReverseEndian3)
mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2∼ 0 xor BigEndianCPU3

GPR[rt] ← (mem7 + 8*byte)56 mem7 + 8*byte∼ 8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

 TX49/H2 Architecture

A-77

LBU Load Byte Unsigned LBU
offsetLBU

100100
base rt

1516202125

6

2631 0

5 5 16

Format:

LBU rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form
a virtual address. The contents of the byte at the memory location specified by the effective
address are zero-extended and loaded into general register rt.

Operation :

32 T: vAddr ← ((offset15)16 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor ReverseEndian3)
mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2∼ 0 xor BigEndianCPU3

GPR[rt] ← 024||mem7 + 8*byte∼ 8*byte

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor ReverseEndian3)
mem ← LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ← vAddr2∼ 0 xor BigEndianCPU3

GPR[rt] ← 056||mem7 + 8*byte∼ 8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

 TX49/H2 Architecture

A-78

LD Load Doubleword LD
offsetLD

110111
base rt

1516202125

6

2631 0

5 5 16

Format:

LD rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form
a virtual address. The contents of the 64-bit doubleword at the memory location specified by
the effective address are loaded into general register rt.

If any of the three least-significant bits of the effective address are non-zero, an address
error exception occurs.

Operation:

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] ← mem

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

 TX49/H2 Architecture

A-79

LDCz Load Doubleword To
Coprocessor z LDCz

offsetLDCz
1101xx*

base rt

1516202125

6

2631 0

5 5 16

Format:

LDCz rt, offset (base)

Description :

The 16-bit offset is sign-extended and added to the contents of general register base to form
a virtual address. The processor reads a double-word from the addressed memory location
and makes the data available to coprocessor unit z. The manner in which each coprocessor
uses he data is defined by the individual coprocessor specifications.

If any of the three least-significant bits of the effective address are non-zero, an address
error exception takes place.

This instruction is not valid for use with CP0.

This instruction is undefined when the least-significant bit of the rt-field is non-zero.

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction Opcode Bit
Encoding” at the end of Appendix A.

 TX49/H2 Architecture

A-80

LDCz
Load Doubleword To

Coprocessor z
(continued) LDCz

Operation:

32 T: vAddr ← ((offset15)16 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
COPzLD(rt, mem)

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
mem ← LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
COPzLD (rt, mem)

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Coprocessor unusable exception

Opcode Bit Encoding:

LDCz

Coprocessor Unit Number

LDC1

Bit #

Opcode

02627282930

1011

31

10

02627282930

1011

31

01LDC2

Bit #

 TX49/H2 Architecture

A-81

LDL Load Doubleword Left LDL
offsetLDL

011010
base rt

1516202125

6

2631 0

5 5 16

Format:

LDL rt, offset (base)

Description:

This instruction can be used in combination with the LDR instruction to load a register
with eight consecutive bytes from memory, when the bytes cross a boundary between two
doublewords. LDL loads the left portion of the register from the appropriate part of the high-
order doubleword; LDR loads the right portion of the register from the appropriate part of
the low-order doubleword.

The LDL instruction adds its sign-extended 16-bit offset to the contents of general register
base to form a virtual address which can specify an arbitrary byte. It reads bytes only from
the doubleword in memory which contains the specified starting byte. From one to eight
bytes will be loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte into the high-
order (left-most) byte of the register; then it proceeds toward the low-order byte of the
doubleword in memory and the low-order byte of the register, loading bytes from memory
into the register until it reaches the low-order byte of the doubleword in memory. The least-
significant (right-most) byte(s) of the register will not be changed.

LDL $24,3($0)

memory
(big-endian)

register

address 0

address 8 111098 15141312

3210 7654 $24before DCBA HGFE

$24after 6543 HGF7

 TX49/H2 Architecture

A-82

LDL Load Doubleword Left
(continued) LDL

The contents of general register rt are internally bypassed within the processor so that no
NOP is needed between an immediately preceding load instruction which specifies register rt
and a following LDL (or LDR) instruction which also specifies register rt.

No address exceptions due to alignment are possible.

Operation:

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor ReverseEncian3)
if BigEndianMem = 0 then
pAddr ← pAddrPSIZE-1∼ 3 03

endif
byte ← vAddr2∼ 0 xor BigEndianCPU3

mem ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)
GPR[rt] ← mem7 + 8*byte∼ 0 GPR[rt]55 − 8*byte∼ 0

Note: It is also the same operation in the 32 bit kernel mode.

 TX49/H2 Architecture

A-83

LDL Load Doubleword Left
(continued) LDL

Given a doubleword in a register and a doubleword in memory, the operation of LDL us as
follows:

LDL

Register

Memory

CBA D E F G H

KJI L M N O P

BigEndianCPU = 0 BigEndianCPU = 1
offset offsetvAddr2∼ 0 Destination type

LEM BEM
Destination type

LEM BEM
0 P B C D E F G H 0 0 7 I J K L M N O P 7 0 0
1 O P C D E F G H 1 0 6 J K L M N O P H 6 0 1
2 N O P D E F G H 2 0 5 K L M N O P G H 5 0 2
3 M N O P E F G H 3 0 4 L M N O P F G H 4 0 3
4 L M N O P F G H 4 0 3 M N O P E F G H 3 0 4
5 K L M N O P G H 5 0 2 N O P D E F G H 2 0 5
6 J K L M N O P H 6 0 1 O P C D E F G H 1 0 6
7 I J K L M N O P 7 0 0 P B C D E F G H 0 0 7

LEM BigEndianMem = 0

BEM BigEndianMem = 1

Type AccessType sent to memory

Offset Addr2∼ 0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

 TX49/H2 Architecture

A-84

LDR Load Doubleword Right LDR
offset

LDR
011011 base rt

1516202125

6

2631 0

5 5 16

Format:

LDR rt, offset (base)

Description:

This instruction can be used in combination with the LDL instruction to load a register
with eight consecutive bytes from memory, when the bytes cross a boundary between two
doublewords. LDR loads the right portion of the register from the appropriate part of the
low-order doubleword; LDL loads the left portion of the register from the appropriate part of
the high-order doubleword.

The LDR instruction adds its sign-extended 16-bit offset to the con-tents of general register
base to form a virtual address which can specify an arbitrary byte. It reads bytes only from
the doubleword in memory which contains the specified starting byte. From one to eight
bytes will be loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that byte into the low-
order (right-most) byte of the register; then it proceeds toward the high-order byte of the
doubleword in memory and the high-order byte of the register, loading bytes from memory
into the register until it reaches the high-order byte of the doubleword in memory. The most
significant (left-most) byte (s) of the register will not be changed.

LDR $24,4 ($0)

register

memory
(big-endian)

register

address 0

address 8 111098 15141312

3210 7654 $24before DCBA HGFE

$24after 0CBA 4321

 TX49/H2 Architecture

A-85

LDR Load Doubleword Right
(continued) LDR

The contents of general register rt are internally bypassed within the processor so that no
NOP is needed between an immediately preceding load instruction which specifies register rt
and a following LDR (or LDL) instruction which also specifies register rt.

No address exceptions due to alignment are possible.

Operation:

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor ReverseEncian3)
if BigEndianMem = 1 then
pAddr ← pAddr31∼ 3 03

endif
byte ← vAddr2∼ 0 xor BigEndianCPU3

mem ← LoadMemory (uncached, byte, pAddr, vAddr, DATA)
GPR[rt] ← GPR[rt]63∼ 64 − 8*byte mem63∼ 8*byte

Note: It is also the same operation in the 32 bit kernel mode.

 TX49/H2 Architecture

A-86

LDR Load Doubleword Right
(continued) LDR

Given a doubleword in a register and a doubleword in memory, the operation of LDR is as
follows:

LDR

Register

Memory

CBA D E F G H

KJI L M N O P

BigEndianCPU = 0 BigEndianCPU = 1
offset offsetvAddr2∼ 0 Destination type

LEM BEM
Destination type

LEM BEM
0 I J K L M N O P 7 0 0 A B C D E F G I 0 7 0
1 A I J K L M N O 6 1 0 A B C D E F I J 1 6 0
2 A B I J K L M N 5 2 0 A B C D E I J K 2 5 0
3 A B C I J K L M 4 3 0 A B C D I J K L 3 4 0
4 A B C D I J K L 3 4 0 A B C I J K L M 4 3 0
5 A B C D E I J K 2 5 0 A B I J K L M N 5 2 0
6 A B C D E F I J 1 6 0 A I J K L M N O 6 1 0
7 A B C D E F G I 0 7 0 I J K L M N O P 7 0 0

LEM BigEndianMem = 0

BEM BigEndianMem = 1

Type AccessType sent to memory

Offset Addr2∼ 0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

 TX49/H2 Architecture

A-87

LH Load Halfword LH
offset

LH
100001 base rt

1516202125

6

2631 0

5 5 16

Format:

LH rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form
a virtual address. The contents of the halfword at the memory location specified by the
effective address are sign-extended and loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an address error exception
occurs.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor (ReverseEndian 0))
mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr2∼ 0 xor (BigEndianCPU2 0)
GPR[rt] ← (mem15 + 8*byte)16 mem15 + 8*byte∼ 8*byte

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor (ReverseEndian 0))
mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr2∼ 0 xor (BigEndianCPU2 0)
GPR[rt] ← (mem15 + 8*byte)16 mem15 + 8*byte∼ 8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

 TX49/H2 Architecture

A-88

LHU Load Halfword Unsigned LHU
offset

LHU
100101 base rt

1516202125

6

2631 0

5 5 16

Format:

LHU rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form
a virtual address. The contents of the halfword at the memory location specified by the
effective address are zero-extended and loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an address error exception
occurs.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor (ReverseEndian2 0))
mem ← LoadMemory (uncached, HALFWORD, pAddr,vAddr, DATA)
byte ← vAddr2∼ 0 xor (BigEndianCPU2 0)
GPR[rt] ← 016 mem15 + 8*byte∼ 8*byte

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor (ReverseEndian2 0))
mem ← LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte ← vAddr2∼ 0 xor (BigEndianCPU2 0)
GPR[rt] ← 048 mem15 + 8*byte∼ 8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus Error exception

Address error exception

 TX49/H2 Architecture

A-89

LL Load Linked LL
offset

LL
110000 base rt

1516202125

6

2631 0

5 5 16

Format:

LL rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form
a virtual address. The contents of the word at the memory location specified by the effective
address are loaded into general register rt. In 64-bit mode, the loaded word is sign-extended.

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

 TX49/H2 Architecture

A-90

LLD Load Linke Doubleword LLD
offset

LLD
110100 base rt

1516202125

6

2631 0

5 5 16

Format:

LLD rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form
a virtual address. The contents of the doubleword at the memory location specified by the
effective address are loaded into general register rt.

The processor begins checking the accessed doubleword for modification by other
processors and devices.

Load Linked Doubleword and Store Conditional Doubleword can be used to atomically
update memory locations:

L1:
LLD T1, (T0)
ADD T2, T1, 1
SCD T2, (T0)
BEQ T2, 0, L1
NOP

This atomically increments the word addressed by T0. Changing the ADD to an OR
changes this to an atomic bit set.

 TX49/H2 Architecture

A-91

LLD Load Linked Doubleword
(continued) LLD

The operation of LLD is undefined if the addressed location is uncached and, for
synchronization between multiple processors, the operation of LLD is undefined if the
addressed location is noncoherent.

A cache miss that occurs between LLD and SCD may cause SCD to fail, so no load or store
instruction should occur between LLD and SCD. Exceptions also cause SCD to fail, so
persistent exceptions must be avoided.

This instruction is available in User mode, and it is not necessary for CP0 to be enabled.

If any of the three least-significant bits of the effective address are non-zero, an address
error exception takes place.

Operation:

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
mem←LoadMemory (uncached,DOUBLE WORD,pAddr,vAddr,DATA)
GPR[rt] ← mem
LLbit ← 1

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

 TX49/H2 Architecture

A-92

LUI Load Upper Immediate LUI
immediate

0
00000

LUI
001111 rt

1516202125

6

2631 0

5 5 16

Format:

LUI rt, immediate

Description:

The 16-bit immediate is shifted left 16 bits and concatenated to 16 bits of zeros. The result
is placed into general register rt. In 64-bit mode, the loaded word is sign-extended.

Operation:

32 T: GPR[rt] ← immediate 016

64 T: GPR[rs] ← (immediate15)32 immediate 016

Exceptions:

None

 TX49/H2 Architecture

A-93

LW Load Word LW
offset

LW
100011 base rt

1516202125

6

2631 0

5 5 16

Format:

LW rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form
a virtual address. The contents of the word at the memory location specified by the effective
address are loaded into general register rt. In 64-bit mode, the loaded word is sign-extended.

If either of the two least-significant bits of the effective address is non-zero, an address
error exception occurs.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor (ReverseEndian 02)
mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr2∼ 0 xor (BigEndianCPU 02)
GPR[rt] ← mem31 + 8*byte∼ 8*byte

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor (ReverseEndian 02)
mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr2∼ 0 xor (BigEndianCPU 02)
GPR[rt] ← (mem31 + 8*byte)32 mem31 + 8*byte∼ 8*byte

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

 TX49/H2 Architecture

A-94

LWCz Load Word To Coprocessor
z LWCz

offset
LWXz

1100xx* base rt

1516202125

6

2631 0

5 5 16

Format:

LWCz rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form
a virtual address. The processor reads a word from the addressed memory location, and
makes the data available to coprocessor unit z. The manner in which each coprocessor uses
the data is defined by the individual coprocessor specifications.

If either of the two least-significant bits of the effective address is non-zero, an address
error exception occurs.

This instruction is not valid for use with CP0.

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction Opcode Bit
Encoding” at the end of Appendix A.

 TX49/H2 Architecture

A-95

LWCz Load Word To Coprocessor z
(continued) LWCz

Operation:

32 T: vAddr ← ((offset15)16 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor (ReverseEndian 02)
mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr2∼ 0 xor (BigEndianCPU 02)
COPzLW (byte, rt, mem)

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor (ReverseEndian 02)
mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr2∼ 0 xor (BigEndianCPU 02)
COPzLW(byte, rt, mem)

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Coprocessor unusable exception

Opcode Bit Encoding:

LWCz

LWC1

Bit #

Opcode Coprocessor Unit Number

02627282930

0011

31

10

02627282930

0011

31

01LWC2

Bit #

 TX49/H2 Architecture

A-96

LWL Load Word Left LWL
offset

LWL
100010 base rt

1516202125

6

2631 0

5 5 16

Format:

LWL rt, offset (base)

Description:

This instruction can be used in combination with the LWR instruction to load a register
with four consecutive bytes from memory, when the bytes cross a boundary between two
words. LWL loads the left portion of the register from the appropriate part of the high-order
word; LWR loads the right portion of the register from the appropriate part of the low-order
word.

The LWL instruction adds its sign-extended 16-bit offset to the contents of general register
base to form a virtual address which can specify an arbitrary byte. It reads bytes only from
the word in memory which contains the specified starting byte. From one to four bytes will
be loaded, depending on the starting byte specified. In 64-bit mode, the loaded word is sign-
extended.

Conceptually, it starts at the specified byte in memory and loads that byte into the high-
order (left-most) byte of the register; then it proceeds toward the low-order byte of the word
in memory and the low-order byte of the register, loading bytes from memory into the
register until it reaches the low-order byte of the word in memory. The least-significant
(right-most) byte(s) of the register will not be changed.

LWL $24,1 ($0)

memory
(big-endian)

register

address 0

address 4 7654

3210 $24before DCBA

$24after D321

 TX49/H2 Architecture

A-97

LWL Load Word Left
(continued) LWL

The contents of general register rt are internally bypassed within the processor so that no
NOP is needed between an immediately preceding load instruction which specifies register rt
and a following LWL (or LWR) instruction which also specifies register rt.

No address exceptions due to alignment are possible.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor (ReverseEncian3)
if BigEndianMem = 0 then
pAddr ← pAddrPSIZE-1∼ 2 02

endif
byte ← vAddr1∼ 0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU
mem ← LoadMemory (uncached, 0 byte, pAddr, vAddr, DATA)
temp ← mem32*word + 8*byte + 7∼ 32*word GPR[rt]23 − 8*byte∼ 0
GPR[rt] ← temp

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor (ReverseEncian3)
if BigEndianMem = 0 then
pAddr ← pAddrPSIZE-1∼ 2 02

endif
byte ← vAddr1∼ 0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU
mem ← LoadMemory (uncached, 0 byte, pAddr, vAddr, DATA)
temp ← mem32*word + 8*byte + 7∼ 32*word GPR[rt]23 − 8*byte∼ 0
GPR[rt] ← (temp31)32 temp

 TX49/H2 Architecture

A-98

LWL Load Word Left
(continued) LWL

Given a doubleword in a register and a doubleword in memory, the operation of LWL is as
follows:

LWL

Register

Memory

CBA D E F G H

KJI L M N O P

BigEndianCPU = 0 BigEndianCPU = 1
offset offsetvAddr2∼ 0 Destination type

LEM BEM
Destination type

LEM BEM
0 S S S S P F G H 0 0 7 S S S S I J K L 3 4 0
1 S S S S O P G H 1 0 6 S S S S J K L H 2 4 1
2 S S S S N O P H 2 0 5 S S S S K L G H 1 4 2
3 S S S S M N O P 3 0 4 S S S S L F G H 0 4 3
4 S S S S L F G H 0 4 3 S S S S M N O P 3 0 4
5 S S S S K L G H 1 4 2 S S S S N O P H 2 0 5
6 S S S S J K L H 2 4 1 S S S S O P G H 1 0 6
7 S S S S I J K L 3 4 0 S S S S P F G H 0 0 7

LEM BigEndianMem = 0

BEM BigEndianMem = 1

Type AccessType (see Figure 2-2) sent to memory

Offset pAddr2∼ 0 sent to memory

S sign-extend of destination31

Exception:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

 TX49/H2 Architecture

A-99

LWR Load Word Right LWR
offset

LWR
100110 base rt

1516202125

6

2631 0

5 5 16

Format:

LWR rt, offset (base)

Description:

This instruction can be used in combination with the LWL instruction to load a register
with four consecutive bytes from memory, when the bytes cross a boundary between two
words. LWR loads the right portion of the register from the appropriate part of the low-order
word; LWL loads the left portion of the register from the appropriate part of the high-order
word.

The LWR instruction adds its sign-extended 16-bit offset to the contents of general register
base to form a virtual address which can specify an arbitrary byte. It reads bytes only from
the word in memory which contains the specified starting byte. From one to four bytes will
be loaded, depending on the starting byte specified. In 64-bit mode, if bit 31 of the
destination register is loaded, then the loaded word is sign-extended.

Conceptually, it starts at the specified byte in memory and loads. that byte into the low-
order (right-most) byte of the register; then it proceeds toward the high-order byte of the
word in memory and the high-order byte of the register, loading bytes from memory into the
register until it reaches the high-order byte of the word in memory.

The most significant (left-most) byte(s) of the register will not be changed.

LWR $24,4 ($0)

memory
(big-endian)

register

address 0

address 4 7654

3210 $24before DCBA

$24after 4CBA

 TX49/H2 Architecture

A-100

LWR Load Word Right
(continued) LWR

The contents of general register rt are internally bypassed within the processor so that no
NOP is needed between an immediately preceding load instruction which specifies register rt
and a following LWR (or LWL) instruction which also specifies register rt.

No address exceptions due to alignment are possible.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor ReverseEndian3)
if BigEndianMem = 1 then
pAddr ← pAddrPSIZE-31∼ 3 03

endif
byte ← vAddr1∼ 0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU
mem ← LoadMemory (uncached, 0 byte, pAddr, vAddr, DATA)
temp ← GPR[rt]31∼ 32 − 8*byte mem31 + 32*word∼ 32*word + 8*byte
GPR[rt] ← temp

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor ReverseEndian3)
if BigEndianMem = 1 then
pAddr ← pAddrPSIZE-31∼ 3 03

endif
byte ← vAddr1∼ 0 xor BigEndianCPU2

word ← vAddr2 xor BigEndianCPU
mem ← LoadMemory (uncached, 0 byte, pAddr, vAddr, DATA)
temp ← GPR[rt]31∼ 32 − 8*byte mem31 + 32*word∼ 32*word + 8*byte
GPR[rt] ← (temp31)32 temp

 TX49/H2 Architecture

A-101

LWR Load Word Right
(continued) LWR

Given a word in a register and a word in memory, the operation of LWR is as follows:

LWR

Register

Memory

CBA D E F G H

KJI L M N O P

BigEndianCPU = 0 BigEndianCPU = 1
offset offsetvAddr2∼ 0 destination type

LEM BEM
Destination type

LEM BEM
0 S S S S M N O P 0 0 4 X X X X E F G I 0 7 0
1 X X X X E M N O 1 1 4 X X X X E F I J 1 6 0
2 X X X X E F M N 2 2 4 X X X X E I J K 2 5 0
3 X X X X E F G M 3 3 4 S S S S I J K L 3 4 0
4 S S S S I J K L 0 4 0 X X X X E F G M 4 3 4
5 X X X X E I J K 1 5 0 X X X X E F M N 5 2 4
6 X X X X E F I J 2 6 0 X X X X E M N O 6 1 4
7 X X X X E F G I 3 7 0 S S S S M N O P 7 0 4

LEM BigEndianMem = 0

BEM BigEndianMem = 1

Type AccessType (see Figure 2-2) sent to memory

Offset pAddr2∼ 0 sent to memory

S sign-extend of destination31

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

 TX49/H2 Architecture

A-102

A.

LWU Load Word Unsigned LWU
offset

LWU
100111 base rt

1516202125

6

2631 0

5 5 16

Format:

LWU rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form
a virtual address. The contents of the word at the memory location specified by the effective
address are loaded into general register rt. The loaded word is zero-extended.

If either of the two least-significant bits of the effective address is non-zero, an address
error exception occurs.

Operation:

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor ReverseEndian 02)
mem ← LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr2∼ 0 xor (BigEndianCPU 02)
GPR[rt] ← 032 mem31 + 8*byte∼ 8*byte

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

 TX49/H2 Architecture

A-103

MADD Multiply/Add MADD

rd MADD
000000

MAC
011100 rt

1011

6

31 0

5 5 5 11

rs 0
00000

MADD
000000

MAC
011100

rs rt

1516202125

6

2631 0

5 5 6

0
00 0000 0000

10

56

151620212526 56

Format:

• MADD rs, rt

• MADD rd, rs, rt

Description:

Multiplies the contents of general registers rs and rt, treating both values as two’s
complement, and puts the double-word result in special registers HI and LO. An overview
exception is never raised. The low-order word of the multiplication result is put in general
register rd and in special register LO, whereas the high-order word of the reuslt is put in
special register HI.

