White LED Step-Up Converter with Built-In Schottky in ThinSOT

May 2003

feATURES

- Inherently Matched LED Current
- Drives Up to Six LEDs from a 3.6V Supply
- No External Schottky Diode Required
- Automatic Soft-Start
- Open LED Protection
- High Efficiency: 81\% Typical
- Requires Only $0.22 \mu \mathrm{~F}$ Output Capacitor
- Low Profile (1mm) SOT-23 Packaging

APPLICATIONS

- Cellular Phones
- PDAs, Handheld Computers
- Digital Cameras
- MP3 Players
- GPS Receivers

DESCRIPTION

The $\mathrm{LT}^{\circledR} 3465$ is a step-up DC/DC converter designed to drive up to six LEDs in series from a Li-Ion cell. Series connection of the LEDs provides identical LED currents and eliminates the need for ballast resistors. This device integrates the Schottky diode required externally on competing devices. Additional features include output voltage limiting when LEDs are disconnected, one-pin shutdown and dimming control, and internal soft-start.

The LT3465 switches at 1.2 MHz , allowing the use of tiny external components. Constant frequency switching results in low input noise and a small output capacitor. Just $0.22 \mu \mathrm{~F}$ is required for $3-, 4-, 5$ - or 6-LED applications.

The LT3465 is available in a low profile (1mm) 6-lead SOT-23 (ThinSOT ${ }^{\text {TM }}$) package.

[^0]
TYPICAL APPLICATION

Figure 1. Li-Ion Powered Driver for Four White LEDs

Conversion Efficiency

ABSOLUTE MAXImUM RATINGS(Note 1)
Input Voltage (V_{IN}) 16 V
SW Voltage 36V
FB Voltage 2 V
CTRL Voltage 10 V
Operating Temperature Range (Note 2) .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Maximum Junction Temperature $125^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec) $300^{\circ} \mathrm{C}$

PACKAGE/ORDER Information

Consult LTC Marketing for parts specified with wider operating temperature ranges.

ELECTRICAL CHARACTERISTICS
The - denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $T_{A}=25^{\circ} \mathrm{C}$. $V_{I N}=3 \mathrm{~V}, \mathrm{~V}_{\text {CTRL }}=3 \mathrm{~V}$, unless otherwise noted.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Minimum Operating Voltage			2.7			V
Maximum Operating Voltage					16	V
Feedback Voltage	$0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$		188	200	212	mV
FB Pin Bias Current			10	35	100	nA
Supply Current	Not Switching $\mathrm{CTRL}=0 \mathrm{~V}$		$\begin{aligned} & 1.9 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	mA $\mu \mathrm{A}$
Switching Frequency			0.8	1.2	1.6	MHz
Maximum Duty Cycle		\bullet	90	93		\%
Switch Current Limit		\bullet	225	340		mA
Switch V CESAT	$\mathrm{I}_{\text {SW }}=250 \mathrm{~mA}$			300		mV
Switch Leakage Current	$\mathrm{V}_{\text {SW }}=5 \mathrm{~V}$			0.01	5	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CTRL }}$ for Full LED Current			1.8			V
$\mathrm{V}_{\text {CTRL }}$ to Shut Down Chip					50	mV
CTRL Pin Bias Current	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \end{aligned}$		48 40 60	$\begin{aligned} & \hline 60 \\ & 50 \\ & 75 \\ & \hline \end{aligned}$	$\begin{aligned} & 72 \\ & 60 \\ & 90 \\ & \hline \end{aligned}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$ $\mu \mathrm{A}$
Soft-Start Time				600		$\mu \mathrm{S}$
Schottky Forword Drop	$\mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}$			0.7		V
Schottky Leakage Current	$\mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$				4	$\mu \mathrm{A}$

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: The LT3465E is guaranteed to meet performance specifications from $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation with statistical process controls.

TYPICAL PGRFORMANCE CHARACTERISTICS

TYPICAL PERFORMANCG CHARACTERISTICS

PIn functions

$\mathrm{V}_{\text {OUT }}$ (Pin 1): Output Pin. Connect to output capacitor and LEDs. Minimize trace between this pin and output capacitor to reduce EMI.

