Current Transducer LB 500-S/SP1

 $I_{PN} = 500 \text{ A}$

For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		500 0 ± 750 R_{M min} R_{Mmax}		A A
	with ± 15 V	@ \pm 500 A _{max} @ \pm 750 A _{max}	5 5	33 15	$\Omega \Omega$
I _{sn}	Secondary nominal r.		200		mA
K _N	Conversion ratio		1 : 250	0	
V _c	Supply voltage (± 5 %	b)	± 15		V
I _c	Current consumption		20+I _s		mA
Ŭ,	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6 ¹⁾		kV

Accuracy - Dynamic performance data

x €₋	Accuracy @ I _{PN.} T _A = 25°C Linearity		± 0.5 < 0.1	% %
Ι _ο Ι _{οτ}	Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$ Thermal drift of I_o	+ 10°C + 50°C	Typ :	Max ± 0.500 mA ± 0.064 mA
t _, di/dt f	Response time ²⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB) Zero crossing distortion		< 1 > 50 DC 1 neglige	

General data

T _A T _S R _S m	Ambient operating temperature Ambient storage temperature Secondary coil resistance @ $T_A = 50^{\circ}C$ Mass Standards	+ 10 + 50 - 25 + 85 30 670 EN 50178	°C °C Ω g
	Standards	EN 50178	

Notes : 1) Between primary and secondary.

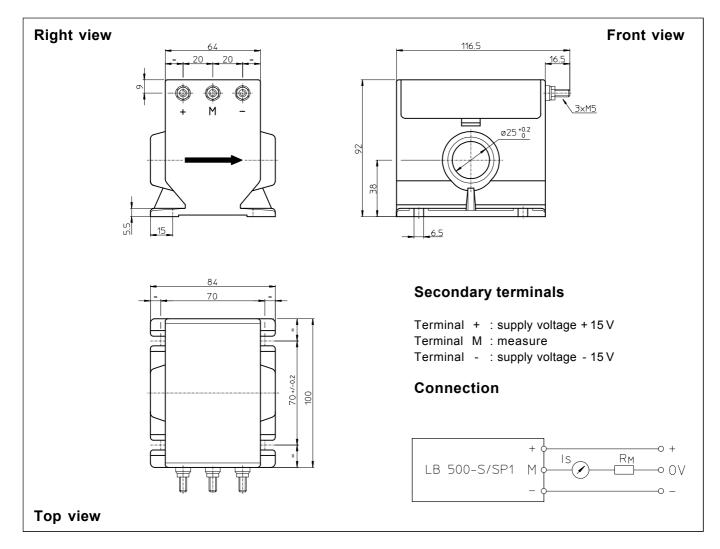
²⁾ With a di/dt of 100 A/µs

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- V_c = ± 15 (± 5 %) V
- K_N = 1 : 2500
- Low thermal offset drift with temperature
- Better zero crossing performance
- **T**_a = + 10°C .. + 50°C
- Shield between primary and secondary connected to V_c "-"


Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications
- HVDC transmisions.

Dimensions LB 500-S/SP1 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Primary through-hole
- Connection of secondary Fastening torque

±	0.5	mm	

4 slots \varnothing 6.5 mm \varnothing 25 mm

M5 threaded studs 2.2 Nm or 1.62 Lb. - Ft.

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 70°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.