If rd is omitted in assembly language, 0 is used as the default value. To guarantee correct
operation even if an interrupt occurs, neithe of the two instructions following MADD should
be DIV or DIVU instructions which modify the HI and LO register contents.

Operation:

32, 64 T: t ← (HI LO) + GPR[rs]*GPR[rt]
LO ← t31∼ 0

HI ← t63∼ 32

GPR[rd] ←t31∼ 0

Exception:

None

 TX49/H2 Architecture

A-104

MADDU Multiply/Add Unsigned MADDU

rd MADDU
000001

MAC
011100

rt

6

31 0

5 5 5 11

rs 0
00000

MADDU
000001

MAC
011100

rs rt

1516202125

6

2631 0

5 5 6

0
00 0000 0000

10

56

151620212526 561011

Format:

MADDU rs, rt

MADDU rd, rs, rt

Description:

Multiplies the contents of general registers rs and rt, treating both values as unsigned, and
puts the double-word result in special registers HI and LO. An overview exception is never
raised. The low-order word of the multiplication result is put in general register rd and in
special register LO, whereas the high-order word of the reuslt is put in special register HI.

If rd is omitted in assembly language, 0 is used as the default value. To guarantee correct
operation even if an interrupt occurs, neithe of the two instructions following MADDU should
be DIV or DIVU instructions which modify the HI and LO register contents.

Operation:

32, 64 T: t ← (HI LO) + (0 || GPR[rs]) + (0 || GPR[rt])
LO ← t31∼ 0

HI ← t63∼ 32

GPR[rd] ← t31∼ 0

Exception:

None

 TX49/H2 Architecture

A-105

MFC0 Move From System
Control Coprocessor 0 MFC0

rd 0
000 0000 0000

MF
00000

COP0
010000

rt

10111516202125

6

2631 0

5 5 5 11

Format:

MFC0 rt, rd

Description:

The contents of coprocessor register rd of the CP0 are loaded into general register rt.

May be used on both 32-bit and 64-bit CP0 registers.

Operation:

32 T: data ← CPR[0,rd]
T + 1: GPR[rt] ← data

64 T: data ← CPR[0,rd]
T + 1: GPR[rt] ← (data31)32 data31∼ 0

Exceptions:

Coprocessor unusable exception

 TX49/H2 Architecture

A-106

MFCz Move From Coprocessor z MFCz
rd 0

000 0000 0000
MF

00000
COPz

0100xx*
rt

10111516202125

6

2631 0

5 5 5 11

Format:

MFCz rt, rd

Description:

The contents of coprocessor register rd of coprocessor z are loaded into general register rt.

Execution of the instruction referencing coprocessor 3 causes a reserved instruction
exception, not a coprocessor unusable exception.

Operation:

32 T: data ← CPR[z,rd]
T + 1: GPR[rt] ← data

64 T: if rd0 = 0
data ← CPR[z,rd4∼ 1 0]31∼ 0
else
data ← CPR[z,rd4∼ 1 0]63∼ 32
endif

T + 1: GPR[rt] ← (data31)32||data

Exceptions:

Coprocessor unusable exception

Reserved instruction exception (coprocessor 3)

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction Opcode Bit
Encoding” at the end of Appendix A.

 TX49/H2 Architecture

A-107

MFCz Move From Coprocessor z
(continued) MFCz

Opcode Bit Encoding:

Coprocessor Suboperation

MFCz

Coprocessor Unit Number

MFC1

Bit #

Opcode

021222324252627282930

0010

31

0010 000

021222324252627282930

0010

31

0001 000MFC2

Bit #

MFC0

Bit # 021222324252627282930

0010

31

0000 000

 TX49/H2 Architecture

A-108

MFHI Move From HI MFHI
rd MFHI

010000
0

00000
0

00 0000 0000
SPECIAL
000000

561011151625

6

2631 0

10 5 5 6

Format:

MFHI rd

Description:

The contents of special register HI are loaded into general register rd.

 To ensure proper operation in the event of interruptions, the two instructions which follow
a MFHI instruction may not be any of the instructions which modify the HI register: MULT,
MULTU, DIV, DIVU, MTHI, DMULT, DMULTU, DDIV, DDIVU, MADD, MADDU.

Operation:

32, 64 T: GPR[rd] ← HI

Exceptions:

None

 TX49/H2 Architecture

A-109

MFLO Move From Lo MFLO
rd MFLO

010010
0

00000
0

00 0000 0000
SPECIAL
000000

561011151625

6

2631 0

10 5 5 6

Format:

MFLO rd

Description:

The contents of special register LO are loaded into general register rd.

 To ensure proper operation in the event of interruptions, the two instructions which follow
a MFLO instruction may not be any of the instructions which modify the LO register: MULT,
MULTU, DIV, DIVU, MTLO, DMULT, DMULTU, DDIV, DDIVU, MADD, MADDU.

Operation:

32, 64 T: GPR[rd] ← LO

Exceptions:

None

 TX49/H2 Architecture

A-110

MTC0 Move To System Control
Coprocessor 0 MTC0

rd 0
000 0000 0000

MT
00100

COP0
010000

rt

10111516202125

6

2631 0

5 5 5 11

Format:

MTC0 rt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd of the CP0.

Because the state of the virtual address translation system may be altered by this
instruction, the operation of load, store instructions and TLB operations immediately prior to
and after this instruction are undefined.

Operation:

32, 64 T: data ← GPR[rt]
T + 1: CPR[0,rd] ← data

Exceptions:

Coprocessor unusable exception

 TX49/H2 Architecture

A-111

MTCz Move To Coprocessor z MTCz
rd 0

000 0000 0000
MT

00100
COPz

0100xx*
rt

10111516202125

6

2631 0

5 5 5 11

Format:

MTCz rt, rd

Description:

The contents of general register rt are loaded into coprocessor register rd of coprocessor z.
Execution of the instruction referencing coprocessor 3 causes a reserved instruction
exception, not a coprocessor unusable exception.

Operation:

32 T: data ← GPR[rt]
T + 1: CPR[z,rd] ← data

64 T: data ← GPR[rt]31∼ 0
T + 1: if rd0 = 0

CPR[z,rd4∼ 1 0] ← CPR[z,rd4∼ 1 0]63∼ 32 data
else
CPR[z,rd4∼ 1 0] ← data||CPR[z, rd 4∼ 1 0]31∼ 0
endif

Exceptions:

Coprocessor unusable exception

Reserved instruction exception (coprocessor 3)

*Opcode Bit Encoding:

MTCz
MTC0

Bit # 021222324252627282930

0010

31

0000 001

021222324252627282930

0010

31

0010 001MTC1

Bit #

Coprocessor Suboperation

Coprocessor Unit Number

Opcode

021222324252627282930

0010

31

0001 001MTC2

Bit #

 TX49/H2 Architecture

A-112

MTHI Move To HI MTHI
MTHI

010001
0

000 0000 0000 0000
SPECIAL
000000 rs

5620212526

6

31 0

5 15 6

Format:

MTHI rs

Description:

The contents of general register rs are loaded into special register HI

If a MTHI operation is executed following a MULT, MULTU, DIV, DIVU, DMULT,
DMULTU, DDIV, DDIVU, MADD, or MADDU instruction, but before any MFLO, MFHI,
MTLO, or MTHI instructions, the contents of special register LO are undefined.

Operation:

32, 64 T − 2: HI ← undefined
T − 1: HI ← undefined
T: HI ← GPR[rs]

Exceptions:

None

 TX49/H2 Architecture

A-113

MTLO Move To LO MTLO
MTLO
010011

0
000 0000 0000 0000

SPECIAL
000000

rs

5620212526

6

31 0

5 15 6

Format:

MTLO rs

Description:

The contents of general register rs are loaded into special register LO If a MTLO operation
is executed following a MULT, MULTU, DIV, DIVU, DMULT, DMULTU, DDIV, DDIVU,
MADD, or MADDU instruction, but before any MFLO, MFHI, MTLO, or MTHI instructions,
the contents of special register HI are undefined.

Operation:

32, 64 T − 2: LO ← undefined
T − 1: LO ← undefined
T: LO ← GPR[rs]

Exceptions:

None

 TX49/H2 Architecture

A-114

MULT Multiply MULT

MULT
011000

0
00 0000 0000

SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

MULT
011000

SPECIAL
000000

rs rt

1516202125

6

2631 0

5 5 6

rd

11

5

10

0
0 0000

5

56

Format:

MULT rs, rt

MULT rd, rs, rt

Description:

The contents of general registers rs and rt are multiplied, treating both operands as 32-bit
2’s-complement values. No integer overflow exception occurs under any circumstances. In
64-bit mode, the operands must be valid 32-bit, sign-extended values.

 When the operation completes, the low-order word of the double result is loaded into
special register LO, and the high-order word of the double result is loaded into special
register HI.

If either of the two preceding instructions is MFHI or MFLO, the results is of these
instructions are undefined. Correct operation requires separating reads of HI or LO from
writes by a minimum of two other instructions.

Operation:

32 T − 2: LO ← undefined
HI ← undefined

T − 1: LO ← undefined
HI ← undefined

T: t ← GPR[rs]* GPR[rt]
LO ← t31∼ 0

HI ← t63∼ 32

GPR[rd] ← t31∼ 0
64 T − 2: LO ← undefined

HI ← undefined
T − 1: LO ← undefined

HI ← undefined
T: t ← GPR[rs]31∼ 0* GPR[rt]31∼ 0

LO ← (t31)32 t31∼ 0

HI ← (t63)32 t63∼ 32

GPR[rd] ← (t31)32 t31∼ 0

Exceptions:

None

 TX49/H2 Architecture

A-115

MULTU Multiply Unsigned MULTU
MULTU
011001

0
00 0000 0000

SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

MULTU
011001

SPECIAL
000000

rs rt

1516202125

6

2631 0

5 5 6

rd

11

5

10

0
0 0000

5

56

Format:

MULTU rs, rt

MULTU rd, rs, rt

Description:

The contents of general register rs and the contents of general register rt are multiplied,
treating both operands as unsigned values. No overflow exception occurs under any
circumstances. In 64-bit mode, the operands must be valid 32-bit, sign-extended values.

When the operation completes, the low-order word of the double result is loaded into
special register LO, and the high-order word of the double result is loaded into special
register HI.

If either of the two preceding instructions is MFHI or MFLO, the results of these
instructions are undefined. Correct operation requires separating reads of HI or LO from
writes by a minimum of two instructions.

Operation:

32 T − 2: LO ← undefined
HI ← undefined

T − 1: LO ← undefined
HI ← undefined

T: t ← (0 GPR[rs])* (0 GPR[rt])
LO ← t31∼ 0

HI ← t63∼ 32

GPR[rd] ← t31∼ 0
64 T − 2: LO ← undefined

HI ← undefined
T − 1: LO ← undefined

HI ← undefined
T: t ← (0 GPR[rs]31∼ 0)* (0 GPR[rt]31∼ 0)

LO ← (t31)32 t31∼ 0

HI ← (t63)32 t63∼ 32

GPR[rd] ← (t31)32 t31∼ 0

Exceptions:

None

 TX49/H2 Architecture

A-116

NOR Nor NOR
rd NOR

100111
0

00000
SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

NOR rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register rt in
a bit-wise logical NOR operation. The result is placed into general register rd.

Operation:

32, 64 T: GPR[rd] ← GPR[rs] nor GPR[rt]

Exceptions:

None

 TX49/H2 Architecture

A-117

OR Or OR
rd

OR
100101

0
00000

SPECIAL
000000 rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

OR rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register rt in
a bit-wise logical OR operation. The result is placed into general register rd.

Operation:

32, 64 T: GPR[rd] ← GPR[rs] or GPR[rt]

Exceptions:

None

 TX49/H2 Architecture

A-118

ORI Or Immediate ORI
immediateORI

001101
rs rt

1516202125

6

2631 0

5 5 16

Format:

ORI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general register
rs in a bit-wise logical OR operation. The result is placed into general register rt.

Operation:

32 T: GPR[rt] ← GPR[rs]31∼ 16 (immediate or GPR[rs]15∼ 0)
64 T: GPR[rt] ← GPR[rs]63∼ 16 (immediate or GPR[rs]15∼ 0)

Exceptions:

None

 TX49/H2 Architecture

A-119

PREF Prefetch PREF
offset

PREF
110011 base hint

1516202125

6

2631 0

5 5 16

Format :

PREF hint, offset (base)

Description :

PREF adds the 16-bit signed offset to the contents of GPR base to form an effective byte
address. It advises that data at the effective address may be used in the near future.

If the hint field is 000002, this instruction prefetches a block of data from main memory
into cache.

PREF is an advisory instruction. It may change the performance of the program. For all
hint values and all effective addresses, it neither changes architecturally-visible state nor
alters the meaning of the program.

PREF does not cause addressing-related exceptions. If it raises an exception condition, the
exception conditions ignored. If an addressing-related exception is raised and ignored, no
data will be prefetched, even if no data is prefetched in such a case, some action that is not
architecturally-visible, such as writeback of a dirty cache line, might take place.

PREF will never generate a memory operation for a location with an uncached memory
access type.

The defined hint values are shown in the table below. The TX49 only supports hint = 0.
The hint table may be extended in future implementations.

hint field: Value

Value Name Data use and desired prefetch action
0 Load Data is expected to be loaded (not modified).

Fetch data as if for a load.
1-31 Reserved Reserved

 TX49/H2 Architecture

A-120

PREF Prefetch
(continued) PREF

Programming Notes:

Prefetch can not prefetch data from a mapped location unless the translation for that
location is present in the TLB. Locations in memory pages that have not been accessed
recently may not have translations in the TLB, so prefetch may not be effective for such
locations.

Prefetch does not cause addressing exceptions. It will not cause an exception to prefetch
using an address pointer value before the validity of a pointer determined.

Operation :

32, 64 T: vAddr ← GPR[base] = sign_extend (offset)
(pAddr, uncached) ← Address Translation (vAddr, DATA, LOAD)
Prefetch (uncached, pAddr, vAddr, DATA, hint)

Exception :

None

 TX49/H2 Architecture

A-121

SB Store Byte SB
offsetSB

101000
base rt

1516202125

6

2631 0

5 5 16

Format:

SB rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form
a virtual address. The least-significant byte of register rt is stored at the effective address.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼ 0) + GPR[base]
(pAddr, unchached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor ReverseEndian3)
byte ← vAddr2∼ 0 xor BigEndianCPU3

data ← GPR[rt]63−8*byte∼ 0 08*byte

StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)
64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor ReverseEndian3)
byte ← vAddr2∼ 0 xor BigEndianCPU3

data ← GPR[rt]63−8*byte∼ 0 08*byte

StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

 TX49/H2 Architecture

A-122

SC Store Conditional SC
offsetSC

111000
base rt

1516202125

6

2631 0

5 5 16

Format:

SC rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form
a virtual address. The contents of general register rt are conditionally stored at the memory
location specified by the effective address.

If an ERET instruction occurs between the Load Linked instruction and this store
instruction, the store fails and is inhibited from taking place.

The success or failure of the store operation (as defined above) is indicated by the contents
of general register rt after execution of the instruction. A successful store sets the contents of
general register rt to1 ; an unsuccessful store sets it to 0.

The operation of Store Conditional is undefined when the address is different from the
address used in the last Load Linked.

This instruction is available in User mode; it is not necessary for CP0 to be enabled.

If either of the two least-significant bits of the effective address is non-zero, an address
error exception takes place.

 TX49/H2 Architecture

A-123

SC Store Conditional
(continued) SC

If this instruction should both fail and take an exception, the exception takes precedence.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼ 0) + GPR[base]
(pAddr, unchached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor ReverseEndian 02)
data ← GPR[rt]63−8*byte∼ 0 08*byte

if LLbit then
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] ← 031 LLbit

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, unchached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor ReverseEndian 02)
data ← GPR[rt]63−8*byte∼ 0 08*byte

if LLbit then
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] ← 063 Llbit

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

 TX49/H2 Architecture

A-124

SCD Store Conditional
Doubleword SCD

offsetSCD
111100

base rt

1516202125

6

2631 0

5 5 16

Format:

SCD rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form
a virtual address. The contents of general register rt are conditionally stored at the memory
location specified by the effective address.

If an ERET instruction occurs between the Load Linked Doubleword instruction and this
store instruction, the store fails and is inhibited from taking place.

The success or failure of the store operation (as defined above) is indicated by the contents
of general register rt after execution of the instruction. A successful store sets the contents of
general register rt to1; an unsuccessful store sets it to 0.

The operation of Store Conditional Doubleword is undefined when the address is different
from the address used in the last Load Linked Doubleword.

This instruction is available in User mode; it is not necessary for CP0 to be enabled.

If either of the three least-significant bits of the effective address is non-zero, an address
error exception takes place.

If this instruction should both fail and take an exception, the exception takes precedence.

Operation:

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, unchached) ← AddressTranslation (vAddr, DATA)
data ← GPR[rt]
If LLbit then
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] ← 063 Llbit

Note: It is also the same operation in the 32 bit kernel mode.

 TX49/H2 Architecture

A-125

SCD
Store Conditional

Doubleword
(continued)

SCD
Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

 TX49/H2 Architecture

A-126

SD Store Doubleword SD
offsetSD

111111
base rt

1516202125

6

2631 0

5 5 16

Format:

SD rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form
a virtual address. The contents of general register rt are stored at the memory location
specified by the effective address.

If either of the three least-significant bits of the effective address are non-zero, an address
error exception occurs.

Operation:

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, unchached) ← AddressTranslation (vAddr, DATA)
data ← GPR[rt]
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Note: It is also the same operation, and the upper 32 bit is ignored when the virtual
address is created in the 32 bit kernel mode.

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

 TX49/H2 Architecture

A-127

SDBBP Store Debug Breakpoint SDBBP
SDBBP
001110

SPECIAL
000000

5625

6

2631 0

20 6

Code

Format:

SDBBP code

Description:

Raises a Debug Breakpoint exception, passing control to an exception handler. The code
field can used for passing information to the exception handler, but the only way to have the
code field retrived by the exception handler is to load the contents of the memory word
containing this instruction using the DEPC register.

Operation:

32, 64 T: Software DebugBreakpointException

Exception:

Debug Breakpoint exception

 TX49/H2 Architecture

A-128

SDCz Store Doubleword From
Coprocessor z SDCz

offsetSDCz
1111xx*

base rt

1516202125

6

2631 0

5 5 16

Format:

SDCz rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form
a virtual address. Coprocessor unit z sources a doubleword, which the processor writes to the
addressed memory location. The data to be stored is defined by individual coprocessor
specifications.

If any of the three least-significant bits of the effective address are non-zero, an address
error exception takes place.

This instruction is not valid for use with CP0.

This instruction is undefined when the least-significant bit of the rt-field is non-zero.

*See the table, “Opcode Bit Encoding” on next page, or “CPU Instruction Opcode Bit
Encoding” at the end of Appendix A.

 TX49/H2 Architecture

A-129

SDCz Store Doubleword From
Coprocessor z (continued) SDCz

Operation:

32 T: vAddr ← ((offset15)16 offset15∼ 0) + GPR[base]
(pAddr, unchached) ← AddressTranslation (vAddr, DATA)
data ← COPzSD (rt),
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, unchached) ← AddressTranslation (vAddr, DATA)
data ← COPzSD (rt),
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Coprocessor unusable exception

Opcode Bit Encoding:

SDCz

Coprocessor Unit NumberSD opcode

02627282930

1111

31

10

02627282930

1111

31

01

SDC1

Bit #

SDC2

Bit #

 TX49/H2 Architecture

A-130

SDL Store Doubleword Left SDL
offsetSDL

101100
base rt

1516202125

6

2631 0

5 5 16

Format:

SDL rt, offset (base)

Description:

This instruction can be used with the SDR instruction to store the contents of a register
into eight consecutive bytes of memory, when the bytes cross a boundary between two
doublewords. SDL stores the left portion of the register into the appropriate part of the high-
order doubleword of memory; SDR stores the right portion of the register into the
appropriate part of the low-order doubleword.

The SDL instruction adds its sign-extended 16-bit offset to the contents of general register
base to form a virtual address which may specify an arbitrary byte. It alters only the word in
memory which contains that byte. From one to four bytes will be stored, depending on the
starting byte specified.

Conceptually, it starts at the most-significant byte of the register and copies it to the
specified byte in memory; then it proceeds toward the low-order byte of the register and the
low-order byte of the word in memory, copying bytes from register to memory until it reaches
the low-order byte of the word in memory.

No address exceptions due to alignment are possible.

SWL $24,1 ($0)

memory
(big-endian)

register

address 0

address 8 111098 15141312

3210 7654 $24before DCBA HGFE

afteraddress 0

address 8 111098 15141312

CBA0 GFED

 TX49/H2 Architecture

A-131

SDL Store Doubleword Left
(continued) SDL

This operation is only defined for the TX4300 operating in 64-bit mode nad 32-bit kernal
mode.

Execution of this instruction in 32-bit user or supervisor mode causes a reserved
instruction exception.

Operation:

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, unchached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr ← pAddr31∼ 3 03

endif
byte ← vAddr2∼ 0 xor BigEndianCPU3

data ← 056−8*byte GPR[rt]63∼ 56−8*byte
StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

Note: It is also the same operation, and the upper 32 bit is ignored when the virtual
address is created in the 32 bit kernel mode.

 TX49/H2 Architecture

A-132

SDL Store Doubleword Left
(continued) SDL

Given a doubleword in a register and a doubleword in memory, the operation of SWL is as
follows:

LWL

Register

Memory

CBA D E F G H

KJI L M N O P

BigEndianCPU = 0 BigEndianCPU = 1
offset offsetvAddr2∼ 0 destination type

LEM BEM
destination type

LEM BEM
0 I J K L M N O A � 0 � A � � � � � � H 7 0 0
1 I J K L M N � � � � � � � � � � � � � 6 0 1
2 I J K L M A B C 2 0 5 I J A B C D E F 5 0 2
3 I J K L A B C D 3 0 4 I J K A B C D E 4 0 3
4 I J K A B C D E 4 0 3 I J K L A B C D 3 0 4
5 I J A B C D E F 5 0 2 I J K L M A B C 2 0 5
6 I A B C D E F G 6 0 1 I J K L M N A B 1 0 6
7 A B C D E F G H 7 0 0 I J K L M N O A 0 0 7

LEM BigEndianMem = 0

BEM BigEndianMem = 1

Type Access Type (see Figure 2-2) sent to memory

Offset pAddr2∼ 0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

 TX49/H2 Architecture

A-133

SDR Store Doubleword Right SDR
offsetSDR

101101
base rt

1516202125

6

2631 0

5 5 16

Format:

SDR rt, offset (base)

Description:

This instruction can be used with the SDL instruction to store the contents of a register
into eight consecutive bytes of memory, when the bytes cross a boundary between two
doublewords. SDR stores the right portion of the register into the appropriate part of the
low-order doubleword; SDL stores the left portion of the register into the appropriate part of
the low-order doubleword of memory.