GND (Pin 2): Ground Pin. Connect directly to local ground plane.
FB (Pin 3): Feedback Pin. Reference voltage is 200 mV . Connect LEDs and a resistor at this pin. LED current is determined by the resistance and CTRL pin voltage:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{LED}} \approx \frac{200 \mathrm{mV}}{\mathrm{R}_{\mathrm{FB}}} \text { When } \mathrm{V}_{\mathrm{CTRL}}>1.5 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{LED}} \approx \frac{\mathrm{~V}_{\mathrm{CTRL}}}{5 \cdot \mathrm{R}_{\mathrm{FB}}} \text { When } \mathrm{V}_{\mathrm{CTRL}}<1 \mathrm{~V}
\end{aligned}
$$

CTRL (Pin 4): Dimming Control and Shutdown Pin. Ground this pin to shut down the device. When $V_{\text {CTRL }}$ is greater than about 1.5V, full-scale LED current is generated. When $\mathrm{V}_{\text {CTRL }}$ is less than 1 V , LED current is reduced.
$\mathrm{V}_{\text {IN }}$ (Pin 5): Input Supply Pin. Must be locally bypassed with a $1 \mu \mathrm{~F}$ XR or X7R type ceramic capacitor.
SW (Pin 6): Switch Pin. Connect inductor here.

BLOCK DIAGRAM

Figure 2. LT3465 Block Diagram

APPLICATIONS InFORMATION

Operation

The LT3465 uses a constant frequency, current mode control scheme to provide excellent line and load regulation. Operation can be best understood by referring to the block diagram in Figure 2. At the start of each oscillator cycle, the SR latch is set, which turns on the power switch Q1. A voltage proportional to the switch current is added to a stabilizing ramp and the resulting sum is fed into the positive terminal of the PWM comparator A2. When this voltage exceeds the level at the negative input of A2, the SR latch is reset turning off the power switch. The level at the negative input of A2 is set by the error amplifier A1, and is simply an amplified version of the difference between the feedback voltage and the reference voltage of 200 mV . In this manner, the error amplifier sets the correct peak current level to keep the output in regulation. If the error amplifier's output increases, more current is delivered to the output; if it decreases, less current is delivered. The CTRL pin voltage is used to adjust the reference voltage.

Minimum Output Current

The LT3465 can drive a 3 -LED string at 1.5 mA LED current without pulse skipping. As current is further reduced, the device will begin skipping pulses. This will result in some low frequency ripple, although the LED current remains regulated on an average basis down to zero. The photo in Figure 3 details circuit operation driving three white LEDs at a 1.5 mA load. Peak inductor current is less than 40 mA and the regulator operates in

Figure 3. Switching Waveforms

APPLICATIONS INFORMATION

discontinuous mode, meaning the inductor current reaches zero during the discharge phase. After the inductor current reaches zero, the SW pin exhibits ringing due to the LC tank circuit formed by the inductor in combination with switch and diode capacitance. This ringing is not harmful; far less spectral energy is contained in the ringing than in the switch transitions. The ringing can be damped by application of a 300Ω resistor across the inductor, although this will degrade efficiency.

Inductor Selection

A $22 \mu \mathrm{H}$ inductor is recommended for most LT3465 applications. Although small size and high efficiency are major concerns, the inductor should have low core losses at 1.2MHz and low DCR (copper wire resistance). Some inductors in this category with small size are listed in Table 1. The efficiency comparison of different inductors is shown in Figure 4.
Table 1. Recommended Inductors

PART NUMBER	DCR (Ω)	CURRENT RATING (mA)	MANUFACTURER
LQH32CN220	0.71	250	Murata $814-237-1431$ www.murata.com
ELJPC220KF	4.0	160	Panasonic $714-373-7334$ www.panasonic.com
CDRH3D16-220	0.53	350	Sumida $847-956-0666$ www.sumida.com
LB2012B220M	1.7	75	Taiyo Yuden $408-573-4150$ www.t-yuden.com
LEM2520-220	5.5	125	Taiyo Yuden $408-573-4150$ www.t-yuden.com