The SDR instruction adds its sign-extended 16-bit offset to the contents of general register
base to form a virtual address which may specify an arbitrary byte. It alters only the word in
memory which contains that byte. From one to eight bytes will be stored, depending on the
starting byte specified.

Conceptually, it starts at the least-significant (rightmost) byte of the register and copies it
to the specified byte in memory; then it proceeds toward the high-order byte of the register
and the high-order byte of the word in memory, copying bytes from register to memory until
it reaches the high-order byte of the word in memory.

No address exceptions due to alignment are possible.

SWR $24,4 ($0)

memory
(big-endian)

register

address 0

address 8 111098 15141312

3210 7654 $24before DCBA HGFE

afteraddress 0

address 8 111098 15141312

HGFE 7654

memory
(big-endian)

 TX49/H2 Architecture

A-134

SDR Store Doubleword Right
(continued) SDR

This operation is only defined for the TX4300 operating in 64-bit mode and 32-bit kernal
mode.

Execution of this instruction in 32-bit user or supervisor mode causes a reserved
instruction exception

Operation:

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, unchached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor ReverseEndian3)
if BigEndianMem = 0 then

pAddr ← pAddrPSIZE-31∼ 3 03

endif
byte ← vAddr1∼ 0 xor BigEndianCPU3

data ← GPR[rt]63−8*byte∼ 0 08*byte

StoreMemory (uncached, DOUBLEWORD-byte, data, pAddr, vAddr,

Note: It is also the same operation, and the upper 32 bit is ignored when the virtual
address is created in the 32 bit kernel mode.

 TX49/H2 Architecture

A-135

SDR Store Doubleword Right
(continued) SDR

Given a doubleword in a register and a doubleword in memory, the operation of SDR is as
follows:

SDR

Register

Memory

CBA D E F G H

KJI L M N O P

BigEndianCPU = 0 BigEndianCPU = 1
offset offsetvAddr2∼ 0 destination type

LEM BEM
destination type

LEM BEM
0 A B C D E F G H 7 0 0 H J K L M N O P 0 7 0
1 B C D E F G H P 6 1 0 G H K L M N O P 1 6 0
2 C D E F G H O P 5 2 0 F G H L M N O P 2 5 0
3 D E F G H N O P 4 3 0 E F G H M N O P 3 4 0
4 E F G H M N O P 3 4 0 D E F G H N O P 4 3 0
5 F G H L M N O P 2 5 0 C D E F G H O P 5 2 0
6 G H K L M N O P 1 6 0 B C D E F G H P 6 1 0
7 H J K L M N O P 0 7 0 A B C D E F G H 7 0 0

LEM BigEndianMem = 0

BEM BigEndianMem = 1

Type Access Type (see Figure 2-2) sent to memory

Offset pAddr2∼ 0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Reserved Instruction exception (in the 32 bit user or 32 bit supervisior mode)

 TX49/H2 Architecture

A-136

A.

SH Store Halfword SH
offsetSH

101001
base rt

1516202125

6

231 0

5 5 16

Format:

SH rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form
an unsigned effective address. The least-significant halfword of register rt is stored at the
effective address. If the least-significant bit of the effective address is non-zero, an address
error exception occurs.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼ 0) + GPR[base]
(pAddr, unchached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor (ReverseEndian2 0))
byte ← vAddr2∼ 0 xor (BigEndianCPU2 0)
data ← GPR[rt]63-8*byte∼ 0 08*byte

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)
64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor (ReverseEndian2 0))
byte ← vAddr2∼ 0 xor (BigEndianCPU2 0)
data ← GPR[rt]63-8*byte∼ 0 08*byte

StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

 TX49/H2 Architecture

A-137

SLL Shift Left Logical SLL
sard SLL

000000
0

00000
SPECIAL
000000

rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SLL rd, rt, sa

Description:

The contents of general register rt are shifted left by sa bits, inserting zeros into the low-
order bits. The result is placed in register rd. In 64-bit mode, the 32-bit result is sign
extended when placed in the destination register. It is sign-extended for all shift amounts,
including zero; SLL with a zero shift amount truncates a 64-bit value to 32-bits and sign
extends this 32-bit value. SLL, unlike nearly all other word operations, does not repuire and
operand to be a properly sign-extended word value to produce a valid sign-extended word
result.

Note: SLL with a shift amount of zero may be treated as a NOP by some assemblers at
some optimization levels. If using SLL with zero shift to truncate 64-bit values, check the
assembler being used.

Operation:

32 T: GPR[rd] ← GPR[rt]31-sa∼ 0 0sa

64 T: s ← 0 sa
temp ← GPR[rt]31-s∼ 0 0s

GPR[rd] ← (temp31)32 temp

Exceptions:

None

 TX49/H2 Architecture

A-138

SLLV Shift Left Logical
Variable SLLV

rd
SLLV

000100
0

00000
0
rs

SPECIAL
000000 rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SLLV rd, rt, rs

Description:

The contents of general register rt are shifted left by the number of bits specified by the
low-order five bits contained as contents of general register rs, inserting zeros into the low-
order bits. The result is placed in register rd. In 64-bit mode, the 32-bit result is sign
extended when placed in the destination register. It is sign-extended for all shift amounts,
including zero; SLLV with a zero shift amount truncates a 64-bit value to 32-bits and sign
extends this 32-bit value. SLLV, unlike nearly all other word operations, does not require
the operand to be a properly sign-extended word value to produce a valid sign-extended word
result.

Note: SLLV with a shift amount of zero may be treated as a NOP by some assemblers at
some optimization levels. If using SLLV with zero shift to truncate 64-bit values, check the
assembler being used.

Operation :

32 T: s ← GP[rs]4∼ 0

GPR[rd] ← GPR[rt](31-s) ∼ 0 0s

64 T: s ← 0 GP[rs]4∼ 0

temp ← GPR[rt](31-s) ∼ 0 0s

GPR[rd] ← (temp31)32 temp

Exceptions:

None

 TX49/H2 Architecture

A-139

SLT Set On Less Than SLT
rd SLT

101010
0

00000
SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SLT rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs.
Considering both quantities as signed integers, if the contents of general register rs are less
than the contents of general register rt, the result is set to one, otherwise the result is set to
zero.

The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The comparison is valid
even if the subtraction used during the comparison overflows.

Operation:

32 T: if GPR[rs] < GPR[rt] then
GPR[rd] ← 031 1
else
GPR[rd] ← 032

endif
64 T: if GPR[rs] < GPR[rt] then

GPR[rd] ← 063 1
else
GPR[rd] ← 064

endif

Exceptions:

None

 TX49/H2 Architecture

A-140

SLTI Set On Less Than
Immediate SLTI

immediateSLTI
001010

rs rt

1516202125

6

2631 0

5 5 16

Format:

SLTI rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of general register
rs. Considering both quantities as signed integers, if rs is less than the sign-extended
immediate, the result is set to one, otherwise the result is set to zero. The result is placed
into general register rt.

No integer overflow exception occurs under any circumstances. The comparison is valid
even if the subtraction used during the comparison overflows.

Operation:

32 T: if GPR[rs] < (immediate15)16 immediate15∼ 0 then
GPR[rt] ← 031 1
else
GPR[rt] ← 032

endif
64 T: if GPR[rs] < (immediate15)48 immediate15∼ 0 then

GPR[rt] ← 063 1
else
GPR[rt] ← 064

endif

Exceptions:

None

 TX49/H2 Architecture

A-141

SLTIU Set On Less Than
Immediate Unsigned SLTIU

immediateSLTIU
001011

rs rt

1516202125

6

2631 0

5 5 16

Format:

SLTIU rt, rs, immediate

Description:

The 16-bit immediate is sign-extended and subtracted from the contents of general register
rs. Considering both quantities as unsigned integers, if rs is less than the sign-extended
immediate, the result is set to one, otherwise the result is set to zero. The result is placed
into general register rt.

No integer overflow exception occurs under any circumstances. The comparison is valid
even if the subtraction used during the comparison overflows.

Operation:

32 T: if (0 GPR[rs]) < (immediate15)16 immediate15∼ 0 then
GPR[rt] ← 031 1
else
GPR[rt] ← 032

endif
64 T: if (0 GPR[rs]) < (immediate15)48 immediate15∼ 0 then

GPR[rt] ← 063 1
else
GPR[rt] ← 064

endif

Exceptions:

None

 TX49/H2 Architecture

A-142

SLTU Set On Less Than Unsigned SLTU
rd SLTU

101011
0

00000
SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SLTU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs.
Considering both quantities as unsigned integers, if the contents of general register rs are
less than the contents of general register rt, the result is set to one, otherwise the result is
set to zero.

The result is placed into general register rd.

No integer overflow exception occurs under any circumstances. The comparison is valid
even if the subtraction used during the comparison overflows.

Operation:

32 T: if (0 GPR[rs]) < 0 GPR[rt] then
GPR[rd] ← 031 1
else
GPR[rd] ← 032

endif
64 T: if (0 GPR[rs]) < 0 GPR[rt] then

GPR[rd] ← 063 1
else
GPR[rd] ← 064

endif

Exceptions:

None

 TX49/H2 Architecture

A-143

SRA Shift Right Arithmetic SRA
sard SRA

000011

0
00000

SPECIAL
000000

rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SRA rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, sign-extending the high-
order bits. The result is placed in register rd. In 64-bit mode, the operand must be a valid
sign-extended, 32-bit value.

Operation :

32 T: GPR[rd] ← (GPR[rt]31)sa GPR[rt]31∼ sa
64 T: s ← 0 sa

temp ← (GPR[rt]31)s GPR[rt]31∼ s
GPR[rd] ← (temp31)32 temp

Exceptions:

None

 TX49/H2 Architecture

A-144

SRAV Shift Right Arithmetic
Variable SRAV

rd SRAV
000111

0
00000

SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SRAV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the
low-order five bits of general register rs, sign-extending the high-order bits. The result is
placed in register rd. In64-bit mode, the operand must be a valid sign-extended, 32-bit value.

Operation:

32 T: s ← GPR[rs]4∼ 0

GPR[rd] ← (GPR[rt]31)s GPR[rt]31∼ sa

64 T: s ← GPR[rs]4∼ 0

temp ← (GPR[rt]31)s GPR[rt]31∼ s
GPR[rd] ← (temp31)32 temp

Exceptions:

None

 TX49/H2 Architecture

A-145

SRL Shift Right Logical SRL
rd SRL

000010
0

00000
SPECIAL
000000

sart

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SRL rd, rt, sa

Description:

The contents of general register rt are shifted right by sa bits, inserting zeros into the high-
order bits. The result is placed in register rd. In64-bit mode, the operand must be a valid
sign-extended, 32-bit value.

Operation:

32 T: GPR[rd] ← 0sa GPR[rt]31∼ sa
64 T: s ← 0 sa

temp ← 0s GPR[rt]31∼ s
GPR[rd] ← (temp31)32 temp

Exceptions:

None

 TX49/H2 Architecture

A-146

SRLV Shift Right Logical Variable SRLV
rd SRLV

000110
0

00000
SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SRLV rd, rt, rs

Description:

The contents of general register rt are shifted right by the number of bits specified by the
low-order five bits of general register rs, inserting zeros into the high-order bits. The result
is placed in register rd. In 64-bit mode, the operand must be a valid sign-extended, 32-bit
value.

Operation:

32 T: s ← GPR[rs]4∼ 0

GPR[rd] ← 0s GPR[rt]31∼ s

64 T: s ← GPR[rs]4∼ 0

temp ← 0s GPR[rt]31∼ s
GPR[rd] ← (temp31)32 temp

Exceptions:

None

 TX49/H2 Architecture

A-147

SUB Subtract SUB
rd SUB

100010
0

00000
SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SUB rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs to
form a result. The result is placed into general register rd. In 64-bit mode, the operands
must be valid sign-extended, 32-bit values.

The only difference between this instruction and the SUBU instruction is that SUBU never
traps on overflow.

An integer overflow exception takes place if the carries out of bits 30 and 31 differ (2’s-
complement overflow). The destination register rd is not modified when an integer overflow
exception occurs.

Operation:

32 T: GPR[rd] ← GPR[rs] − GPR[rt]
64 T: temp ← GPR[rs] − GPR[rt]

GPR[rd] ← (temp31)32 temp31∼ 0

Exceptions:

Integer overflow exception

 TX49/H2 Architecture

A-148

SUBU Subtract Unsigned SUBU
rd SUBU

100011
0

00000
SPECIAL
000000

rs rt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SUBU rd, rs, rt

Description:

The contents of general register rt are subtracted from the contents of general register rs to
form a result. The result is placed into general register rd. In 64-bit mode, the operands
must be valid sign-extended,32-bit values.

The only difference between this instruction and the SUB instruction is that SUBU never
traps on overflow. No integer overflow exception occurs under any circumstances.

Operation:

32 T: GPR[rd] ← GPR[rs] − GPR[rt]
64 T: temp ← GPR[rs] − GPR[rt]

GPR[rd] ← (temp31)32 temp31∼ 0

Exceptions:

None

 TX49/H2 Architecture

A-149

SW Store Word SW
offsetSW

101011
base rt

1516202125

6

2631 0

5 5 16

Format:

SW rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form
a virtual address. The contents of general register rt are stored at the memory location
specified by the effective address.

If either of the two least-significant bits of the effective address are non-zero, an address
error exception occurs.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼ 0) + GPR[base]
(pAddr, unchached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor (ReverseEndian 02)
byte ← vAddr2∼ 0 xor (BigEndianCPU 02)
data ← GPR[rt]63-8*byte 08*byte

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]

(pAddr, unchached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor (ReverseEndian 02)
byte ← vAddr2∼ 0 xor (BigEndianCPU 02)
data ← GPR[rt]63-8*byte 08*byte

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:

TLB refill exception

TUB invalid exception

TLB modification exception

Bus error exception

Address error exception

 TX49/H2 Architecture

A-150

SWCz Store Word From
Coprocessor z SWCz

offsetSWCz
1110xx*

base rt

1516202125

6

2631 0

5 5 16

Format:

SWCz rt, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form
a virtual address. Coprocessor unit z sources a word, which the processor writes to the
addressed memory location.

The data to be stored is defined by individual coprocessor specifications. This instruction
is not valid for use with CP0. If either of the two least-significant bits of the effective address
is non-zero, an address error exception occurs.

Execution of the instruction referencing coprocessor 3 causes a reserved instruction
exception, not a coprocessor unusable exception.

Operation:

32 T: vAddr ← ((offset15)16 offset15∼ 0) + GPR[base]
(pAddr, unchached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor (ReverseEndian 02)
byte ← vAddr2∼ 0 xor (BigEndianCPU 02)
data ← COPzSW (byte, rt)
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, unchached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor (ReverseEndian 02)
byte ← vAddr2∼ 0 xor (BigEndianCPU 02)
data ← COPzSW (byte, rt)
StoreMemory (uncache, WORD, data, pAddr, vAddr, DATA)

*See the table “Opcode Bit Encoding” on next page, or “CPU Instruction Opcode Bit
Encoding” at the end of Appendix A.

 TX49/H2 Architecture

A-151

SWCz Store Word From
Coprocessor z (Continued) SWCz

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

Coprocessor unusable exception

Opcode Bit Encoding:

SWCz

Coprocessor Unit Number

SWC1

Bit #

SW Opcode

02627282930

0111

31

10

02627282930

0111

31

01SWC2

Bit #

 TX49/H2 Architecture

A-152

SWL Store Word Left SWL
offsetSWL

101010
base rt

1516202125

6

2631 0

5 5 16

Format:

SWL rt, offset (base)

Description:

This instruction can be used with the SWR instruction to store the contents of a register
into four consecutive bytes of memory, when the bytes cross a boundary between two words.
SWL stores the left portion of the register into the appropriate part of the high-order word of
memory; SWR stores the right portion of the register into the appropriate part of the low-
order word.

The SWL instruction adds its sign-extended 16-bit offset to the contents of general register
base to form a virtual address which may specify an arbitrary byte. It alters only the word in
memory which contains that byte. From one to four bytes will be stored, depending on the
staring byte specified.

Conceptually, it starts at the most-significant byte of the register and copies it to the
specified byte in memory; then it proceeds toward the low-order byte of the register and the
low-order byte of the word in memory, copying bytes from register to memory until it reaches
the low-order byte of the word in memory.

No address exceptions due to alignment are possible.

SWL $24,1($0)

memory
(big-endian)

register

address 0

address 4 7654

3210 $24before DCBA

afteraddress 0

address 4 7654

CBA0

 TX49/H2 Architecture

A-153

SWL Store Word Left
(Continued) SWL

Operation:

32 T: vAddr ← ((offset15)16 offset15∼ 0) + GPR[base]
(pAddr, unchached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor ReverseEndian3)
if BigEndianMem = 0 then
pAddr ← pAddr31∼ 2 02

endif
byte ← vAddr1∼ 0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ← 032 024-8*byte GPR[rt]31∼ 24-8*byte
else
data ← 024-8*byte GPR[rt]31∼ 24-8*byte 032

endif
StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, unchached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor ReverseEndian3)
if BigEndianMem = 0 then
pAddr ← pAddr31∼ 2 02

endif
byte ← vAddr1∼ 0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ← 032 024-8*byte GPR[rt]31∼ 24-8*byte
else
data ← 024-8*byte GPR[rt]31∼ 24-8*byte 032

endif
StoreMemory (uncached, byte, data, pAddr, vAddr, DATA)

 TX49/H2 Architecture

A-154

SWL Store Word Left
(Continued) SWL

Given a doubleword in a register and a doubleword in memory, the operation of SWL is as
follows:

SWL

Register

Memory

CBA D E F G H

KJI L M N O P

BigEndianCPU = 0 BigEndianCPU = 1
offset offsetvAddr2∼ 0 Destination type

LEM BEM
Destination type

LEM BEM
0 I J K L M N O E 0 0 7 E F G H M N O P 3 4 0
1 I J K L M N E F 1 0 6 I E F G M N O P 2 4 1
2 I J K L M E F G 2 0 5 I J E F M N O P 1 4 2
3 I J K L E F G H 3 0 4 I J K E M N O P 0 4 3
4 I J K E M N O P 0 4 3 I J K L E F G H 3 0 4
5 I J E F M N O P 1 4 2 I J K L M E F G 2 0 5
6 I E F G M N O P 2 4 1 I J K L M N E F 1 0 6
7 E F G H M N O P 3 4 0 I J K L M N O E 0 0 7

LEM BigEndianMem = 0

BEM BigEndianMem = 1

Type AccessType (see Figure 2-2) sent to memory

Offset pAddr2∼ 0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

 TX49/H2 Architecture

A-155

SWR Store Word Right SWR
offset

SWR
101110 base rt

1516202125

6

2631 0

5 5 16

Format:

SWR rt, offset (base)

Description:

This instruction can be used with the SWL instruction to store the contents of a register
into four consecutive bytes of memory, when the bytes cross a boundary between two words.
SWR stores the right portion of the register into the appropriate part of the low-order word;
SWL stores the left portion of the register into the appropriate part of the low-order word of
memory.

The SWR instruction adds its sign-extended 16-bit offset to the contents of general register
base to form a virtual address which may specify an arbitrary byte. It alters only the word in
memory which contains that byte. From one to four bytes will be stored, depending on the
starting byte specified.

Conceptually, it starts at the least-significant (rightmost) byte of the register and copies it
to the specified byte in memory; then it proceeds toward the high-order byte of the register
and the high-order byte of the word in memory, copying bytes from register to memory until
it reaches the high-order byte of the word in memory.

No address exceptions due to alignment are possible.

SWR $24,4($0)

memory
(big-endian)

register

address 0

address 4 7654

3210 $24before DCBA

afteraddress 0

address 4 765D

3210

 TX49/H2 Architecture

A-156

SWR Store Word Right
(Continued) SWR

Operation:

32 T: vAddr ← ((offset15)16 offset15∼ 0) + GPR[base]
(pAddr, unchached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor ReverseEndian3)
if BigEndianMem = 0 then
pAddr ← pAddr31∼ 2 02

endif
byte ← vAddr1∼ 0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ← 032 GPR[rt]31-8*byte∼ 0 08*byte

else
data ← GPR[rt]31-8*byte∼ 0 08*byte 032

endif
StoreMemory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, unchached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0 xor ReverseEndian3)
if BigEndianMem = 0 then
pAddr ← pAddr31∼ 2 02

endif
byte ← vAddr1∼ 0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ← 032 GPR[rt]31-8*byte∼ 0 08*byte

else
data ← GPR[rt]31-8*byte∼ 0 08*byte 032

endif
StoreMemory (uncached, WORD-byte, data, pAddr, vAddr, DATA)

 TX49/H2 Architecture

A-157

SWR Store Word Right
(Continued) SWR

Given a doubleword in a register and a doubleword in memory, the operation of SWR is as
follows:

SWR

Register

Memory

CBA D E F G H

KJI L M N O P

BigEndianCPU = 0 BigEndianCPU = 1
offset offsetvAddr2∼ 0 Destination type

LEM BEM
Destination type

LEM BEM
0 I J K L E F G H 3 0 4 H J K L M N O P 0 7 0
1 I J K L F G H P 2 1 4 G H K L M N O P 1 6 0
2 I J K L G H O P 1 2 4 F G H L M N O P 2 5 0
3 I J K L H N O P 0 3 4 E F G H M N O P 3 4 0
4 E F G H M N O P 3 4 0 I J K L H N O P 0 3 4
5 F G H L M N O P 2 5 0 I J K L G H O P 1 2 4
6 G H K L M N O P 1 6 0 I J K L F G H P 2 1 4
7 H J K L M N O P 0 7 0 I J K L E F G H 3 0 4

LEM BigEndianMem = 0

BEM BigEndianMem = 1

Type AccessType (see Figure 2-2) sent to memory

Offset pAddr2∼ 0 sent to memory

Exceptions:

TLB refill exception

TLB invalid exception

TLB modification exception

BUS error exception

Address error exception

 TX49/H2 Architecture

A-158

SYNC Synchronize SYNC
SYNC
001111

0
0000 0000 0000 0000 0000

SPECIAL
000000

5625

6

2631 0

20 6

Format:

SYNC

Description:

The SYNC instruction ensures that any loads and stores fetched prior to the present
instruction are completed before any loads or stores after this instruction are allowed to
start. Use of the SYNC instruction to serialize certain memory references may be required in
multiprocessor environment for proper synchronization.

For example:

Processor A Processor B
SW
LI
SYNC
SW

R1, DATA
R2, 1

R2, FLAG

1: LW
BEQ
NOP
SYNC
LW

R2, FLAG
R2, R0, 1B

R1, DATA

The SYNC in processor A prevents DATA being written after FLAG, which could cause
processor B to read stale data. The SYNC in processor B prevents DATA from being read
before FLAG, which could likewise result in reading stale data. For processors which only
execute loads and stores in order, with respect to shared memory, this instruction is a NOP.

LL and SC instructions implicitly perform a SYNC.

This instruction is allowed in User mode.

Operation:

32, 64 T: SyncOperation()

Exceptions:

None

 TX49/H2 Architecture

A-159

SYSCALL System Call SYSCALL
SYSCALL

001100
SPECIAL
000000

5625

6

2631 0

20 6

Code

Format:

SYSCALL

Description:

A system call exception occurs, immediately and unconditionally transferring control to the
exception handler.

The code field is available for use as software parameters, but is retrieved by the exception
handler only by loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: SystemCallException

Exceptions:

System Call exception

 TX49/H2 Architecture

A-160

A.

TEQ Trap If Equal TEQ
code TEQ

110100
SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

TEQ rs, rt

Description:

The contents of general register rt are compared to general register rs.

If the contents of general register rs are equal to the contents of general register rt, a trap
exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception
handler only by loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if GPR[rs] = GPR[rt] then
TrapException
endif

Exceptions:

Trap exception

 TX49/H2 Architecture

A-161

TEQI Trap If Equal Immediate TEQI
immediateTEQI

01100
REGIMM
000001

rs

1516202125

6

2631 0

5 5 16

Format:

TEQI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs.
If the contents of general register rs are equal to the sign-extended immediate, a trap
exception occurs.

Operation:

32 T: if GPR[rs] ← (immediate15)16 immediate15∼ 0 then
TrapException
endif

64 T: if GPR[rs] ← (immediate15)48 immediate15∼ 0 then
TrapException
endif

Exceptions:

Trap exception

 TX49/H2 Architecture

A-162

TGE Trap If Greater Than Or
Equal TGE

code TGE
110000

SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

TGE rs, rt

Description:

The contents of general register rt are compared to the contents of general register rs.
Considering both quantities as signed integers, if the contents of general register rs are
greater than or equal to the contents of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception
handler only by loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if GPR[rs] ≥ GPR[rt] then
TrapException
endif

Exceptions:

Trap exception

 TX49/H2 Architecture

A-163

TGEI Trap If Greater Than Or
Equal Immediate TGEI

immediateTGEI
01000

REGIMM
000001

rs

1516202125

6

2631 0

5 5 16

Format:

TGEI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs.
Considering both quantities as signed integers, if the contents of general register rs are
greater than or equal to the sign-extended immediate, a trap exception occurs.

Operation:

32 T: if GPR[rs] ≥ (immediate15)16 immediate15∼ 0 then
TrapException
endif

64 T: if GPR[rs] ≥ (immediate15)48 immediate15∼ 0 then
TrapException
endif

Exceptions:

Trap exception

 TX49/H2 Architecture

A-164

TGEIU
Trap If Greater Than Or

Equal Immediate
Unsigned TGEIU

immediateTGEIU
01001

REGIMM
000001

rs

1516202125

6

2631 0

5 5 16

Format:

TGEIU rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs.
Considering both quantities as unsigned integers, if the contents of general register rs are
greater than or equal to the sign-extended immediate, a trap exception occurs.

Operation:

32 T: if (0 GPR[rs]) ≥ (0 (immediate15)16 immediate15∼ 0) then
TrapException
endif

64 T: if (0 GPR[rs]) ≥ (0 (immediate15)48 immediate15∼ 0) then
TrapException
endif

Exceptions:

Trap exception

 TX49/H2 Architecture

A-165

TGEU Trap If Greater Than Or
Equal Unsigned TGEU

code TGEU
110001

SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

TGEU rs, rt

Description:

The contents of general register rt are compared to the contents of general register rs.
Considering both quantities as unsigned integers, if the contents of general register rs are
greater than or equal to the contents of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception
handler only by loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if (0 GPR[rs]) ≥ (0 GPR[rt]) then
TrapException
endif

Exceptions:

Trap exception

 TX49/H2 Architecture

A-166

TLBP Probe TLB For Matching Entry TLBP
TLBP

001000
0

000 0000 0000 0000 0000
CO
1

COP0
010000

56

6

2631 0

5 19 6

2425

Format:

TLBP

Description:

The Index register is loaded with the address of the TLB entry whose contents match the
contents of the EntryHi register. If no TLB entry matches, the high-order bit of the Index
register is set.

The architecture does not specify the operation of memory references associated with the
instruction immediately after a TLBP instruction, nor is the operation specified if more than
one TLB entry matches.

Operation:

32 T: Index ← 1 025 Undeficed6

for i in 0∼ TLBEntries-1
if (TLB[i]95∼ 77 = EntryHi31∼ 12) and (TLB[i]76 or
(TLB[i]71∼ 64 = EntryHi7∼ 0)) then
Index ← 026 i5∼ 0
endif
endfor

64 T: Index ← 1 025 Undeficed6

for i in 0∼ TLBEntries-1
if (TLB[i]167∼ 141 and not (015 TLB[i]216∼ 205))
= (EntryHi39∼ 13 and not (015 TLB[i]216∼ 205)) and
(TLB[i]140 or (TLB[i]135∼ 128 = EntryHi7∼ 0)) then
Index ← 026 i5∼ 0
endif
endfor

Exceptions:

Coprocessor unusable exception

 TX49/H2 Architecture

A-167

TLBR Read Indexed TLB Entry TLBR
TLBR

000001
0

000 0000 0000 0000 0000
CO
1

COP0
010000

56

6

2631 0

5 19 6

2425

Format:

TLBR

Description:

The G bit (controls ASID matching) read from the TLB is written into both EntryLo0 and
EntryLo1.

The EntryHi and EntryLo registers are loaded with the contents of the TLB entry pointed
at by the contents of the TLB Index register. The operation is invalid (and the results are
unspecified) if the contents of the TLB Index register are greater than the number of TLB
entries in the processor.

Operation:

32 T: PageMask ← TLB[Index5∼ 0]127∼ 96

EntryHi ← TLB[Index5∼ 0]95∼ 64 and not TLB[Index5∼ 0]127∼ 96

EntryLo1 ← TLB[Index5∼ 0]63∼ 32

EntryLo0 ← TLB[Index5∼ 0]31∼ 0

64 T: PageMask ← TLB[Index5∼ 0]255∼ 192

EntryHi ← TLB[Index5∼ 0]191∼ 128 and not TLB[Index5∼ 0]255∼ 192

EntryLo1 ← TLB[Index5∼ 0]127∼ 65 TLB[Index5∼ 0]140

EntryLo0 ← TLB[Index5∼ 0]63∼ 1 TLB[Index5∼ 0]140

Exceptions:

Coprocessor unusable exception

 TX49/H2 Architecture

A-168

TLBWI Write Indexed TLB Entry TLBWI
TLBWI
000010

0
000 0000 0000 0000 0000

CO
1

COP0
010000

56

6

2631 0

5 19 6

2425

Format:

TLBWI

Description:

The G bit of the TLB is written with the logical AND of the G bits in EntryLo0 and
EntryLo1.

The TLB entry pointed at by the contents of the TLB Index register is loaded with the
contents of the EntryHi and EntryLo registers.

The operation is invalid (and the results are unspecified) if the contents of the TLB Index
register are greater than the number of TLB entries in the processor.

Operation:

32, 64 T: TLB[Index5∼ 0] ←
PageMask (EntryHi and not PageMask) EntryLo1 EntryLo0

Exceptions:

Coprocessor unusable exception

 TX49/H2 Architecture

A-169

TLBWR Write Random TLB Entry TLBWR
TLBWR
000110

0
000 0000 0000 0000 0000

CO
1

COP0
010000

56

6

2631 0

5 19 6

2425

Format:

TLBWR

Description:

The G bit of the TLB is written with the logical AND of the G bits in EntryLo0 and
EntryLo1.

The TLB entry pointed at by the contents of the TLB Random register is loaded with the
contents of the EntryHi and EntryLo registers.

Operation:

32, 64 T: TLB[Random5∼ 0] ←
PageMask (EntryHi and not PageMask) EntryLo1 EntryLo0

Exceptions:

Coprocessor unusable exception

 TX49/H2 Architecture

A-170

TLT Trap If Less Than TLT
code

TLT
110010

SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

TLT rs, rt

Description:

The contents of general register rt are compared to general register rs.

Considering both quantities as signed integers, if the contents of general register rs are
less than the contents of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception
handler only by loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if GPR[rs] < GPR[rt] then
TrapException
endif

Exceptions:

Trap exception

 TX49/H2 Architecture

A-171

TLTI Trap If Less Than Immediate TLTI
immediateREGIMM

000001
rs TLTI

01010

1516202125

6

2631 0

5 5 16

Format:

TLTI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs.
Considering both quantities as signed integers, if the contents of general register rs are less
than the sign-extended immediate, a trap exception occurs.

Operation:

32 T: if GPR[rs] < (immediate15)16 immediate15∼ 0 then
TrapException
endif

64 T: if GPR[rs] < (immediate15)48 immediate15∼ 0) then
TrapException
endif

Exceptions:

Trap exception

 TX49/H2 Architecture

A-172

TLTIU Trap If Less Than
Immediate Unsigned TLTIU

immediateTLTIU
01011

REGIMM
000001

rs

1516202125

6

2631 0

5 5 16

Format:

TLTIU rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs.
Considering both quantities as signed integers, if the contents of general register rs are less
than the sign-extended immediate, a trap exception occurs.

Operation:

32 T: if (0 GPR[rs]) < (0 (immediate15)16 immediate15∼ 0) then
TrapException
endif

64 T: if (0 GPR[rs]) < (0 (immediate15)48 immediate15∼ 0) then
TrapException
endif

Exceptions:

Trap exception

 TX49/H2 Architecture

A-173

TLTU Trap If Less than
Unsigned TLTU

code
TLTU

110011
SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

TLTU rs, rt

Description:

The contents of general register rt are compared to general register rs. Considering both
quantities as unsigned integers, if the contents of general register rs are less than the
contents of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception
handler only by loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if (0 GPR [rs]) < (0 GPR [rt]) then
TrapException
endif

Exceptions:

Trap exception

 TX49/H2 Architecture

A-174

TNE Trap If Not Equal TNE
code TNE

110110
SPECIAL
000000

rs rt

561516202125

6

2631 0

5 5 10 6

Format:

TNE rs, rt

Description:

The contents of general register rt are compared to general register rs. If the contents of
general register rs are not equal to the contents of general register rt, a tap exception occurs.

The code field is available for use as software parameters, but is retrieved by the exception
handler only by loading the contents of the memory word containing the instruction.

Operation:

32, 64 T: if GPR [rs] ≠ GPR [rt] then
TrapException
endif

Exceptions:

Trap exception

 TX49/H2 Architecture

A-175

TNEI Trap If Not Equal Immediate TNEI
immediateTNEI

01110
REGIMM
000001 rs

1516202125

6

2631 0

5 5 16

Format:

TNEI rs, immediate

Description:

The 16-bit immediate is sign-extended and compared to the contents of general register rs.
If the contents of general register rs are not equal to the sign-extended immediate, a trap
exception occurs.

Operation:

32 T: if GPR[rs] ≠ (immediate15)16 immediate15∼ 0 then
TrapException
endif

64 T: if GPR[rs]≠(immediate15)48 immediate15∼ 0 then
TrapException
endif

Exceptions:

Trap exception

 TX49/H2 Architecture

A-176

WAIT Wait WAIT
WAIT

100000
0

000 0000 0000 0000 0000
CO
1

COP0
010000

56

6

2631 0

5 19 6

2425

Format :

WAIT

Description :

The WAIT instruction is used to halt the internal pipeline and thus reduce the power
consumption of the CPU. See Chapter 16.

Operation :

32, 64 T: if G-bus is idle then
StopPipeline
Endif

Exceptions :

Coprocessor unusable exception

 TX49/H2 Architecture

A-177

XOR Exclusive Or XOR
rd 0

00000
XOR

100110
SPECIAL
000000

rtrs

5610111516202125

6

2631 0

5 5 5 5 6

Format:

XOR rd, rs, rt

Description:

The contents of general register rs are combined with the contents of general register rt in
a bit-wise logical exclusive OR operation. The result is placed into general register rd.

Operation:

32, 64 T: GPR [rd] ← GPR [rs] xor GPR [rt]

Exceptions:

None

 TX49/H2 Architecture

A-178

XORI Exclusive OR Immediate XORI
immediate

XORI
001110

rtrs

1516202125

6

2631 0

5 5 16

Format:

XORI rt, rs, immediate

Description:

The 16-bit immediate is zero-extended and combined with the contents of general register
rs in a bit-wise logical exclusive OR operation. The result is placed into general register rt.

Operation:

32 T: GPR [rt] ← GPR [rs] xor (016 immediate)
64 T: GPR [rt] ← GPR [rs] xor (048 immediate)

Exceptions:

None

 TX49/H2 Architecture

A-179

A.7 Bit Encoding of CPU Instruction OPcodes

The Table A-2 shows the bit codes for all TX49 CPU instructions(ISA and extended ISA)

Table A-4 CPU Operation Code Bit Encoding
OPcode

31 26 0

OPcode

31∼ 29
28∼ 26

0 1 2 3 4 5 6 7
0 SPECIA λ REGIMM λ J JAL BEQ BNE BLEZ BGTZ
1 ADDI ADDIU SLTI SLTIU ANDI ORI XORI LUI
2 COP0 α COP1 α COP2 α COP3 α θ BEQL BNEL BLEZL BGTZL
3 DADDI ε DADDIU ε LDL ε LDR ε MAC λ * * *
4 LB LH LWL LW LBU LHU LWR LWU ε
5 SB SH SWL SW SDL ε SDR ε SWR CACHE
6 LL LWC1 α LWC2 α PREF LLD ε LDC1 α LDC2 α LD ε
7 SC SWC1 α SWC2 α * SCD ε SDC1 α SDC2 α SD ε

SPECIAL Function
31 26 5 0
OPcode =
SPECIAL

SPECIAL
Function

5∼ 3
2∼ 0
0 1 2 3 4 5 6 7

0 SLL * SRL SRA SLLV * SRLV SRAV
1 JR JALR * * SYSCALL BREAK SDBBP SYNC
2 MFHI MTHI MFLO MTLO DSLLV ε * DSRLV ε DSRAV ε
3 MULT MULTU DIV DIVU DMULT ε DMULTε DDIV ε DDIVU ε
4 ADD ADDU SUB SUBU AND OR XOR NOR
5 * * SLT SLTU DADD ε DADDU ε DSUB ε DSUBU ε
6 TGE TGEU TLT TLTU TEQ * TNE *
7 DSLL ε * DSRL ε DSRA ε DSLL32 ε * DSRL32 ε DSRA32 ε

 TX49/H2 Architecture

A-180

REGIMM rt
31 26 20 16 0
OPcode =
REGIMM

REGIMM
rt

20∼ 19
18∼ 16

0 1 2 3 4 5 6 7
0 BLTZ BGEZ BLTZL BGEZL * * * *
1 TGEI TGEIU TLTI TLTIU TEQI * TNEI *
2 BLTZAL BGEZAL BLTZALL BGEZALL * * * *
3 * * * * * * * *

COPz rs
31 26 25 21 0
OPcode =

COPz
COPz

rs

25∼ 24
23∼ 21

0 1 2 3 4 5 6 7
0 MF DMF ε CF γ MT DMT ε CT γ
1 BC γ γ γ γ γ γ γ
2
3

CO

COPz rt
31 26 20 16 0
OPcode =

COPz
COPz

rt

20∼ 19
18∼ 16

0 1 2 3 4 5 6 7
0 BCF BCT BCFL BCTL γ γ γ γ
1 γ γ γ γ γ γ γ γ
2 γ γ γ γ γ γ γ γ
3 γ γ γ γ γ γ γ γ

COP0 Function
31 26 5 0
OPcode =

COP0
COP0

Function

5∼ 3
2∼ 0
0 1 2 3 4 5 6 7

0 φ TLBR TLBWI φ φ φ TLBWR φ
1 TLBP φ φ φ φ φ φ φ
2 φ φ φ φ φ φ φ φ
3 ERET φ φ φ φ φ φ DERET
4 WAIT φ φ φ φ φ φ φ
5 φ φ φ φ φ φ φ φ
6 φ φ φ φ φ φ φ φ
7 φ φ φ φ φ φ φ φ

 TX49/H2 Architecture

A-181

MAC Function
31 26 5 0
OPcode =

MAC
MAC

Function

5∼ 3
2∼ 0
0 1 2 3 4 5 6 7

0 MADD MADDU γ γ γ γ γ γ
1 γ γ γ γ γ γ γ γ
2 γ γ γ γ γ γ γ γ
3 γ γ γ γ γ γ γ γ
4 γ γ γ γ γ γ γ γ
5 γ γ γ γ γ γ γ γ
6 γ γ γ γ γ γ γ γ
7 γ γ γ γ γ γ γ γ

Key :

*: This opcode is reserved for future use. An attempt to execute it causes a Reserved
Instruction exception.

γ: This opcode is reserved for future use. An attempt to execute it causes a Reserved
Instruction exception.

λ: This opecode indicates an instruction class. The instruction word must be further decoded
by examining additional tables that show the values for another instruction field.

α: This opcode is a coprocessor operation, not a CPU operation. If the processor state does
not allow access to the specified coprocessor, the instruction causes a Coprocessor
Unusable exception. It is included in the table because it uses a primary opecode in the
instruction encodeing map.

φ: This opcode is reserved for future use, but does not cause a Reserved Instruction exception
in TX49 implementations. It is treated as “NOP”.

θ: This opcode is valid when BC is only selected in COPz rs; In other case, it causes a
Reserved Instruction exception .

ε: This opcode is valid when the processor is operating either in the Kernel mode or in the 64-
bit non-Kernel (User or Supervisor) mode; In other case, it causes a Reserved Instruction
exception .

 TX49/H2 Architecture

A-182

 TX49/H2 Architecture

B-1

Appendix B: FPU Instruction Set Details
This appendix provides a detailed description of the operation of each Floating-Point (FPU)

instruction. The instructions are listed alphabetically. The exceptions that may occur due to the
execution of each instruction are listed after the description of each instruction. The description
of the immediate causes and the manner of handling exceptions us omitted horn the instruction
descriptions in this chapter. Refer to Chapter 6 for detailed descriptions of floating-point
exceptions and handling.

Table B-5 lists the entire bit encoding for the constant fields of the Floating-Point instruction
set; the bit encoding for each instruction is included with that individual instruction.

B.1 Instruction Formats

There are three basic instruction format types:

• I-Type, or Immediate instructions, which include load and store operations, M-Type,
or Move instructions

• R-Type, or Register instructions, which include the two-and three-register Floating-
Point operations.

• Branch instructions and Move instructions

The instruction description subsections that follow show how the three basic instruction
formats are used by:

Load and store instructions,

Move instructions, and

Floating-Point Computational instructions.

 TX49/H2 Architecture

B-2

Floating-point instructions are mapped onto the MIPS coprocessor instructions, defining
coprocessor unit number one (CP1) as the floating-point unit.

Each operation is valid only for certain formats. Implementations may support some of
these formats and operations only through emulation, but only need support combinations
that are valid, which are marked with a V in Table B-1 below. Those combinations marked
with a “R” are not currently specified by this architecture, causing an unimplemented
instruction trap, to maintain compatibility with future architecture extensions.

Table B-1 Valid FPU Instruction Formats

Source Format
Operation

Single Double Word Longword
ADD V V R R
SUB V V R R
MUL V V R R
DIV V V R R
SQRT V V R R
ABS V V R R
MOV V V
NEG V V R R
TRUNC.L V V
ROUND.L V V
CEIL.L V V
LOOR.L V V
TRUNC.W V V
ROUND.W V V
CEIL.W V V
FLOOR.W V V
CVT.S V V V
CVT.D V V V
CVT.W V V
CVT.L V V
C V V R R

 TX49/H2 Architecture

B-3

The coprocessor branch on condition true/false instructions can be used to logically negate
any predicate. Thus, the 32 possible conditions require only 16 distinct comparisons, as shown
in Table B-2 below.

Table B-2 Logical Negation of Predicates by Condition True/False
Condition Relations

Mnemonic
True False

Code Greater
Than

Less
Than Equal Unordered

Invalid Operation
exception if
unordered

F T 0 F F F F No
UN OR 1 F F F T No
EQ NEQ 2 F F T F No
UEQ OGL 3 F F T T No
OLT UGE 4 F T F F No
ULT OGE 5 F T F T No
OLE UGT 6 F T T F No
ULE OGT 7 F T T T No
SF ST 8 F F F F Yes
NGLE GLE 9 F F F T Yes
SEQ SNE 10 F F T F Yes
NGL GL 11 F F T T Yes
LT NLT 12 F T F F Yes
NGE GE 13 F T F T Yes
LE NLE 14 F T T F Yes
NGT GT 15 F T T T Yes

B.1.1 Floating-Point Loads, Stores, and Moves

All movement of data between the floating-point coprocessor and memory is
accomplished by coprocessor load and store operations, which reference the floating-point
coprocessor’s General-Purpose Registers. These operations are unformated; no format
conversions are performed and, therefore, no floating-point exceptions occur due to these
operations.

Data may also be directly moved between the floating-point coprocessor and the
processor by move to coprocessor and move from coprocessor instructions. Like the
floating-point load and store operations, move to/from operations perform no format
conversions and never cause floating-point exceptions.

An additional pair of coprocessor registers are available, called Floating-Point Control
registers for which the only data movement opera-lions supported are moves to and from
processor General-Purpose Registers.

B.1.2 Floating-Point Operations

The floating-point unit’s operation set includes floating-point add, subtract, multiply,
divide, square root, convert between fixed-point and floating-point format, convert
between floating-point formats, and floating-point compare. These operations satisfy
IEEE Standard 754’s requirements for accuracy. Specifically, these operations obtain a
result which is identical to performing the result with infinite precision and then
rounding to the specified format, using the current rounding mode.

Instructions must specify the format of their operands. Except for con-version
functions, mixed-format operations are not provided.

 TX49/H2 Architecture

B-4

B.2 Instruction Notational Conventions

In this appendix, all variable sub fields in an instruction format (such as fs, ft, immediate,
and so on) are shown with lower-case names. The instruction name (such as ADD, SUB, and
so on) is shown in upper-case.

For the sake of clarity, an alias is sometimes substituted for a variable subfield in the
formats of specific instructions. For example, we use rs = base in the format for load and store
instructions. Such an alias is always lower case, since it refers to a variable subfield.