Capacitor Selection

The small size of ceramic capacitors makes them ideal for LT3465 applications. X5R and X7R types are recommended because they retain their capacitance over wider voltage and temperature ranges than other types such as

Figure 4. Efficiency Comparison of Different Inductors

Y5V or Z 5 U . A $1 \mu \mathrm{~F}$ input capacitor and a $0.22 \mu \mathrm{~F}$ output capacitor are sufficient for most LT3465 applications.
Table 2. Recommended Ceramic Capacitor Manufacturers

MANUFACTURER	PHONE	URL
Taiyo Yuden	$408-573-4150$	www.t-yuden.com
Murata	$814-237-1431$	www.murata.com
Kemet	$408-986-0424$	www.kemet.com

Soft-Start

The LT3465 has an internal soft-start circuit to limit the input current during circuit start-up. The circuit start-up waveforms are shown in Figure 5.

Figure 5. Start-Up Waveforms

APPLICATIONS InFORMATION

Inrush Current

The LT3465 has a built-in Schottky diode. When supply voltage is applied to the $\mathrm{V}_{\text {IN }}$ pin, the voltage difference between $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ generates inrush current flowing from input through the inductor and the Schottky diode to charge the output capacitor to $\mathrm{V}_{\text {IN }}$. The maximum current the Schottky diode in the LT3465 can sustain is 1A. The selection of inductor and capacitor value should ensure the peak of the inrush current to be below 1A. The peak inrush current can be calculated as follows:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{P}}=\frac{\mathrm{V}_{\mathbb{N}}-0.6}{\mathrm{~L} \cdot \omega} \cdot \exp \left[-\frac{\alpha}{\omega} \cdot \operatorname{tg}^{-1}\left(\frac{\omega}{\alpha}\right)\right] \cdot \sin \left[\operatorname{tg}^{-1} \cdot\left(\frac{\omega}{\alpha}\right)\right] \\
& \alpha=\frac{r+1.5}{2 \cdot L} \\
& \omega=\sqrt{\frac{1}{L \cdot C}-\frac{(r+1.5)^{2}}{4 \cdot L^{2}}}
\end{aligned}
$$

where L is the inductance, r is the resistance of the inductor and C is the output capacitance. For low DCR inductors, which is usually the case for this application, the peak inrush current can be simplified as follows:

$$
I_{P}=\frac{V_{I N}-0.6}{L \cdot \omega} \cdot \exp \left(-\frac{\alpha}{\omega} \cdot \frac{\pi}{2}\right)
$$

Table 3 gives inrush peak currents for some component selections.

Table 3. Inrush Peak Current

$\mathbf{V}_{\mathbf{I N}}(\mathbf{V})$	$\mathrm{r}(\Omega)$	$\mathrm{L}(\mu \mathrm{H})$	$\mathbf{C}(\mu \mathrm{F})$	$\mathrm{I}_{\mathbf{P}}(\mathbf{A})$
5	0.5	22	0.22	0.38
5	0.5	22	1	0.70
3.6	0.5	22	0.22	0.26
5	0.5	33	1	0.60

LED Current and Dimming Control

The LED current is controlled by the feedback resistor (R1 in Figure 1) and the feedback reference voltage.

$$
I_{L E D}=V_{F B} / R_{F B}
$$

The CTRL pin controls the feedback reference voltage as shown in the Typical Performance Characteristics. For CTRL higher than 1.8 V , the feedback reference is 200 mV , which results in full LED current. CTRL pin can be used as dimming control when CTRL voltage is between 200 mV to 1.5 V . In order to have accurate LED current, precision resistors are preferred (1% is recommended). The formula and table for R_{FB} selection are shown below.

$$
\begin{equation*}
R_{F B}=200 \mathrm{mV} / \mathrm{L}_{\text {LED-Full }} \tag{1}
\end{equation*}
$$

Table 4. R_{FB} Resistor Value Selection

FULL I $_{\text {LED }}(\mathbf{m A})$	R1 (Ω)
5	40.0
10	20.0
15	13.3
20	10.0

The filtered PWM signal can be considered as an adjustable DC voltage. It can be used to adjust the CTRL voltage source in dimming control. The circuit is shown in Figure 6. The corner frequency of R1 C1 should be lower than the freqency of the PWM signal. R1 needs to be much smaller than the internal impedance in the CTRL pin, which is $50 \mathrm{k} \Omega$.