In some instructions, however, the two instruction subfields op and function have constant
6-bit values. When reference is made to these instructions, upper-case mnemonics are used.
In the floating-point instruction, for example, we use op = COP1 and function = FADD. In
some cases, a single field has both fixed and variable subfields, so the name contains both
upper and lower case characters. Actual bit encoding for mnemonics is shown in Figure B-5 at
the end of this appendix, and are also included with each individual instruction.

In the instruction description examples that follow, the Operation section describes the
operation performed by each instruction using a high-level language notation.

B.2.1 Instruction Notation Examples

Example #1:

GPR[ft] ← immediate 016

Sixteen zero bits are concatenated with an immediate value (typically 16 bits),. and
the 32-bit string (with the lower 16 bits set to zero) is assigned to GPR register ft.

Example #2:

(immediate15)16 immediate15∼ 0

Bit 15 (the sign bit) of an immediate value is extended for 16 bit positions, and the
result is concatenated with bits 15 through 0 of the immediate value to form a 32-bit
sign-extended value.

 TX49/H2 Architecture

B-5

B.3 Load and Store Instructions

In the MIPS ISA, all load operations have a delay of at least one instruction. That is,
the instruction immediately following a load cannot use the contents of the register that
will be loaded with the data being fetched from storage.

In the TX49, the instruction immediately following a load may use the contents of the
register loaded. In such cases, the hardware will interlock, requiring additional real
cycles, so scheduling load delay slots is still desirable, although not absolutely required for
functional code.

When the FR bit in the Status register equals zero, the Floating-Point General Registers
(FGR) are 32-bits wide. When the FR bit in the Status register equals one, the Floating-
Point General Registers (FGR) are 64-bits wide. The behavior of the load store
insturctions in dependent on the width of the FGRs.

In the load/store operation descriptions, the functions listed in Table B-3 are used to
summarize the handling of virtual addresses and physical memory.

Table B-3 Load/Store Common Functions

Function Meaning
AddressTranslation Uses the TLB to find the physical address given the virtualaddress. The function fails and an

exception is taken if therequired translation is not present in the TLB.
LoadMemory Uses the cache and main memory to find the contents of theword containing the specified physical

address. The low-ordertwo bits of the address and the access type field indicates whichof each of
the four bytes within the data word need to bereturned. If the cache is enabled for this access, the
entire wordis returned and loaded into the cache.

StoreMemory Uses the cache, write buffer and main memory to store the wordor part of word specified as data in
the word containing thespecified physical address. The low-order two bits of theaddress and the
access type field indicates which of each of thefour bytes within the data word should be stored.

 TX49/H2 Architecture

B-6

Figure B-1 shows the I-Type instruction format used by load and store operations.

I-Type (Immediate)

baseop offsetft

6

2631

5 5 16

21 16 025 20 15

where:
op is a 6-bit operation code
base is the 5-bit base register specifier
ft is a 5-bit. source (for stores) or destination (for loads)

FPA register specifier
offset is the 16-bit signed immediate offset

Figure B-1 Load and Store Instruction Format

All coprocessor loads and stores reference aligned word data items. Thus, for word loads
and stores, the access type field is always WORD, and the low-order two bits of the address
must always be zero.

For double word loads and stores, the access type field is always DOUBLEWORD, and the
low-order three bits of the address must always be zero.

Regardless of byte-numbering order (endianness), the address specifies that byte which has
the smallest byte-address of all of the bytes in the addressed field. For a Big-endian machine,
this is the leftmost byte; for a Little-endian machine, this is the rightmost byte.

 TX49/H2 Architecture

B-7

B.4 Computational Instructions

Computational instructions include all of the arithmetic floating-point operations performed
by the FPU. Figure B-2 shows the R-Type instruction format used for computational
operations.

R-Type (Register)

fdfs functionCOP1 fmt ft

5610111516202125

6

2631 0

5 5 5 5 6
where:

COP1 is a 6-bit major operation code
fmt is a 5-bit format specifier
fs is a 5-bit source1 register
ft is a 5-bit source2 register
fd is a 5-bit destination register
function is a 6-bit function field

Figure B-2 Computational Instruction Format

Each floating-point instruction can be applied to a number of operand formats. The operand
format for an instruction is specified by the 4-bit Format field; decoding for this field is shown
in Table B-4.

Table B-4 Format Field Decoding

Code Mnemonic Size Format
16 S single Binary floating-point
17 D double Binary floating-point
18 Reserved
19 Reserved
20 W single Binary fixed-point
21 L longword 64-bit binary fixed-point
22∼ 31 - - Reserved

The function indicates which floating-point operation is to be performed. Table B-5 lists all
floating-point instructions.

 TX49/H2 Architecture

B-8

Table B-5 Floating-Point Instructions and Operations

Code (5∼ 0) Mnemonic Operation
0 ADD Add
1 SUB Subtract
2 MUL multiply
3 DIV Divide
4 SQRT Square root
5 ABS Absolute value
6 MOV Move
7 NEG Negate
8 ROUND.L Convert to single fixed-point, rounded to nearest/even
9 TRUNC.L Convert to single fixed-point, rounded toward zero
10 CEIL.L Convert to single fixed-point, rounded to +∞
11 FLOOR.L Convert to single fixed-point, rounded to −∞
12 ROUND.W Convert to single fixed-point, rounded to nearest/even
13 TRUNC.W Convert to single fixed-point, rounded toward zero
14 CEIL.W Convert to single fixed-point, rounded to +∞
15 FLOOR.W Convert to single fixed-point, rounded to −∞
16∼ 31 - Reserved
32 CVT.S Convert to single floating-point
33 CVT.D Convert to double floating-point
34 - Reserved
35 - Reserved
36 CVT.W Convert to binary fixed-point
37 CVT.L Convert to 64-bit binary fixed-point
38∼ 47 - Reserved
48∼ 63 C Floating-point compare

 TX49/H2 Architecture

B-9

In the following pages, the notation FGR refers to the FPU’s 32 General-Purpose Registers
FGRO through FGR31, and FPR refers to the FPU’s Floating-Point Registers. When the FR

bit in the Status register (SR26) equals zero, only the even Floating-Point Registers are valid
and the FPU’s 32 General-Purpose Registers are 32-bits wide. When the FR bit in the Status

register (SR26) equals one, both odd and even Floating-Point Registers may be used and the
FPU’s 32 General-Purpose Registers are 64-bits wide.

The following routines are used in the description of the floating-point operations to get the
value of an FPR or to change the value of an FGR:

32 Bit Mode
value < - - ValueFPR (fpr, fmt)

/* undefined for odd fpr */
case fmt of
S, W:

value < - - FGR[fpr + 0]
D:

/* undefined for fpr not even */
value < - - FGR[fpr + 1] FGR[fpr + 0]

end

StoreFPR (fpr, fmt, value):
/* undefined for odd fpr */
case fmt of
S, W:

FGR[fpr + 1] < - - undefined
FGR[fpr + 0] < - - value

D:
FGR[fpr + 1] < - - value63∼ 32

FGR[fpr + 0] < - - value31∼ 0
end

64 Bit Mode
value < - - ValueFPR (fpr, fmt)

case fmt of
S:

value < - - FGR[fpr]31∼ 0
D, L:

value < - - FGR[fpr]
W:

value < - - FGR[fpr]
end

StoreFPR (fpr, fmt, value):
case fmt of
S, W:

FGR[fpr] < - - undefined32 value
D, L:

FGR[fpr] < - - value
end

 TX49/H2 Architecture

B-10

ABS.fmt Floating-Point Absolute
Value ABS.fmt

fdfs
ABS

000101
0

00000
COP1

010001 fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

ABS.fmt fd, fs

Description:

The contents of the FPU register specified by fs are interpreted in thespecified format and
the arithmetic absolute value is taken. The result is placed in the floating-point register
specified by fd.

The absolute value operation is arithmetic; a NaN operand signals in-valid operation.

This instruction is valid only for single- and double-precision floating-point formats. The
operation is not defined if bit 0 of any register specification is set and the FR bit in the Status
register equals zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals one, both even
and odd register numbers are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, AbsoluteValue (ValueFPR (fs, fmt)))

Exceptions:

Coprocessor unusable exception

Coprocessor exception tap

Coprocessor Exceptions:

Unimplemented operation exception

Invalid operation exception

 TX49/H2 Architecture

B-11

ADD.fmt Floating-Point Add ADD.fmt
fdfs

ADD
000000

COP1
010001 ftfmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

ADD.fmt fd, fs, ft

Description

The contents of the FPU registers specified by fs and ft are interpreted in the specified
format and arithmetically added. The result is round-ed as if calculated to infinite precision
and then rounded to the specified format (fmt), according to the current rounding mode. The
result is placed in the floating-point register (FPR) specified by fd.

This instruction is valid only for single- and double-precision floating-point formats. The
operation is not defined if bit 0 of any register specification is set and the FR bit in the Status
register equals zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals one, both even
and odd register numbers are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) + ValueFPR (fl, fmt))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception

Invalid operation exception

Inexact exception

Overflow exception

Underflow exception

 TX49/H2 Architecture

B-12

BC1F Branch On FPU False
(coprocessor 1) BC1F

offsetBCF
00000

BC
01000

COP1
010001

1516202125

6

2631 0

5 5 16

Format:

BC1F offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. If the result of the
last floating-point compare is false(zero), the program branches to the target address, with a
delay of one instruction. There must be at least one instruction between C.cond. fmt and
BC1F.

Operation:

32 T − 1: condition ← not COC[1]
T: target ← (offset15)14 offset 02

T + 1: if condition then
PC ← PC + target
endif

64 T − 1 condition ← not COC[1]
T: target ← (offset15)46 offset 02

T + 1: if condition then
PC ← PC + target
endif

Exceptions:

Coprocessor unusable exception

 TX49/H2 Architecture

B-13

BC1FL
Branch On FPU False

Likely
(coprocessor 1) BC1FL

offsetBCFL
00010

BC
01000

COP1
010001

1516202125

6

2631 0

5 5 16

Format:

BC1FL offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended.

If the result of the last floating-point compare is false(zero), the program branches to the
target address, with a delay of one instruction. If the conditional branch is not taken, the
instruction in the branch delay slot is nullified. There must be at least on instruction
between C.cond. fmt and BC1FL.

Operation:

32 T − 1: condition ← not COC[1]
T: target ← (offset15)14 offset 02

T + 1: if condition then
PC ← PC + target
Else
NullifyCurrentInstruction
Endif

64 T − 1: condition ← not COC[1]
T: target ← (offset15)46 offset 02

T + 1: if condition then
PC ← PC + target
Else
NullifyCurrentInstruction
endif

Exceptions:

Coprocessor unusable exception

 TX49/H2 Architecture

B-14

BC1T Branch On FPU True
(coprocessor 1) BC1T

offsetBCT
00001

BC
01000

COP1
010001

1516202125

6

2631 0

5 5 16

Format:

BC1T offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended. If the result of the
last floating-point compare is true(one), the program branches to the target address, with a
delay of one instruction. There must be at least one instruction between C.cond. fmt and
BC1T.

Operation:

32 T − 1: condition ← COC[1]
T: target ← (offset15)14 offset 02

T + 1: if condition then
PC ← PC + target
endif

64 T − 1: condition ← COC[1]
T: target ← (offset15)46 offset 02

T + 1: if condition then
PC ← PC + target
endif

Exceptions:

Coprocessor unusable exception

 TX49/H2 Architecture

B-15

BC1TL Branch On FPU True Likely
(coprocessor 1) BC1TL

offsetBCTL
00011

BC
01000

COP1
010001

1516202125

6

2631 0

5 5 16

Format:

BC1TL offset

Description:

A branch target address is computed from the sum of the address of the instruction in the
delay slot and the 16-bit offset, shifted left two bits and sign-extended.

If the result of the last floating-point compare is true(one), the program branches to the
target address, with a delay of one instruction. If the conditional branch is not taken, the
instruction in the branch delay slot is nullified. There must be at least one instruction
between C.cond.fmt and BC1TL.

Operation:

32 T − 1: condition ← COC[1]
T: target ← (offset15)14 offset 02

T + 1: if condition then
PC ← PC + target
else
NullifyCurrentInstruction
endif

64 T − 1: condition ← COC[1]
T: target ← (offset15)46 offset 02

T + 1: if condition then
PC ← PC + target
else
NullifyCurrentInstruction
endif

Exceptions:

Coprocessor unusable exception

 TX49/H2 Architecture

B-16

C.cond.fmt Floating-Point
Compare C.cond.fmt

FC* cond*ft fs
0

00000
COP1

010001 fmt

5610111516202125

6

2631 0

5 5 5 5 42

34

Format:

C.cond.fmt fs, ft

Description:

The contents of the floating-point registers specified by fs and ft are interpreted in the
specified format and arithmetically compared.

A result is determined based on the comparison and the conditions specified in the
instruction. If one of the values is a Not a Number (NaN), and the high-order bit of the
condition field is set, an invalid operation exception is taken. After a one-instruction delay,
the condition is available for testing with branch on floating-point coprocessor condition
instructions. There must be at least one instruction between the conpare and branch.

Comparisons are exact and can neither overflow nor underflow. Four mutually exclusive
relations are possible results: less than, equal, greater than, and unordered. The last case
arises when one or both of the operands are NaN; every NaN compares unordered with
every-thing, including itself. Comparisons ignore the sign of zero, so + 0 = −0.

This instruction is valid only for single- and double-precision floating-point formats. The
operation is not defined if bit 0 of any register specification is set and the FR bit in the Status
register equals zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals one, both even
and odd register numbers are valid.

**See “FPU Instruction Opcode Bit Encoding” at the end of Appendix B.

 TX49/H2 Architecture

B-17

C.cond.fmt
Floating-Point

Compare
(continued) C.cond.fmt

Operation:

32, 64 T: if NaN (ValueFPR(is, fmt)) or NaN (ValueFPR(it, fmt)) then
less ← false
equal ← false
unordered ← true
if cond3 then

signal lnvalidOperationException
endif

else
less ← VaIueFPR (fs, fmt) < ValueFPR (It, fmt)
equal ← ValueFPR (fs, fmt) = ValueFPR (it, fmt)
unordered ← false

endif
condition ← (cond2 and less) or (cond1 and equal) or

(cond0 and unordered)
FCR[31]23 ← condition
COC[1] ← condition

Exceptions:

Coprocessor unusable

Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception

Invalid operation exception

 TX49/H2 Architecture

B-18

CEIL.L.fmt
Floating-Point

Ceiling to Long
Fixed-Point Format CEIL.L.fmt

fdfs
CEIL.L
001010

0
00000

COP1
010001 fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

CEIL.L.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in. the specified
source format, fmt, and arithmetically converted to the long fixed-point format. The result is
placed in the floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion is rounded as if the
current rounding mode is round to + ∞ (2).

This instruction is valid only for conversion from single-, double-, extended or quad-
precision floating-point formats. If extended or quad-precision format is specified, the
operation is not defined if bit 0 of the source register specification is set, since the register
number specifies an aligned coprocessor general register. When the FR bit in the Status
register equals one, both even and odd register numbers are valid.

When the source operand is an Infinity, NaN, or the correctly rounded integer result us
outside of -263 to 263 -1, the Invalid operation exception us raised. If the Invalid operation is
not enabled then no exception us taken and 263 -1 is returned.

This instruction is not implemented on MIPS I or MIPS II processors, and Will cause an
unimplemented operation exception to occur.

Operation:

32, 64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt, L))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Reserved Instruction exception (in the 32 bit user or 32 bit supervisor mode)

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

 TX49/H2 Architecture

B-19

CEIL.W.fmt
Floating-Point

Ceiling to Single
Fixed-Point Format CEIL.W.fmt

fdfs
CEIL.W
001110

0
00000

COP1
010001 fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

CEIL.W.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in the specified
source format, fmt, and arithmetically converted to the single fixed-point format. The result
is placed in the floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion is rounded as if the
current rounding mode is round to + ∞ (2).

This instruction is valid only for conversion from a single- or double-precision floating-
point formats. The operation is not defined if bit 0 of any register specification is set and the
FR bit in the Status register equals zero, since the register numbers specify an even-odd pair
of adjacent coprocessor general registers. When the FR bit in the Status register equals one,
both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded integer result is
outside of −231 to 231-1, the Invalid operation exception is raised. If the Invalid operation is
not enabled then no exception is taken and 231-1 is returned.

Operation:

32, 64 T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

 TX49/H2 Architecture

B-20

CFC1
Move Control Word From

FPU
(coprocessor 1) CFC1

rt fs
0

000 0000 0000
CF

00010
COP1

010001

10111516202125

6

2631 0

5 5 5 11

Format:

CFC1 rt, fs

Description:

The contents of the FPU’s control register fs are loaded into general register rt.

This operation is only defined when fs equals 0 or 31.

The contents of general register rt are undefined for the instruction immediately following
CFC1.

Operation:

32 T: temp ← FCR[fs]
T + 1: GPR[rt] ← temp

64 T: temp ← FCR[fs]
T + 1: GPR[rt] ← (temp31)32 temp

Exceptions:

Coprocessor unusable exception

 TX49/H2 Architecture

B-21

CTC1 Move Control Word To FPU
(coprocessor 1) CTC1

rt fs
0

000 0000 0000
CT

00110
COP1

010001

10111516202125

6

2631 0

5 5 5 11

Format:

CTC1 rt, fs

Description:

The contents of general register rt are loaded into the FPU’s control register fs. This
operation is only defined when fs equals 0 or 31. Writing to Control Register 31, the floating-
point Control/Status register, causes an interrupt or exception if any cause bit and its
corresponding enable bit are both set. The register will be written before the exception
occurs. The contents of floating-point control register fs are undefined for the instruction
immediately following CTC1.

Operation:

32 T: temp ← GPR[rt]
T + 1: FCR[fs] ← temp

COC[1] ← FCR[31]23
64 T: temp ← GPR[rt]31~0

T + 1: FCR[fs] ← temp
COC[1] ← FCR[31]23

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception

Invalid operation exception

Division by zero exception

Inexact exception

Overflow exception

Underflow exception

 TX49/H2 Architecture

B-22

CVT.D.fmt
Floating-Point

Convert to Double
Fixed-Point Format

CVT.D.fmt

fdfs
CVT.D
100001

0
00000

COP1
010001 fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

CVT.D.fmt fd, fs

Description:

The contents of the floating-point register specified by fs is interpreted in the specified
source format, fmt, and arithmetically converted to the double. binary floating-point format.
The result is placed in the floating-point register specified by fd.

This instruction is valid only for conversions from single floating-pount format, 32-bit or
64-bit fixed-point format.

If the single floating-point or single fixed-point format is specified, the operation is exact.
The operation is not defined if bit 0 of any register specification is set and the FR bit in the
Status register equals zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals one, both even
and odd register numbers are valid.

Operation:

32, 64 T: StoreFPR (fd, D, ConvertFmt (VaIueFPR (fs, fmt), fmt, D))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

Underflow exception

 TX49/H2 Architecture

B-23

CVT.L.fmt
Floating-Point

Convert to Long
Fixed-Point Format

CVT.L.fmt

fdfs
CVT.L
100101

0
00000

COP1
010001 fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

CVT.L.fmt fd, fs

Description:

The contents of the floating-point register specified by fs is interpreted in the specified
source format, fmt, and arithmetically converted to the long fixed-point format. The result is
placed in the floating-point register specified by fd.

This instruction is valid only for conversions from single-, double-, extended- or quard-
precision floating-point formats. If extended- or quad-precision format is specified, the
operation is not defined if bit 0 of the source register specification is set, since the register
number specifies an aligned coprocessor general register.

When the source operand is an Infinity, NaN, or the correctly rounded integer result is
outside of −263 to 263-1, the Invalid operation exception is raised. If the Invalid operation is
not enabled then no exception is taken and 263-1 is returned.

This instruction is not implemented on MIPS I or MIPS II processors, and will cause an
unimplemented operation exception to occur.

The operation is not defined if bit 0 of any register specification is set and the FR bit in the
status register epuals zero.

Operation:

32, 64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt, L))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Reserved Instruction exception (in the 32 bit user or 32 bit supervisor mode)

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

 TX49/H2 Architecture

B-24

CVT.S.fmt
Floating-Point

Convert to Single
Fixed-Point Format

CVT.S.fmt

fdfs
CVT.S
100000

0
00000

COP1
010001 fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

CVT.S.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in the specified
source format, fmt, and arithmetically converted to the single binary floating-point format.
The result is placed in the floating-point register specified by fd. Rounding occurs according
to the currently specified rounding mode.

This instruction is valid only for conversions from double floating-point format, or from 32-
bit or 64-bit fixed-point format. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since the register
numbers specify an even-odd pair of adjacent coprocessor general registers. When the FR bit
in the Status register equals one, both even and odd register numbers are valid.

Operation:

32, 64 T: StoreFPR (fd, S, ConvertFmt (ValueFPR (fs, fmt), fmt, S))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

Underflow exception

 TX49/H2 Architecture

B-25

CVT.W.fmt
Floating-Point

Convert to
Fixed-Point Format

CVT.W.fmt

fdfs
CVT.W
100100

0
00000

COP1
010001 fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

CVT.W.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in the specified
source format, fmt, and arithmetically converted to the single fixed-point format. The result
is placed in the floating-point register specified by fd.

This instruction is valid only for conversion from a single- or double-precision floating-
point formats. The operation is not defined if bit 0 of any register specification is set and the
FR bit in the Status register equals zero, since the register numbers specify an even-odd pair
of adjacent coprocessor general registers. When the FR bit in the Status register equals one,
both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded integer result us
outside of −231 to 231-1, an Invalid operation exception is raised. If Invalid operation is not
enabled, then no exception is taken and 231-1 is returned.

Operation:

32, 64 T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

 TX49/H2 Architecture

B-26

DIV.fmt Floating-Point
Divide DIV.fmt

fdfs
DIV

000011
COP1

010001 ftfmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

DIV.fmt fd, fs, ft

Description:

The contents of the floating-point registers specified by fs and ft are interpreted in the
specified format and the value in fs is divided by the value in ft. The result is rounded as if
calculated to infinite precision and then rounded to the specified format, according to the
current rounding mode. The result is placed in the floating-point register specified by fd.

This instruction is valid for only single or double precision floating-point formats.

The operation is not defined if bit 0 of any register specification is set and the FR bit in the
Status register equals zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals one, both even
and odd register numbers are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, ValueFPR(fs, fmt)/ValueFPR(ft, fmt))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception

Invalid operation exception

Division-by-zero exception

Inexact exception

Overflow exception

Underflow exception

 TX49/H2 Architecture

B-27

DMFC1 Doubleword Move From
Floating-Point Coprocessor DMFC1

rt fs
0

000 0000 0000
DMF

00001
COP1

010001

10111516202125

6

2631 0

5 5 5 11

Format:

DMFC1 rt, fs

Description:

The contents of register fs from the floating-point coprocessor is stored into processor
register rt.

The contents of general register rt are undefined for the instruction immediately following
DMFC1.

The FR bit in the Status register specifies whether all 32 register of the TX49 are
addressable. When FR is clear, this instruction is not defined when the least significant bit
of fs is non-zero. When FR is set, fs may specify either odd or even registers.

Operation:

64 T: if SR26 = 1 then /*64-bit wide FGRs*/
data ← FGR[fs]
elseif fs0 = 0 then /*valid specifier, 32-bit wide FGRs*/
data ← FGR[fs+1] FGR[fs]
else /*undefined for odd 32-bit reg #s */
data ← undefined64

endif
T+1: GPR[rt] ← data

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Reserved Instruction exception (in the 32 bit user or 32 bit supervisor mode)

Coprocessor Exceptions:

Unimplemented operation exception

 TX49/H2 Architecture

B-28

DMTC1 Doubleword Move To
Floating-Point Coprocessor DMTC1

rt fs
0

000 0000 0000
DMT

00101
COP1

010001

10111516202125

6

2631 0

5 5 5 11

Format:

DMTC1 rt, fs

Description:

The contents of general register rt are loaded into coprocessor register fs of the CP1.

The contents of floating-point register fs are undefined for the instruction immediately
following DMTC1.

The FR bit in the Status register specifies whether all 32 register of the TX49 are
addressable. When FR equals zero, this instruction is not defined when the least significant
bit of fs is non-zero. When FR equals one, fs may specify either odd or even registers.

Operation:

64 T: data ← GPR[rt]
T + 1: if SR26 = 1 then /*64-bit wide FGRs*/

FGR[fs] ← data
elseif fs0 = 0 then /*valid specifier, 32-bit wide valid FGRs*/
FGR[fs + 1] ← data63∼ 32

FGR[fs] ← data31∼ 0
else /*undefined result for odd 32-bit reg #s */
undefined_result
endif

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Reserved Instruction exception (in the 32 bit user or 32 bit supervisor mode)

Coprocessor Exceptions:

Unimplemented operation exception

 TX49/H2 Architecture

B-29

FLOOR.L.fmt
Floating-Point
Floor to Long

Fixed-Point Format
FLOOR.L.fmt

fdfs
FLOOR.L
001011

0
00000

COP1
010001 fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

FLO0R.L.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in the specified
source format, fmt, and arithmetically converted to the long fixed-point format. The result is
placed in the floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conver-sion is rounded as if the
current rounding mode is round to −∞ (3).

This instruction is valid only for conversion from single-, double-, extended or quad-
precision floating-point formats. If extended or quad-precision format is specified, the
operation is not defined if bit 0 of the source register specification is set, since the register
number specifies an aligned coprocessor general register.

When the source operand is an Infinity, NaN, or the correctly rounded integer result is
outside of −263 to 263-1, the Invalid operation exception is raised. If the Invalid operation is
not enabled then no exception is taken and 263-1 is returned. This instruction is not
implemented on MIPS I or MIPS II processors, and will cause an unimplemented operation
exception to occur.

Operation:

32, 64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt, L))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Reserved Instruction exception (in the 32 bit user or 32 bit supervisor mode)

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

 TX49/H2 Architecture

B-30

FLOOR.W.fmt
Floating-Point
Floor to Single

Fixed-Point Format
FLOOR.W.fmt

fdfs
FLOOR.W

001111
0

00000
COP1

010001 fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

FLOOR.W.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in the specified
source format, fmt, and arithmetically converted to the single fixed-point format. The result
is placed in the floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion is rounded as if the
current rounding mode is round to −∞ (RM = 3).

This instruction is valid only for conversion from a single- or double-precision floating-
point formats. The operation is not defined if bit 0 of any register specification is set and the
FR bit in the Status register equals zero, since the register numbers specify an even-odd pair
of adjacent coprocessor general registers. When the FR bit in the Status register equals one,
both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded integer result is
outside of −231 to 231-1, an Invalid operation exception is raised. If Invalid operation is not
enabled, then no exception is taken and 231-1 is returned.

Operation:

32, 64 T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

 TX49/H2 Architecture

B-31

B

LDC1 Load Doubleword to FPU
(coprocessor 1) LDC1

ft
LDC1

110101 offsetbase

1516202125

6

2631 0

5 5 16

Format:

LDC1 ft, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form
an unsigned effective address. In 32-bit mode, the contents of the doubleword at the memory
location specified by the effective address is loaded into registers ft and ft + 1 of the floating-
point coprocessor. This instruction is not valid, and is undefined, when the least significant
bit of ft is non-zero. In 64-bit mode, the contents of the doubleword at the memory location
specified by the effective ad-dress are loaded into the 64-bit register ft of the floating point

coprocessor. The FR bit of the Status register (SR26) specifies whether all 32 registers of the
TX49 are addressable. When FR = 0, this instruction is not defined when the least
significant bit of ft is non-zero. When FR = 1, ft may specify either odd or even registers.

If any of the three least-significant bits of the effective address are non-zero, an address
error exception takes place.

 TX49/H2 Architecture

B-32

LDC1
Load Doubleword to FPU

(coprocessor 1)
(continued) LDC1

Operation:

32 T: vAddr ← ((offset15)16 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← Address Translation (vAddr, DATA)

data ← LoadMemory (uncached, DLUBLEWORD, pAddr, vAddr, DATA)
if SR26 = 1 then /*64-bit wide GFRs */

FGR[ft] ← data
elseif ft0 = 0 then /*valid specifier, 32-bit wide FGRs */

FGR[ft + 1] ← data63∼ 32

FGR[ft] ← data31∼ 0
else /*undefined result if odd */

undefined_result
endif

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← Address Translation (vAddr, DATA)

data ← LoadMemory (uncached, DLUBLEWORD, pAddr, vAddr, DATA)
if SR26 = 1 then /*64-bit wide GFRs */

FGR[ft] ← data
elseif ft0 = 0 then /*valid specifier, 32-bit wide FGRs */

FGR[ft + 1] ← data63∼ 32

FGR[ft] ← data31∼ 0
else /*undefined result if odd */

undefined_result
endif

Exceptions:

Coprocessor unusable

TLB refill exception

TLB invalid exception

Bus error exception

Address error exception

 TX49/H2 Architecture

B-33

LWC1 Load Word to FPU
(coprocessor 1) LWC1

ft
LWC1
110001 offsetbase

1516202125

6

2631 0

5 5 16

Format:

LWC1 ft, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form
an unsigned effective address. The contents of theword at the memory location specified by
the effective address is loaded into register ft of the floating-point coprocessor.

The FR bit of the Status register specifies whether all 64-bit Floating-Point Registers are
addressable. If FR equals zero, LWC1 loads eitherthe high or low half of the 16 even
Floating-Point Registers. If FR equals one, LWC1 loads the low 32-bits of both even and odd
Floating-Point Registers.

If either of the two least-significant bits of the effective address is non-zero, an address
error exception occurs.

 TX49/H2 Architecture

B-34

LWC1
Load Word to FPU

(coprocessor 1)
(continued) LWC1

Operation:

32 T: vAddr ← ((offset15)16 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1∼ 3 (pAddr2∼ 0xor(ReverseEndian 02))
mem ← LoadMemory(uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr2∼ 0xor(BigEndianCPU 02)
/*“mem” is aligned 64-bits from memory. Pick out correct bytes. */
if SR26 = 1 then */64-bit wide FRGs */

FGR[ft] ← undefined32 mem31 + 8*byte∼ 8*byte
else /*32-bit wide FGRs */

FGR[rf] ← mem31 + 8*byte∼ 8*byte
endif

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)

pAddr ← pAddrPSIZE−1∼ 3 (pAddr2∼ 0xor(ReverseEndian 02))
mem ← LoadMemory(uncached, WORD, pAddr, vAddr, DATA)
byte ← vAddr2∼ 0xor(BigEndianCPU 02)
/*“mem” is aligned 64-bits from memory. Pick out correct bytes. */
if SR26 = 1 then */64-bit wide FRGs */

FGR[ft] ← undefined32 mem31 + 8*byte∼ 8*byte
else /*32-bit wide FGRs */

FGR[rf] ← mem31 + 8*byte∼ 8*byte
endif

Exceptions:

Coprocessor unusable

TLB-refill exception

TLB invalid exception

Bus error exception

Address error exception

 TX49/H2 Architecture

B-35

MFC1 Move From FPU
(Coprocessor 1) MFC1

rt fs
0

000 0000 0000
MF

00000
COP1

010001

10111516202125

6

2631 0

5 5 5 11

Format:

MFC1 rt, fs

Description:

The contents of register fs from the floating-point coprocessor are stored into processor
register rt.

The contents of register rt are undefined for time T of the instruction immediately
following this load instruction.

The FR bit of the Status register specifies whether all 32 registers of the TX49 are
addressable. If FR equals zero, MFC1 stores either the high or low half of the 16 even
Floating-Point Registers. If FR equals one, MFC1 stores the low 32-bits of both even and odd
Floating-Point Registers.

Operation:

32 T: data ← FGR[fs]31∼ 0
T + 1: GPR[rt] ← data

64 T: data ← FGR[fs]31∼ 0
T + 1: GPR[rt] ← (data31)32 data

Exceptions:

Coprocessor unusable exception

 TX49/H2 Architecture

B-36

MOV.fmt Floating-Point Move MOV.fmt
fdfs

MOV
000110

0
00000

COP1
010001 fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

MOV.fmt fd, fs

Description:

The contents of the FPU register specified by fs are interpreted in the specified format and
are copied into the FPU register specified by fd. The move operation is non-arithmetic; no
IEEE 754 exceptions occur as a result of the instruction.

This instruction is valid only for single- or double-precision floating-point formats.

The operation is not defined if bit 0 of any register specification is set and the FR bit in the
Status register equals zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals one, both even
and odd register numbers are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, VaIueFPR (fs, fmt))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception

 TX49/H2 Architecture

B-37

MTC1 Move To FPU
(Coprocessor 1) MTC1

rt fs
0

000 0000 0000
MT

00100
COP1

010001

10111516202125

6

2631 0

5 5 5 11

Format:

MTC1 rt, fs

Description:

The contents of register rt are loaded into the FPU’s general register at location fs.

The contents of floating-point register fs is undefined for the instruction immediately
following MTC1.

The FR bit of the Status register specifies whether all 32 registers of the TX49 are
addressable. If FR equals zero, MTC1 loads either the high or low half of the 16 even
Floating-Point Registers. If FR equals one, MTC1 loads the low 32-bits of both even and odd
Floating-Point Registers.

Operation:

32, 64 T: data ← GPR[rt]31∼ 0
T + 1: if SR26 = 1 then /* 64-bit wide FGRs */

FGR[fs] ← undefined32 data
else /* 32-bit wide FGRs */
endif

Exceptions:

Coprocessor unusable exception

 TX49/H2 Architecture

B-38

MUL.fmt Floating-Point Multiply MUL.fmt
ft fdfs

MUL
000010

COP1
010001 fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

MUL.fmt fd, fs, ft

Description:

The contents of the floating-point registers specified by fs and ft are interpreted in the
specified format and arithmetically multiplied. The result is rounded as if calculated to
infinite precision and then rounded to the specified format, according to the current rounding
mode. The result is placed in the floating-point register specified by fd.

This instruction is valid only for single- or double-precision floating-point formats.

The operation is not defined if bit 0 of any register specification is set and the FR bit in the
Status register equals zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals one, both even
and odd register numbers are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, ValueFPR (fs, fmt)* ValueFPR (ft, fmt))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception

Invalid operation exception

Inexact exception

Overflow exception

Underflow exception

 TX49/H2 Architecture

B-39

NEG.fmt Floating-Point Negate NEG.fmt
fdfs

NEG
000111

0
00000

COP1
010001 fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

NEG.fmt fd, fs

Description:

The contents of the FPU register specified by fs are interpreted in the specified format and
the arithmetic negation is taken (the polarity of the sign-bit is changed). The result is placed
in the FPU register specified by fd.

The negate operation is arithmetic; an NaN operand signals invalid operation.

This instruction is valid only for single- or double-precision floating-point formats. The
operation is not defined if bit 0 of any register specification is set and the FR bit in the Status
register equals zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals one, both even
and odd register numbers are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, Negate (ValueFPR (fs, fmt)))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception

Invalid operation exception

 TX49/H2 Architecture

B-40

ROUND
L.fmt

Floating-Point
Round to Long

Fixed-Point Format

ROUND
L.fmt

fdfs
ROUND.L

001000
0

00000
COP1

010001 fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

ROUND.L.fmt fd, fs

Description :

The contents of the floating-point register specified by fs are interpreted in the specified
source format, fmt, and arithmetically converted to the long fixed-point format. The result is
placed in the floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion is rounded as if the
current rounding mode is round to nearest/even (0).

This instruction is valid only for conversion from single-, double-, extended or quad-
precision floating-point formats. If extended or quad-precision format is specified, the
operation is not defined if bit 0 of the source register specification is set, since the register
number specifies an aligned coprocessor general register.

When the source operand is an Infinity , NaN, or the correctly rounded integer result is
outside of −263 to 263-1, the Invalid operation exception is raised. If the Invalid operation is
not enabled then no exception is taken and 263-1 is returned.

This instruction is not implemented on MIPS I or MIPS II processors, and will cause an
unimplemented operation exception to occur.

Operation:

32, 64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt, L))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Reserved Instruction exception (in the 32 bit user or 32 bit supervisor mode)

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

 TX49/H2 Architecture

B-41

ROUND W.fmt
Floating-Point

Round to Single
Fixed-Point Format ROUND W.fmt

fdfs
ROUND.W

001100
0

00000
COP1

010001 fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

ROUND.W.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in the specified
source format, fmt, and arithmetically converted to the single fixed-point format. The result
is placed in the floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion is rounded as if the
current rounding mode is round to nearest/even (RM = 0).

This instruction is valid only for conversion from a single- or double-precision floating-
point formats. The operation is not defined if bit 0 of any register specification is set and the
FR bit in the Status register equals zero, since the register numbers specify an even-odd pair
of adjacent coprocessor general registers. When the FR bit in the Status register equals one,
both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded integer result is
outside of −231 to 231-1, an Invalid operation exception is raised. If Invalid operation is not
enabled, then no exception is taken and 231-1 is returned.

Operation:

32, 64 T: StoreFPR (fd, W, ConvertFmt (ValueFPR (fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

 TX49/H2 Architecture

B-42

SDC1 Store Doubleword from FPU
(coprocessor 1) SDC1

ft
SDC1

111101 offsetbase

1516202125

6

2631 0

5 5 16

Format:

SDC1 ft, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form
an unsigned effective address.

In 32-bit mode, the contents of registers ft and ft + 1 from the floating-point coprocessor are
stored at the memory location specified by the effective address. This instruction is not valid,
and is undefined, when the least significant bit of ft is non-zero.

In 64-bit mode, the 64-bit register ft is stored to the contents of the doubleword at the

memory location specified by the effective address. The FR bit of the Status register (SR26)
specifies whether all 32 registers of the TX49 are addressable. When FR = 0, this instruction
is not defined if the least significant bit of ft is non-zero. If FR = 1, ft may specify either odd
or even registers.

If any of the three least-significant bits of the effective address are non-zero, an address
error exception takes place.

 TX49/H2 Architecture

B-43

SDC1
Store Doubleword from FPU

(coprocessor 1)
(continued) SDC1

Operation:

32 T: vAddr ← ((offset15)16 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
if SR26 = 1 /*64-bit wide FGRs */

data ← FGR[ft]
elseif ft0 = then /* valid specifier, 32-bit wide FGRs */

data ← FGR[ft + 1] FGR[ft]
else /*undefined for odd 32-bit reg #s */

data ← undefined64

endif
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
if SR26 = 1 /*64-bit wide FGRs */

data ← FGR[ft]
elseif ft0 = then /* valid specifier, 32-bit wide FGRs */

data ← FGR[ft + 1] FGR[ft]
else /*undefined for odd 32-bit reg #s */

data ← undefined64

endif
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:

Coprocessor unusable

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

 TX49/H2 Architecture

B-44

SQRT.fmt Floating-Point
Square Root SQRT.fmt

fdfs
SQRT
000100

0
00000

COP1
010001 fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SQRT.fmt fd, fs

Description:

The contents of the floating-point register specified by fs are interpreted in the specified
format and the positive arithmetic square root is taken. The result is rounded as if
calculated to infinite precision and then rounded to the specified format, according to the
current rounding mode. If the value of fs corresponds to −0, the result will be −0. The result
is placed in the floating-point register specified by fd.

This instruction is valid only for single- or double-precision floating-point formats.

The operation is not defined if bit 0 of any register specification is set and the FR bit in the
Status register equals zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals one, both even
and odd register numbers are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, SquareRoot (ValueFPR (fs, fmt)))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception

Invalid operation exception

Inexact exception

 TX49/H2 Architecture

B-45

SUB.fmt Floating-Point Subtract SUB.fmt
ft fdfs

SUB
000001

COP1
010001 fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

SUB.fmt fd,fs, ft

Description:

The contents of the floating-point registers specified by fs and ft are interpreted in the
specified format and the value in ft is subtracted from the value in fs. The result is rounded
as if calculated to infinite precision and then rounded to the specified format, according to
the current rounding mode. The result is placed in the floating-point register specified by fd.

This instruction is valid only for single- or double-precision floating-point formats.

The operation is not defined if bit 0 of any register specification is set and the FR bit in the
Status register equals zero, since the register numbers specify an even-odd pair of adjacent
coprocessor general registers. When the FR bit in the Status register equals one, both even
and odd register numbers are valid.

Operation:

32, 64 T: StoreFPR (fd, fmt, ValueFPR (fs, fmt) − ValueFPR (ft, fmt))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Unimplemented operation exception

Invalid operation exception

Inexact exception

Overflow exception

Underflow exception

 TX49/H2 Architecture

B-46

SWC1 Store Word from FPU
(coprocessor 1) SWC1

ft
SWC1
111001 offsetbase

1516202125

6

2631 0

5 5 16

Format:

SWC1 ft, offset (base)

Description:

The 16-bit offset is sign-extended and added to the contents of general register base to form
an unsigned effective address. The contents of register ft from the floating-point coprocessor
are stored at the memory location specified by the effective address.

The FR bit of the Status register specifies whether all 64-bit Floating-Point Registers are
addressable. If FR equals zero, SWC1 stores either the high or low half of the 16 even
Floating-Point Registers. If FR equals one, SWC1 stores the low 32-bits of both even and odd
Floating-Point Registers.

If either of the two least-significant bits of the effective address are non-zero, an address
error exception occurs.

 TX49/H2 Architecture

B-47

SWC1
Store Word from FPU

(coprocessor 1)
(continued) SWC1

Operation:

32 T: vAddr ← ((offset15)16 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0xor (RecerseEndian 02))
byte ← vAddr2∼ 0xor (BigEndianCPU 02)
/* tne bytes of the word are put in the correct byte lanes in
 * “data” for a 64-bit path to memory */
if SR26 = 1 then /*64-bit wide FGRs */

data ← FGR[ft]63-8*byte∼ 0 08*byte

else /* 32-bit wide FGRs /*
data ← 032-8*byte FGR[ft] 08*byte

endif
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

64 T: vAddr ← ((offset15)48 offset15∼ 0) + GPR[base]
(pAddr, uncached) ← AddressTranslation (vAddr, DATA)
pAddr ← pAddrPSIZE-1∼ 3 (pAddr2∼ 0xor (RecerseEndian 02))
byte ← vAddr2∼ 0xor (BigEndianCPU 02)
/* tne bytes of the word are put in the correct byte lanes in
 * “data” for a 64-bit path to memory */
if SR26 = 1 then /*64-bit wide FGRs */

data ← FGR[ft]63-8*byte∼ 0 08*byte

else /* 32-bit wide FGRs /*
data ← 032-8*byte FGR[ft] 08*byte

endif
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:

Coprocessor unusable

TLB refill exception

TLB invalid exception

TLB modification exception

Bus error exception

Address error exception

 TX49/H2 Architecture

B-48

TRUNC.L.fmt
Floating-Point

Truncate to Long
Fixed-Point Format TRUNC.L.fmt

fdfs
TRUNC.L
001001

0
00000

COP1
010001 fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

TRUNC.L.fmt fd, fs

Description :

The contents of the floating-point register specified by fs are interpreted in the specified
source format, fmt, and arithmetically converted to the single fixed-point format. The result
is placed in the floating-point register specified by fd.

Regardless of the setting of the current rounding mode, the conversion is rounded as if the
current rounding mode is round toward zero (1).

This instruction is valid only for conversion from single-, double-, ex-tended or quad-
precision floating-point formats. If extended or quad-precision format is specified, the
operation is not defined if bit 0 of the source register specification is set, since the register
number specifies an aligned coprocessor general register.

When the source operand is an Infinity, NaN, or the correctly rounded integer result is
outside of −263 to 263-1, the Invalid operation exception is raised. If the Invalid operation is
not enabled then no exception is taken and 263-1 is returned.

This instruction is not implemented on MIPS I or MIPS II processors, and will cause an
unimplemented operation exception to occur.

Operation:

32, 64 T: StoreFPR (fd, L, ConvertFmt (ValueFPR (fs, fmt), fmt, L))

Note: It is also the same operation in the 32 bit kernel mode.

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Reserved Instruction exception (in the 32 bit user or 32 bit supervisor mode)

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

 TX49/H2 Architecture

B-49

TRUNC.W.fmt
Floating-Point

Truncate to Single
Fixed-Point Format TRUNC.W.fmt

fdfs
TRUNC.W

001101
0

00000
COP1

010001 fmt

5610111516202125

6

2631 0

5 5 5 5 6

Format:

TRUNC.W.fmt fd, fs

Description:

The contents of the FPU register specified by fs are interpreted in the specified source
format fmt and arithmetically converted to the single fixed-point format. The result us
placed in the FPU register specified by fd.

Regardless of the setting of the current rounding mode, the conversion is rounded as if the
current rounding mode is round toward zero (RM = 1).

This instruction is valid only for conversion from a single- or double-precision floating-
point formats. The operation is not defined if bit 0 of any register specification is set and the
FR bit in the Status register equals zero, since the register numbers specify an even-odd pair
of adjacent coprocessor general registers. When the FR bit in the Status register equals one,
both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded integer result is
outside of −231 to 231-1, an Invalid operation exception is raised. If Invalid operation is not
enabled, then no exception is taken and -231 is returned.