Figure 6. Dimming Control Using a Filtered PWM Signal

APPLICATIONS IMFORMATION

Open-Circuit Protection

The LT3465 has internal open-circuit protection circuit. In the cases of output open circuit, when the LEDs are disconnected from the circuit or the LEDs fail, the $\mathrm{V}_{\text {OUT }}$ is clamped at 30 V . The LT3465 will then switch at a very low frequency to minimize the input current. VOUT and input current during output open circuit are shown in the Typical Performance Characteristics.

Board Layout Consideration

As with all switching regulators, careful attention must be paid to the PCB board layout and component placement. To maximize efficiency, switch rise and fall times are made as short as possible. To prevent electromagnetic interference (EMI) problems, proper layout of the high frequency switching path is essential. Place $C_{\text {OUt }}$ next to the $V_{\text {OUt }}$ pin.

Always use a ground plane under the switching regulator to minimize interplane coupling. In addition, the ground connection for the feedback resistor R1 should be tied directly to the GND pin and not shared with any other component, ensuring a clean, noise-free connection. Recommended component placement is shown in Figure 7.

Figure 7. Recommended Component Placement

TYPICAL APPLICATIONS

Li-Ion to Two White LEDs

C_{IN} : TAIYO YUDEN JMK107BJ105
COUT: AVX $0603 Z D 105$
L: MURATA LQH3C220

Li-Ion to Three White LEDs

CIn: TAIYO YUDEN JMK107BJ105
COUT: AVX 0603 YD224
L: MURATA LQH3C220

3465 TA02b

TYPICAL APPLICATIONS
Li-Ion to Five White LEDs

3465 TA03b

PACKAGE DESCRIPTION

S6 Package
6-Lead Plastic TSOT-23
(Reference LTC DWG \# 05-08-1636)

1. DIMENSIONS ARE IN MILLIMETERS
2. DRAWING NOT TO SCALE
3. DIMENSIONS ARE INCLUSIVE OF PLATING
4. DIMENSIONS ARE EXCLUSIVE OF MOLD FLASH AND METAL BURR
5. MOLD FLASH SHALL NOT EXCEED 0.254 mm
6. JEDEC PACKAGE REFERENCE IS MO-193

TYPICAL APPLICATION

Li-Ion to Six White LEDs

$\mathrm{C}_{\text {IN: }}$ TAIYO YUDEN JMK107BJ105
Cout: TDK 2012X7R1E474K
L: MURATA LQH32CN470