Operation:

32, 64 T: StoreFPR (fd, W, ConvertFmt (VaIueFPR (fs, fmt), fmt, W))

Exceptions:

Coprocessor unusable exception

Floating-Point exception

Coprocessor Exceptions:

Invalid operation exception

Unimplemented operation exception

Inexact exception

Overflow exception

 TX49/H2 Architecture

B-50

B.5 Bit Encoding of FPU Instruction OPcodes

The Table B-6 shows the bit codes for all TX49 FPU instructions (ISA and extended ISA)

Table B-6 FPU Operation Code Bit Encoding

Opcode
31 26 0

OPcode

28∼ 26

31∼ 29 0 1 2 3 4 5 6 7
0
1
2 COP1
3
4
5
6 LWC1 LDC1 θ
7 SWC1 SDC1 θ

Sub
31 26 25 21 0

OPcode Sub

23∼ 21

25∼ 24 0 1 2 3 4 5 6 7
0 MF DMF η θ CF � MT DMT η θ CT δ
1 BC δ δ δ δ δ δ δ
2 S D θ δ δ W L η θ δ δ
3 δ δ δ δ δ δ δ δ

 TX49/H2 Architecture

B-51

Br
31 26 20 16 0

OPcode Br

18∼ 16

20∼ 19 0 1 2 3 4 5 6 7
0 BCF BCT BCFL BCTL γ γ γ γ
1 γ γ γ γ γ γ γ γ
2 γ γ γ γ γ γ γ γ
3 γ γ γ γ γ γ γ γ

CP1 Function
31 26 5 0

OPcode
CP1

Function
2∼ 0

5∼ 3 0 1 2 3 4 5 6 7
0 ADD SUB MUL DIV SQRT ABS MOV NEG
1 ROUND.L η θ TRUNC.L η θ CEIL.L η θ FLOOR.L η θ ROUND.W TRUNC.W CEIL.W FLOORW

2 δ δ δ δ δ δ δ δ
3 δ δ δ δ δ δ δ δ
4 CVT.S CVT.D θ δ δ CVT.W CVT.L η θ δ δ
5 δ δ δ δ δ δ δ δ
6 C.F C.UN C.EQ C.UEQ C.OLT C.ULT C.OLE C.ULE
7 C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT

Key:

γ: This opcode is reserved for future use. An attempt to execute it causes a Reserved
Instruction exception.

δ: Thie opcode is reserved for future use. An attempt to execute it causes a Unimplemented
operation exceptions in all current implementations.

η: This opcode is valid only when MIPS III instructions are enabled. An attempt to execute
these without MIPS III instruction enabled will cause an Unimplemented operation exception.

θ: This opcode is valid only when the TX49 has a double precision FPU in hardware. An
attempt to execute these without it will cause an Unimplemented operation exception.

Note:

 FPU Instructions are valid only when TX49 has with FPU(CP1). An attempt to execute these
insturctions causes a Coprocessor Unusable exception, independent of C0_SR(bit 29)’s value.

 TX49/H2 Architecture

B-52

 TX49/H2 Architecture

C-1

Appendix C: Coprocessor 0 Hazards

C.1 Pipeline Interlock and Hazard in TX49

C.1.1 Interlock in Load Delay Slot

Pipeline control logic will interlock the pipeline when detecting a hazard condition and
pipeline won’t resume until the hazard is resolved.

An example is shown in Figure C-1. In this case, instruction in the load delay slot tries
to read the destination register of the load instruction resulting in pipeline stall until the
data is read from the cache.

lw $5, 0 ($26) F D E M W

addu $8, $7, $5 F D ES E M W

Cache Read Finish

Figure C-1 Interlock in Load Delay Slot

Pipeline also interlocks when the cache miss occurs or when the data is loaded from
uncached area (Figure C-2).

lw $5, 0 ($26) F D E M – – FX W

RD RD

addu $8, $7, $5 F D ES ES ES ES E M W

Read Bus Cycle by lw.
Cache Read Finish

Figure C-2 Interlock in Cache Miss or in the Data Load from Non-cached Area

In this example where there is a register hazard between two consecutive instructions,
ADDU will stall at E stage until the destination register of LW is written back.

However, if there is no data dependancy between LW and ADDU, execution of ADDU
will complete without stall before the destination register of LW is written back. Pipeline
interlock occurs at the first instruction that has the data dependency with the preceding
load instruction (Figure C-3).

lw $5, 0 ($26) F D E M – – – FX W

RD RD RD

addu $8, $7, $6 F D E M W

ori $9, $0, 0x1f F D E M W

addu $9, $8, $5 F D ES ES ES E M W

Figure C-3 Pipeline Interlock by Cache Miss

 TX49/H2 Architecture

C-2

Pipeline also interlocks on write-after-write hazard which is illustrated in Figure C-4.
Write-after-write hazard is detected when one of the instructions following a load has the
destination register which is same as that of the load instruction. In this example, the
ADDU instruction stalls at its E stage until the destination register ($1) of the load is
written back.

lw $1, 0 ($26) F D E M – – – FX W

RD RD RD

addu $8, $7, $6 F D E M W

ori $9, $0, 0x1f F D E M W

addu $1, $8, $5 F D ES ES ES E M W

Figure C-4 Write-after-write Hazard by Load Instruction

A SYNC instruction may be placed right after a load instruction. This will cause
pipeline stall until the bus cycle issued by the previous load instruction completes (Figure
C-5). If the data is read from the cache, there is no bus cycle pending before the SYNC
which results in no pipeline stall.

lw $5, 0 ($26) F D E M – – FX W

RD RD

sync F D E MS MS MS M W

Read Bus Cycle by lw.

Memory Read Finish

Figure C-5 SYNC Instruction After Load Instruction

C.1.2 Branch Delay Slot

Branch and jump instructions have a branch delay slot (Figure C-6). Also, DERET
instruction has a branch delay slot. Note that the result is undefined when the
branch/jump instruction is placed in the branch delay slot1.

beq $1, $4, L1 F D E M W

subu $3, $5, $6 (delay slot) F D E M W

L1: addiu $7, $7, 1 (target) F D E M W

Figure C-6 Branch Delay Slot

1 Instructions which cause exception, such as, SYSCALL, BREAK, and SDBBP may be placed in the
branch delay slot.

 TX49/H2 Architecture

C-3

C.1.3 Multiply, Multiply/Add and Division Instructions

This subsection explains the pipeline hazard/interlock caused by the combinations of
multiply, multiply/add, division, and MTHI/MTLO/MFHI/MFLO instructions (Figure
C-7). Basically, the pipeline hazard/interlock by these instructions can be summarized in
this way:

• Pipeline interlocks when the data dependency exists.

• Pipeline interlocks when preceding 32-bit multiply or 32-bit multiply/add
instruction has <rd> field.

• Pipeline interlocks when 32-bit instruction and 64-bit instruction are executed in
sequence.

• HI/LO registers are in undefined state within two instructions before the division
instruction, such as, DIV/DIVU/DDIV/DDIVU instruction2.

SUCCEEDING INSTRUCTION
MULT/
MULTU

(2-operand)

MULT/
MULTU

(3-operand)

MADD/
MADDU

(2-operand)

MADD/
MADDU

(3-operand)

MTHI/
MTLO

MFHI/
MFLO

DIV/
DIVU

DMULT/
DMULTU

(2-operand)

DMULT/
DMULTU

(3-operand)

DDIV/
DDIVU

MULT/MULTU
(2-operand)

NO STALL NO STALL NO STALL NO STALL INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK

MULT/MULTU
(3-operand)

INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK

MADD/MADDU
(2-operand)

NO STALL NO STALL NO STALL NO STALL INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK

MADD/MADDU
(3-operand)

INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK

MTHI/MTLO NO STALL NO STALL NO STALL NO STALL NO STALL NO STALL NO STALL NO STALL NO STALL NO STALL

MFHI/MFLO NO STALL NO STALL NO STALL NO STALL NO STALL NO STALL * NO STALL NO STALL *

DIV/DIVU INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK

DMULT/DMULTU
(2-operand)

INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK

DMULT/DMULTU
(3-operand)

INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK

PR
EC

EE
D

IN
G

 IN
ST

R
U

C
TI

O
N

DDIV/DDIVU INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK INTERLOCK

*: HI/LO registers are in undefined state within two instructions before division instruction

Figure C-7 MAC pipeline hazard/interlock

In the following sections, the pipeline hazards/interlocks caused by the possible
combinations of the instructions related multiply, multiply/add, division and both 32-bit
and 64-bit operations are illustrated in detail. The Figures in the following sections
classifies the cases in such a way that:

A The preceding instruction is immediately followed by 32-bit multiply or multiply/add
instruction

B The preceding instruction is immediately followed by MFHI or MFLO intstruction

C The preceding instruction is immediately followed by MTHI or MTLO intstruction

D The preceding instruction is immediately followed by 32-bit division instruction

E The preceding instruction is immediately followed by 64-bit multiply instruction

F The preceding instruction is immediately followed by 64-bit division instruction

2 In the original R3000, this can be applied to MULT, MULTU, MTHI, and MTLO instructions.

 TX49/H2 Architecture

C-4

Case 1: Preceding Instruction Is 32-bit Multiply or 32-bit Mutiply/Add Instruction
A. 32-bit Multiply and Multiply/Add Instructions

Pipeline interlocks when data dependency or write
back date into <rd> exists.
2-operand Instruction is preceeding

MULT/MADD $3, $4 F D E1 E2 E3 M W

MULT/MADD $6, $7, $8 F D E1 E2 E3 M W

Multiply Stage 1 Multiply Stage 4

With data dependency

MULT/MADD $3, $4, $5 F D E1 E2 E3 M W

MULT/MADD $6, $3, $8 F D ES ES ES E1 E2 E3 M W

B. MFHI/MFLO Instructions

Pipeline interlocks until result of MULT/MADD
instructions stored into <rd> and HI/LO register.

MULT/MADD $3, $4, $5 F D E1 E2 E3 M W

MFHI/MFLO F D ES ES E M W

HI/LO read

C. MTHI/MTLO Instructions

Pipeline interlocks until result of MULT/MADD
instruction is stored into <rd> and HI/LO register.

MULT/MADD $3, $4, $5 F D E1 E2 E3 M W

MTHI/MTLO F D ES ES E M W

Update HI/LO

Update HI/LO

D. 32-bit Division Instruction

The result of 3-operand multiply instruction is stored
in <rd>, and HI/LO registers are eventually updated
by division instruction.

MULT $3, $4, $5

F D E1 E2 E3 M W

DIV $6, $7 F D ES ES E M W

V1 V2 V3 V4 … V36

Division stage 1

E. 64-bit Multiply Instructions

Pipeline interlocks when data dependency or write
back data into <rd> exists.
2-operand Instruction is preceeding

MULT $6, $3 F D E1 E2 E3 M W

DMULT $4, $7 F D ES ES E1 E2 … E6 M W

With data dependency

MULT $3, $4, $5

F D E1 E1 E3 M W

DMULT $6, $3, $8 F D ES … ES E1 E2 … E6 M W

F. 64-bit Division Instruction

The result of 3-operand multiply instruction is stored
in <rd>, and HI/LO registers are eventually updated
by division instruction.

MULT $3, $4, $5

F D E1 E2 E3 M W

DDIV $6, $7 F D ES ES E M W

V1 V2 V3 V4 … V68

Division stage 1

Figure C-8 Pipeline Hazard/Interlock by 32-bit Multiply or 32-bit Multiply/Add Instruction

Note that in the category A of the Figure C-8, pipeline interlocks for any instruction
immediately after the multiply or multiply/add instruction when it has the data
dependency regarding the general purpose registers. Thus, in the category D, the DIV
instruction stalls at the E stage for three cycles when the division instruction has the data
dependency with the preceding multiply instruction.

Also note that in the category D of the Figure C-8, Because the division instruction
overwrites the HI/LO registers, the HI/LO registers as the result of the 2-operand
multiply instruction is undefined. The result of the multiply instruction, as in this figure,
is correctly stored in the <rd> register. If the preceding multiply or multiply/add
instruction had a <rd> field, pipeline interlocks due to the resource conflict.

 TX49/H2 Architecture

C-5

Case 2: Preceding Instruction Is MFHI/MFLO Instruction
A. 32-bit Multiply and Multiply/Add Instructions

MULT/MADD updates the HI/LO registers at M
stage and the prior MFHI/MFLO can read the HI/LO
registers before the update.

MFHI/MFLO F D E M W

MULT/MADD $6, $7, $8 F D E1 E2 E3 M W

Update HI/LO

Read HI/LO

B. MFHI/MFLO Instructions

No hazard.

MFHI/MFLO F D E M W

MFHI/MFLO F D E M W

C. MTHI/MTLO Instructions

No hazard because MTHI/MTLO updates HI/LO
resisters at M stage.

MFHI/MFLO F D E M W

MTHI/MTLO F D E M W

Update HI/LO

Read HI/LO

D. 32-bit Division Instruction

It is necessary to insert at least two instructions
between MFHI/MFLO and DIV.

MFHI/MFLO F D E M W

nop F D E M W

nop F D E M W

DIV F D E M W

V1 V2 V3 … V36Update HI/LO

E. 64-bit Multiply Instructions

DMULT updates the HI/LO registers at M stage and
the prior MFHI/MFLO can read the HI/LO registers
before the update.

MFHI/MFLO F D E M W

DMULT $6, $7, $8 F D E1 E2 … E6 M W

Update HI/LO

Read HI/LO

F. 64-bit Division Instruction

It is necessary to insert at least two instructions
between MFHI/MFLO and DDIV.

MFHI/MFLO F D E M W

nop F D E M W

nop F D E M W

DDIV F D E M W

V1 V2 V3 … V68Update HI/LO

Figure C-9 Pipeline Hazard/Interlock by MFHI/MFLO Instructions

 TX49/H2 Architecture

C-6

Case3: Preceding Instruction Is MTHI/MTLO Instruction
A. 32-bit Multiply and Multiply/Add Instructions

MULT/MADD updates the HI/LO registers at M
stage and MADD can use HI/LO registers updated
by the prior MTHI/MTLO.

MTHI/MTLO F D E M W

MULT/MADD $6, $7, $8 F D E1 E2 E3 M W

Update HI/LO

Update HI/LO

B. MFHI/MFLO Instructions

No hazard because MTHI/MTLO updates the HI/LO
registers before MFHI/MFLO reads them.

MTHI/MTLO F D E M W

MFHI/MFLO F D E M W

Read HI/LO

Update HI/LO

C. MTHI/MTLO Instructions

No hazard.

MTHI/MTLO F D E M W

MTHI/MTLO F D E M W

Update HI/LO

Update HI/LO

D. 32-bit Division Instruction

The division instruction starts to update HI/LO
registers at E stage, and the prior MTHI/MTLO has
no meaning.

MTHI/MTLO F D E M W

DIV F D E M W

V1 V2 V3 … V36

Update HI/LO

E. 64-bit Multiply Instructions

DMULT updates the HI/LO registers at M stage.

MTHI/MTLO F D E M W

DMULT $6, $7, $8 F D E1 E2 E3 E4 E5 E6 M W

Update HI/LO

Update HI/LO

F. 64-bit Division Instruction

The division instruction starts to update HI/LO
registers at E stage, and the prior MTHI/MTLO has
no meaning.

MTHI/MTLO F D E M W

DDIV F D E M W

V1 V2 V3 … V68

Update HI/LO

Figure C-10 Pipeline Hazard/Interlock by MTHI/MTLO Instructions

 TX49/H2 Architecture

C-7

Case 4: Preceding Instruction Is 32-bit Division Instruction
A. 32-bit Multiply and Multiply/Add Instructions

Pipeline interlocks till the division instruction is
completed.

DIV F D E M W

V1 V2 V3 … V36

MULT/MADD $6, $7, $8

F D ES ES ES … E1 … E3 M W

B. MFHI/MFLO Instructions

Pipeline interlocks because of data dependency.

DIV F D E M W

V1 V2 V3 … V36

MFHI/MFLO F D ES ES ES … E M W

C. MTHI/MTLO Instructions

Pipeline interlocks till the division instruction is
completed.

DIV F D E M W

V1 V2 V3 … V36

MTHI/MTLO F D ES ES ES … E M W

D. 32-bit Division Instruction

Pipeline interlocks till the division instruction is
completed.

DIV F D E M W

V1 V2 V3 … V36

DIV F D ES ES ES … E M W

V1 V2 V3 … V36

E. 64-bit Multiply Instructions

Pipeline interlocks till the division instruction is
completed.

DIV F D E M W

V1 V2 V3 … V36

DMULT $6, $7, $8

F D ES ES ES … E1 … E6 M W

F. 64-bit Division Instruction

Pipeline interlocks till the division instruction is
completed.

DIV F D E M W

V1 V2 V3 … V36

DDIV F D ES ES ES … E M W

V1 V2 V3 … V68

Figure C-11 Pipeline Hazard/Interlock by Division Instructions

 TX49/H2 Architecture

C-8

Case 5: Preceding Instruction Is 64-bit Multiply Instruction
A. 32-bit Multiply and Multiply/Add Instructions

Pipeline interlocks till the multiply instruction is
completed.

DMULT $3, $4

F D E1 E2 E3 E4 E5 E6 M W

MULT/MADD $6, $7, $8

F D ES ES ES … ES E1 E2 E3 M W

B. MFHI/MFLO Instructions

Pipeline interlocks because of data dependency.

DMULT F D E1 E2 E3 E4 E5 E6 M W

MFHI/MFLO F D ES ES ES … E M W

C. MTHI/MTLO Instructions

Pipeline interlocks till the multiply instruction is
completed.

DMULT F D E1 E2 E3 E4 E5 E6 M W

MTHI/MTLO F D ES ES ES … ES E M W

D. 32-bit Division Instruction

Pipeline interlocks till the multiply instruction is
completed.

DMULT $3, $4

F D E1 E2 E3 E4 E5 E6 M W

DIV $6, $7

F D ES ES ES … ES E M W

V1 V2 V3 … V36

E. 64-bit Multiply Instructions

Pipeline interlocks till the multiply instruction is
completed.

DMULT $3, $4

F D E1 E2 E3 E4 E5 E6 M W

DMULT $6, $7, $8

F D ES ES ES … ES E1 … E6 M W

F. 64-bit Division Instruction

Pipeline interlocks till the multiply instruction is
completed.

DMULT $3, $4

F D E1 E2 E3 E4 E5 E6 M W

DDIV $6, $7

F D ES ES ES … ES E M W

V1 V2 V3 … V68

Figure C-12 Pipeline Hazard/Interlock by Division Instructions

 TX49/H2 Architecture

C-9

Case 6: Preceding Instruction Is 64-bit Division Instruction
A. 32-bit Multiply and Multiply/Add Instructions

Pipeline interlocks till the division instruction is
completed.

DDIV F D E M W

V1 V2 V3 … V68

MULT/MADD $6, $7, $8

F D ES ES ES … E1 … E3 M W

B. MFHI/MFLO Instructions

Pipeline interlocks because of data dependency.

DDIV F D E M W

V1 V2 V3 … V68

MFHI/MFLO F D ES ES ES … E M W

C. MTHI/MTLO Instructions

Pipeline interlocks till the division instruction is
completed.

DDIV F D E M W

V1 V2 V3 … V68

MTHI/MTLO F D ES ES ES … E M W

D. 32-bit Division Instruction

Pipeline interlocks till the division instruction is
completed.

DDIV F D E M W

V1 V2 V3 … V68

DIV F D ES ES ES … E M W

V1 V2 V3 … V36

E. 64-bit Multiply Instructions

Pipeline interlocks till the division instruction is
completed.

DDIV F D E M W

V1 V2 V3 … V68

DMULT $6, $7, $8

F D ES ES ES … E1 … E6 M W

F. 64-bit Division Instruction

Pipeline interlocks till the division instruction is
completed.

DDIV F D E M W

V1 V2 V3 … V68

DDIV F D ES ES ES … E M W

V1 V2 V3 … V68

Figure C-13 Pipeline Hazard/Interlock by Division Instructions

 TX49/H2 Architecture

C-10

C.1.4 Instructions regarding System Control Co-processor (CP0)

C.1.4.1 MFC0 and MTC0 Instructions
Pipeline interlocks when the MFC0 instruction is followed by the instruction that

reads the destination register of MFC0 instruction (Figure C-14).

mfc0 $5, EPC F D E M W

addu $8, $7, $5 F D ES E M W

EPC Read

Stall

Figure C-14 Pipeline Interlock by MFC0 Instruction

No pipeline hazards occur when the MTC0 instruction is followed by MFC0
instruction because MTC0 writes the destination register in the M stage and MFC0
reads it also in the M stage (Figure C-15).

mtc0 $5, DEPC F D E M W

mfc0 $8, DEPC F D E M W

DEPC Write

DEPC Read

Figure C-15 MTC0 Instruction Followed by MFC0 Instruction

C.1.4.2 ERET Instruction
Unlike a branch or jump instruction, ERET does not execute the next instruction.

The changed EPC becomes effective at the second instruction after the MTC0
instruction (Figure C-16).

mtc0 $5, EPC F D E M W

nop F D E M W

eret F D E M W

nop F D E M W

EPC Update

Figure C-16 MTC0 Instruction Followed by ERET Instruction

 TX49/H2 Architecture

C-11

C.1.4.3 DERET Instruction
The DERET instruction has a branch delay slot, and the debug exception mode is

effective till the delay slot instruction3. The instruction in the delay slot of DERET
must be NOP instruction. Single step exception is disabled till the instruction to
which DERET returns the control.

mtc0 $5, DEPC F D E M W

nop F D E M W

deret F D E M W

nop F D E M W

DEPC Update

Figure C-17 MTC0 Instruction Followed by DERET Instruction

3 i.e. DM bit stays one (1) and interrupts and exceptions stay disabled.

 TX49/H2 Architecture

C-12

C.1.5 Control Bits Change in CP0 Registers by MTC0 Instruction

The following sections describe the timings when the control bits change by the MTC0
instruction become effective.

C.1.5.1 Status Register
CU Bits: Because the co-processor instructions refer the CU bit in the D stage, if

either of the two following instructions of the MTC0 instruction is the co-
processor instruction, then its result is undefined because the CU bit is
undefined (Figure C-18).

mtc0 $5, STATUS F D E M W

nop F D E M W

nop F D E M W

copz F D E M W

CU Bit Update

CU Bit Read

Figure C-18 Hazard regarding the CU Bits

Note that even if the CU bit is changed by the MTC0 instruction during the co-
processor bus cycles of the preceding co-processor instruction, this gives no effect on
the co-processor instruction currently being executed.

RE Bit: Because the load/store instructions refer the RE bit in the E stage, the
change becomes effective at the second instruction after the MTC0
instruction. The result of the load/store instructions immediately after
the MTC0 instruction is undefined (Figure C-19).

mtc0 $5, STATUS F D E M W

nop F D E M W

Iw F D E M W

RE Bit Update

RE Bit Read

Figure C-19 Hazard regarding the RE Bits

Note that even if the RE bit is changed by the MTC0 instruction during the bus
cycles of the preceding load/store instruction, this gives no effect on the load/store
instruction currently being executed.

 TX49/H2 Architecture

C-13

BEV Bit: For the exceptions that occur in the E stage, such as, the address error
(AdEL) or the TLB miss (TLBL) exceptions which occurs in the
instruction fetch stage, the exception vector base address designated by
the changed BEV becomes effective at the second instruction after the
MTC0 instruction. If these exceptions occur in the instruction
immediately after the MTC0 instruction, the referred value of the BEV bit
is undefined4 (Figure C-20).

mtc0 $5, STATUS F D E M W

nop F D E M W

Iw F D E XXXX

BEV Bit Update

E Stage Exception Occurs

Figure C-20 Hazard regarding the BEV Bits (1)

For the exceptions that occur in the M stage, such as, IBE, DBE, NmI, CpU, Ov,
Sys, Bp, RI, AdEL (data), TLBL (data), and TLBS, Mod, and Int, the exception vector
base address designated by the changed BEV becomes effective at the instruction
immediately after the MTC0 instruction (Figure C-21).

mtc0 $5, STATUS F D E M W

Iw F D E M XXXX

BEV Bit Update

M Stage Exception Occurs

Figure C-21 Hazard regarding the BEV Bits (2)

Note that because the interrupts and the Bus Error exception occurs
asynchronously with the instruction execution, the BEV bit value for them is the
value which is hold in the BEV bit when they occurs.

IntMask Bits and IE Bit:
When the MTC0 instruction enables the interrupts by changing these bit,
then the corresponding interrupts become enabled at the second
instruction after the MTC0 instruction5 (Figure C-22).

On the other hand, when the MTC0 instruction disables the interrupts, the
corresponding interrupts become disabled at the instruction immediately after the
MTC0 instruction (Figure C-23).

FR Bit: Because the FR bit is changed in the M stage of the MTC0 instruction,
new FR bit becomes effective at the third instruction after the MTC0
instruction (Figure C-24).

4 The new exception vector base address may be effective because of pipeline stall.
5 They may become enable at the instruction immediately after the MTC0 instruction because of
pipeline stall.

 TX49/H2 Architecture

C-14

mtc0 $5, STATUS F D E M W

nop F D E M W

Iw (Interrupt Enabled) F D E M W

IntMask/IE Update
(Interrupt Enable)

Interrupt Occurs

Figure C-22 Hazard regarding the IntMask Bits and IE Bit (1)

mtc0 $5, STATUS F D E M W

Iw (Interrupt Disabled) F D E M W

IntMask/IE Update
(Interrupt Disable)

Figure C-23 Hazard regarding the IntMask Bits and IE Bit (2)

mtc0 $5, STATUS F D E M W

nop F D E M W

nop F D E M W

dmtc1 F D E M W

FR Bit Update

Reference FR Read

Figure C-24 Hazard regarding the FR Bit

 TX49/H2 Architecture

C-15

EXL, ERL, KX, SX, UX, KSU Bit:
The modification of these bits become effective at the forth instruction
after the MTC0 instruction. On the other hand, new addressing mode for
a load/store instruction which is accessing the address in
Kernel/Supervisor space or accessing in 64-bit addressing is effective at
the second instruction after the MTC0 instruction. If either of the two
instructions after the MTC0 instruction is co-processor instruction, result
of the instruction is undefined (Figure C-25).

mtc0 $5, STATUS F D E M W

nop F D E M W

Iw F D E M W

cpz F D E M W

sd F D E M W

Update

MIPS-III instruction

64-bit addressing
Kernel or
Supervisor mode

Figure C-25 EXL, ERL, KX, SX, UX, KSU Bit

C.1.5.2 Config Register
ICE# Bit: The MTC0 instruction may change the ICE# bit during the instruction

cache streaming. In this case, the old ICE# bit are effective for the
instructions during the streaming (Figure C-26).

mtc0 $5, Config ; update ICE# bit
nop
beq $0, $0, L1 ; stop instruction streaming
nop

L1: Iw $2, 0 ($0) ; new ICE# bit is effective

Figure C-26 ICE# Bit update

DCE# Bit: The changed DCE# becomes effective at the second instruction after the
MTC0 instruction. The DCE# bit is undefined at the instruction
immediately after the MTC0 instruction. Note that the MTC0 instruction
may change the DCE# bit during the data cache refill. In this case, the
hardware interlock waits updating the DCE# bit till the data cache refill
finishes.

K0 Bit: The modification of these bits becomes effective at the forth instruction
after the MTC0 instruction, the result of the instruction in Kseg0 address
space is undefined if they executed as first, second or third instruction
after the MTC0 instruction. On the other hand, the modification of these
bits are effective at the third instruction after MTC0 instruction. New
addressing mode for a load/store instruction accessing the Kseg0 address
space is undefined if the instruction executed as first or second instruction
after MTC0 instruction.

 TX49/H2 Architecture

C-16

C.2 Pipeline Behavior on Cache Miss

This section describes the pipeline behavior on cache miss.

C.2.1 Instruction Cache Miss

Instruction cache miss is detected in F stage and it is immediately followed by a cache
refill cycle (Figure C-27).

GRD

GDIN[31:0]

addu $5, $26, $7 F D E M W

addu $8, $7, $6 F D E M W

Iw $2, 0 ($1) F D E M W

addu $9, $8, $5 F DS DS DS DS DS D E M W

subu $5, $3, $7 F D E M W

addu subu

Inst. Cache Miss

Instruction Cache Refill

Figure C-27 Streaming on Instruction Cache Refill Cycle in 32-bit GBus mode

On cache miss, the fetched instructions are immediately decoded and executed before
completion of refill cycle so that the pipeline resumes the execution of instruction stream
as shown in Figure C-27. This is so called streaming6 and its refill cycle is called stream
cycle.

When the branch or jump instruction is executed during the stream cycle, streaming
will be terminated which means refill cycle will completed but the fetched instructions
after the branch delay slot won't be executed. The pipeline will stall until the instruction
at the branch or jump target is fetched. (Figure C-28).

6 No streaming in 64-bit GBus mode with 1:1 of GBus clock rate. TX49 executes one instruction per
clock cycle even if two instructions are fetched in one cycle. In this case, fetched instruction won't be
executed until the refill cycle completes.

 TX49/H2 Architecture

C-17

GRD

GDIN[31:0]

addu $5, $26, $7 F DS DS DS DS DS D E M W

subu $9, $8, $5 F D E M W

jr $25 F D E M W

lw $2, 0 ($1) F D E M W

lw $3, 0 ($5) (target Instruction) F D E M W

addu subu

Instruction Cache Refill

Inst. Cache Miss

jr Iw

Jump

Figure C-28 Branch/Jump Instruction during Stream Cycle in GBus 32-bit Mode

C.2.2 Data Cache Miss

The data cache miss is detected in the M stage of load instruction and it is immediately
followed by a cache refill cycle. Non-blocking load mechanism implemented in TX49 data
cache allows the following instruction stream to be executed without waiting for the
completion of data cache refill if there is no data dependancy between the load and the
following instructions.

The pipeline will stall at E-stage of the instruction which use the refilled data as its
source until the data is loaded. (Figure C-29).

Iw $5, 0 ($26) F D E M – – – FX W

RD RD RD

addu $8, $7, $6 F D E M W

ori $9, $0, 0x1f F D E M W

addu $9, $8, $5 F D ES ES ES E M W

Figure C-29 Pipeline Interlock by Cache Miss

The pipeline also interlocks when a load/store instruction is issued during the data
cache refill cycle because of the resource (i.e. data cache) conflict (Figure C-30).

 TX49/H2 Architecture

C-18

Iw $5, 0 ($26) F D E M – – – FX W

RD RD RD

Iw $7, 0 ($25) F D E MS MS MS MS M W

ori $9, $0, 0x1f F D ES ES ES ES E M W

addu $9, $8, $5 F DS DS DS DS D E M W

Reference FR Read

resource conflict

Figure C-30 Load Instruction during the Data Cache Refill Cycle

It is possible that the conflict at W-stage occurs between load instruction and one of the
following instructions if the load instruction causes cache refill cycle. This situation is
shown in Figure C-31.

In this case, W-stage of load instruction takes precedence resulting in one cycle stall at
M-stage of the addu instruction.

Iw $5, 0 ($26) F D E M – – – FX W

RD RD RD

addu $4, $3, $7 F D E M W

ori $9, $0, 0x1f F D E M W

addu $9, $8, $7 F D E M W

addu $7, $6, $8 F D E MS M W

W stage Resource Conflict

Data Cache Miss

Figure C-31 W stage Pipeline Register Conflict

If the instruction fetch cycle is requested during the data cache refill cycle, the data
cache refill completes first followed by the instruction fetch cycle (Figure C-32).

Iw $5, 0 ($26) F D E M – – – M W

RD RD RD

addu $7, $6, $8 F D E M W

addu $4, $3, $7 F D E M W

ori $9, $0, 0x1f F D E M W

addu $9, $8, $5 F DS DS DS DS DS DS DS D E M W

addu $7, $6, $5 F D E M WInst. Cache Miss

Data Cache Miss

Figure C-32 Instruction Cache Miss during the Data Cache Refill Cycle

 TX49/H2 Architecture

C-19

C.3 Pipeline Behavior in Uncached Area

The pipeline behavior regarding the memory access to an uncached area is similar to that of
refill cycle sequence caused by the cache miss.

C.3.1 Data Read from Uncached Area

F D E M – – – – FX W
Iw $5, 0 ($26)

RD RD RD RD

addu $8, $7, $6 F D E M W

ori $9, $0, 0x1f F D E M W

addu $9, $8, $5 F D ES ES ES ES E M W

Figure C-33 Data Read from Uncached Area

C.3.2 Instruction Fetch from Uncached Area

addu $5, $3, $3 F DS DS DS DS DS D E M W

Iw $2, 0 ($1) F DS D E M W

ori $9, $0, 0x1f F DS D E M W

addu $8, $9, $8 F DS D E M W

Figure C-34 Instruction Fetch from Uncached Area

C.3.3 Data Write to Uncached Area

F D E M W
sw $5, 0 ($26)

WR

addu $8, $7, $6 F D E M W

ori $9, $0, 0x1f F D E M W

addu $9, $8, $5 F D E M W

Write to Write Buffer

Figure C-35 Data Write to Uncached Area

 TX49/H2 Architecture

C-20

C.4 Timings on the Exception Handling

This section describes the detail pipeline behavior on exception. When an exception takes
place, the instruction on which the exception occurs is aborted. All instructions immediately
after that instruction are also aborted and the processor passes the control to the exception
handler.

The exceptions normally occur in the M stage, but some of the exceptions occur in the E
stage. The exceptions which occur in the E stage are:

• Debug Single Step (DSS)

• Debug Instruction Break (DIB)

• Address Error on Instruction Fetch (AdEL)

• TLB Refill/Invalid on Instruction Fetch (TLBL)

Note that the Reset/Soft Reset Exceptions occur in any stage.

C.4.1 Basic Pipeline Behavior When Exceptions Occur

The following Figure illustrates the pipeline behavior when an exception occurs.

Iw $5, 0 ($26) F D E M W

addu $7, $6, $8 F D E M Aborted

addu $4, $3, $7 F D E Aborted

ori $9, $0, 0 × 1f F D Aborted

addu $9, $8, $5 F Aborted

addu $7, $6, $5 F D E M W

Exception Detected

Exception Handler

(a) Exception Detected in the M Stage

Iw $5, 0 ($26) F D E M W

addu $4, $3, $7 F D E Aborted

ori $9, $0, 0x1f F D Aborted

addu $9, $8, $5 F Aborted

addu $7, $6, $5 F D E M W

Exception Detected

Exception Handler

(b) Exception Detected in the E Stage

Figure C-36 Pipeline Behavior in Case of Exception

 TX49/H2 Architecture

C-21

C.4.2 Exceptions during the Execution of Multi-cycle Instructions

As described in the section entitle Multiply, Multiply/Add and Division Instructions,
multi-cycle instructions which do not have a destination register file, such as DIV, and the
following instructions will be executed in parallel if they do not have data dependency.

If an exception takes place at the instruction being executed in parallel with this type of
multi-cycle instructions, the preceding multi-cycle instruction is completed while the
instructions after the exception are aborted and the control is passed to the exception
handler.

F D E M W

div $8, $9 V1 V 2 V 3 V 4 V 5 V 6 v7 ….. V35 V36

addu $7, $6, $5 F D E M Aborted

addu $4, $3, $7 F D E Aborted

ori $9, $0, 0x1f F D Aborted

addu $9, $8, $5 F Aborted

addu $7, $6, $5 F D E M W

Exception Detected

Exception Handler

Figure C-37 Exception during the Execution of Division Instruction

C.4.3 Exceptions during the Data Cache Refill Cycle

When one of the exceptions occurs at the instruction which is being executed in parallel
with data cache refill, the data cache refill cycle is completed while the instructions after
the exception are aborted and the control is passed to the exception handler.

F D E M – – – FX W

Iw $3, 0 ($1) RD RD RD

addu $7, $6, $5 F D E M Aborted

addu $4, $3, $7 F D E Aborted

ori $9, $0, 0x1f F D Aborted

addu $9, $8, $5 F Aborted

addu $7, $6, $5 F D E M W

Exception Detected

Exception Handler

Figure C-38 Exceptions during the Data Cache Refill Cycle (1)

 TX49/H2 Architecture

C-22

However, when one of the fatal exceptions, such as Bus Error or Reset occurs, the refill
cycle is also aborted and the control is passed to the exception handler.

F D E M – Aborted

Iw $3, 0 ($1) RD Aborted

addu $7, $6, $5 F D E M Aborted

addu $4, $3, $7 F D E Aborted

ori $9, $0, 0x1f F D Aborted

addu $9, $8, $5 F Aborted

addu $7, $6, $5 F D E M W

Fatal Exception Detected

Exception Handler

Figure C-39 Exception during Data Cache Refill Cycle (2)

 TX49/H2 Architecture

D-1

Appendix D: G-Bus Overview

D.1 G-Bus Operation

The G-Bus has a 36-bit address bus and a 64-bit data bus. Byte and halfword transfers can
occur in any byte lane, depending on how GBE[7:0]* are driven.

The G-Bus speed can be divided by 2, 2.5, 3 or 4 relative to the CPU full speed. Selection of
which G-Bus speed to use is determined by the value of GCRATE[1:0] while GCOLDRESET is
asserted. Correct operation is not guaranteed if GCRATE[1:0] changes while the TX49 is
running.

The TX49 supports four different types of bus transactions: single-read, burst-read, single-
write and burst-write. When a bus transaction starts, GBSTART* is asserted for one
GBUSCLK cycle, regardless of the type of the transaction. Peripheral logic must sample
GBSTART* to recognize the beginning of a bus cycle. It should be noted that when multiple
read or write transactions occur back-to-back, GRD* or GWR* remains asserted until the last
transaction is completed; therefore, GRD* and GWR* can not be used to detect the beginning
of a bus cycle.

During a read operation, the TX49 samples GACK* with the rising edge of GBUSCLK.
When it is detected as asserted, the TX49 captures the data on GDTM at the next rising edge
of GBUSCLK. If the bus transaction is a burst-read, the TX49 also automatically increments
the address value.

During a write operation, the TX49 samples GACK* with the rising edge of GBUSCLK.
When it is detected as asserted during a single-write, the TX49 terminates the current bus
transaction at the next rising edge of GBUSCLK. If the bus transaction is a burst-write, the
TX49 goes ahead with the next write, automatically incrementing the address value.

GLAST* indicates the completion of a bus cycle. Peripheral logic must sample GLAST* to
terminate a bus transaction.

D.2 Types of G-Bus Arbitration
One important feature of the TX49 is its enhanced bus arbitration flexibility. This section

introduces two types of bus arbitration: Snoop & Transfer (ST) concurrency and Execute &
Transfer (ET) concurrency. ST concurrency causes the TX49 to stall the processor pipeline
while allowing the internal data cache to be snooped during DMA transfers. In contrast, ET
concurrency allows the processor core to continue execution out of the internal cache during
external bus mastership; ET concurrency does not allow data cache snooping.

D.2.1 Snoop & Transfer (ST) Concurrency

In systems in which main memory is accessed by DMA, it must be ensured that the
internal data cache of the TX49 always has the most recent data and is not in possession
of stale data. In other words, if the data in main memory has been changed by DMA, the
matching cache entries in the TX49 must be marked as "modified" (i.e., invalidated). ST
concurrency allows the TX49 to "snoop" DMA’s access to main memory and check for a
matching data cache entry. Figure D-1 illustrates this feature. During an ST concurrency
operation, the TX49 stalls the processor pipeline.

An alternate bus master asserts either GHPSREQ* or GSREQ* to request bus
mastership for an ST concurrency operation. Once GHPSREQ* or GSREQ* is detected,
the TX49 will flush the internal write buffer before granting the bus to the requesting
master; GHPSGNT* or GSGNT* is asserted to indicate that the bus has been granted.

 TX49/H2 Architecture

D-2

While GHPSGNT* or GSGNT* is asserted, the TX49 continually samples GSNOOP* with
the rising edge of GBUSCLK. When GSNOOP* is recognized as asserted, the TX49
captures the address on GATM[35:5] and compares it to the addresses of all data items
held in the data cache. If the snoop address hits in the data cache, the cache entry is
invalidated. GSNOOP* is valid only when either GHPSGNT* or GSGNT* is asserted.

The internal data cache of the TX49 can employ either the write-through or write-back
policy. The write-back data cache does not provide support for snooping. When the write-
back option is selected, GHPSREQ* and GSREQ* can not be used.

Figure D-1 ST Concurrency

D.2.2 Execute & Transfer (ET) Concurrency

Figure D-2 illustrates ET concurrency. Whereas ST concurrency causes the TX49 to
stall the processor pipeline, ET concurrency allows the processor to continue execution out
of the internal cache during external bus mastership. However, it does stall when there is
a need for a cache refill. Also, if the write buffer is full, additional stores will stall until
there is room for them in the write buffer.

ET concurrency is recommended for the following cases:

• when the internal data cache is programmed for write-back mode

• when performing DMA transfers to an uncached address space even if the internal
data cache is programmed for write-through mode

An alternate bus master asserts either GHPGREQ* or GREQ* to request bus
mastership for an ET concurrency operation. Once GHPGREQ* is detected and the bus is
free, the TX49 will grant the bus to the requesting master. GHPGGNT* or GREQ* is
asserted to indicate that the bus has been granted to the master. If the bus is busy, the
TX49 will relinquish the bus after it completes the current bus cycle. GHPGREQ* and
GREQ* are sampled with the rising edge of GBUSCLK.

G-Bus

External Bus

TX49

WBU, etc.

Bus Master

External Device
Interface

TX49
Processor

Core

 TX49/H2 Architecture

D-3

Figure D-2 ET Concurrency

Table D-1 summarizes the differences between ST and ET concurrency.

Table D-1 ST Concurrency vs. ET Concurrency

ST Concurrency ET Concurrency
Handshake Signals Bus request signal: GHPSREQ*

Bus grant signal: GHPSGNT*
Bus request signal: GSREQ*
Bus grant signal: GSGNT*

Bus request signal: GHPGREQ*
Bus grant signal: GHPGGNT*
Bus request signal: GREQ*
Bus grant signal: GGNT*

Data Cache Snooping Accepted by assertion of GSNOOP*
(Not supported in write-back mode)

Not Supported

Stores to the Write Buffer Disabled Enabled
Usage Example When an external bus master

performs store operations to a
memory space mapped to the data
cache (i.e., When data cache
snooping is necessary)

• When an external bus master
transfers data over the G-Bus
without performing a snoop
operation.

• When the data cache employs the
write-back policy

Maximum Bus Control
(Request-to-Grant)
Latency

Remaining current bus cycle
+ write buffer flushing*
+ dta read bus cycle already issued internally
+ instruction fetch bus cycle already issued internally

* During an ET concurrency operation, the write buffer is flushed only when the write buffer
contains uncached store data which has not yet been written to memory and the TX49 issues
an uncached read request to the target address of one of the write buffer entries.

G-Bus

External Bus

TX49

WBU, etc.

Bus Master

External Device
Interface

TX49
Processor

Core

 TX49/H2 Architecture

D-4

 TX49/H2 Architecture

E-1

Appendix E: Differences From TX4955A,TX4300 and TX4600

Item TX4955A TX4300 TX4600
Datapath 64 64 64
ISA MIPS I, II, III MIPS I, II,III MIPS I, II, III

+MADD, +Debug
+PREF

Pipeline 5 5 5
MMU TLB TLB TLB

JointTLB 48 double 32 double 48 double
I-TLB 2 entry 2 entry 2 entry
D-TLB 4 entry No 4 entry

Page Size 4 K-16 MB 4 K-16 MB 4 K-16 MB
Shutdown No-TS Yes No-TS
V.A. Size 40 40 40
P.A. Size 36 32 36
I-cache

Size 32 KB 16 KB 16 KB
Associate. 4-way Dir.-map 2-way
Lock Yes No No
Snoop No No No
Index V V V
Tag P P P
Line 32 B 32 B 32 B
Parity No No Yes

D-cache
Size 32 KB 8 KB 16 KB
Associate. 4-way Dir.-map 2-way
Lock Yes No No

Write Policy W.-back/-through W.-back W.-back/-through
Snoop No No No
Index V V V
Tag P P P
Line 32 B 16 B 32 B
Parity No No Yes

 TX49/H2 Architecture

E-2

Item TX4955A TX4300 TX4600
WriteBuffer 4A/D pairs 4A/D pairs 4A/D pairs
FPU FPU Hard Shared w/ IU FPU Hard
(CP1) Shared w/

I-mul/div
Single Single Single
Double Double Double

Debug Support Unit Yes No No
MPU SysAD SysAD SysAD
Bus I/F 32-bit 32-bit 64-bit

A/D multiplexed A/D multiplexed A/D multiplexed
Sys.Clock Ratio:

1:1 No No No
2:1 Yes Yes Yes
2.5:1 Yes No No
3:1 Yes Yes Yes
4:1 Yes No Yes
5:1 No No Yes
6:1 No No Yes
7:1 No No Yes
8:1 No No Yes

JTAG Yes Yes(No func.) No
Power Sup. Internal: 1.5 V

External: 3.3 V
3.3 V 3.3 V

Power down -WAIT Inst. -Status. Reg. -WAIT Inst.
Mode (Halt/Doze) (1/4 PClock) (Stand-by)

Package PQFP-160 PQFP-120 PGA-179
HSQFP-208