3465 TA04b

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LT1618	Constant Current, Constant Voltage, 1.4MHz, High Efficiency Boost Regulator	Up to 16 White LEDs, $\mathrm{V}_{\text {IN: }} 1.6 \mathrm{~V}$ to $18 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MAX) }}: 34 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}: 1.8 \mathrm{~mA}$, ISHDN: <1 $\mu \mathrm{A}, 10-L e a d$ MS
LT1932	Constant Current, 1.2MHz, High Efficiency White LED Boost Regulator	Up to 8 White LEDs, $\mathrm{V}_{\text {IN: }}$: 1 V to 10 V , $\mathrm{V}_{\text {OUT(max): }}$: 34 V , I_{Q} : 1.2 mA , Ishon: $<1 \mu \mathrm{~A}$, ThinSOT
LT1937	Constant Current, 1.2MHz, High Efficiency White LED Boost Regulator	Up to 4 White LEDs, $\mathrm{V}_{\text {IN: }}: 2.5 \mathrm{~V}$ to 10 V , $\mathrm{V}_{\text {OUT(MAX) }}: 34 \mathrm{~V}$, $\mathrm{I}_{\mathrm{Q}}: 1.9 \mathrm{~mA}$, ISHDN: <1 $\mu \mathrm{A}$, ThinSOT, SC70
LTC ${ }^{\text {® }} 3200-5$	Low Noise, 2MHz, Regulated Charge Pump White LED Driver	Up to 6 White LEDs, $\mathrm{V}_{\text {IN }}: 2.7 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}: 8 \mathrm{~mA}$, $\mathrm{I}_{\text {SHDN }}:<1 \mu \mathrm{~A}$, ThinSOT
LTC3200	Low Noise, 2MHz, Regulated Charge Pump White LED Driver	Up to 6 White LEDs, $\mathrm{V}_{\mathrm{IN}}: 2.7 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}: 8 \mathrm{~mA}, \mathrm{I}_{\text {SHDN }}:<1 \mu \mathrm{~A}$, 10-Lead MS
LTC3201	Low Noise, 1.7MHz, Regulated Charge Pump White LED Driver	Up to 6 White LEDs, $\mathrm{V}_{\text {IN }}$: 2.7 V to $4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}: 6.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{SHDN}}:<1 \mu \mathrm{~A}$, 10-Lead MS
LTC3202	Low Noise, 1.5MHz, Regulated Charge Pump White LED Driver	Up to 8 White LEDs, $\mathrm{V}_{\text {IN: }}: 2.7 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}: 5 \mathrm{~mA}, \mathrm{I}_{\text {ShdN }}:<1 \mu \mathrm{~A}$, 10-Lead MS
LTC3404	600 mA (Iout), 1.4MHz Synchronous Step-Down DC/DC Converter	$\begin{aligned} & 95 \% \text { Efficiency, } \mathrm{V}_{\text {IN }}: 2.7 \mathrm{~V} \text { to } 6 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN) }}: 0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}: 10 \mu \mathrm{~A}, \mathrm{I}_{\text {SHDN: }}:<1 \mu \mathrm{~A}, \\ & \text { MS8 } \end{aligned}$
$\begin{aligned} & \hline \text { LTC3405 } \\ & \text { LTC3405A } \end{aligned}$	300 mA (I ${ }_{\text {out }}$), 1.5MHz Synchronous Step-Down DC/DC Converters	95% Efficiency, $\mathrm{V}_{\text {IN: }}: 2.7 \mathrm{~V}$ to $6 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN) }}$: $0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}: 20 \mu \mathrm{~A}, \mathrm{I}_{\text {SHDN: }}:<1 \mu \mathrm{~A}$, ThinSOT
$\begin{aligned} & \hline \text { LTC3406 } \\ & \text { LTC3406B } \end{aligned}$	600mA (Iout), 1.5MHz Synchronous Step-Down DC/DC Converters	95% Efficiency, $\mathrm{V}_{\mathrm{IN}}: 2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN) }}: 0.6 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}: 20 \mu \mathrm{~A}$, $I_{\text {SHDN }}:<1 \mu \mathrm{~A}$, ThinSOT
LTC3412	2.5 A (10ut), 4MHz Synchronous Step-Down DC/DC Converter	95% Efficiency, $\mathrm{V}_{\text {IN: }}$: 2.5 V to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {out(MIN) }}$: $0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}: 60 \mu \mathrm{~A}$, ISHDN: <1 $\mu \mathrm{A}$, TSSOP16E
LTC3440	600 mA (Iout), 2MHz Synchronous Buck-Boost DC/DC Converter	95% Efficiency, $\mathrm{V}_{\mathrm{IN}}: 2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT(MIN) }}$: $2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}: 25 \mu \mathrm{~A}$, $I_{\text {SHDN }}:<1 \mu \mathrm{~A}, 10$-Lead MS

[^0]: OT, LTC and LT are registered trademarks of Linear Technology Corporation. ThinSOT is a trademark of Linear Technology Corporation.

