TOSHIBA SHOR3D42

TOSHIBA HIGH SPEED THYRISTOR SILICON PLANAR TYPE

S H O R 3 D 4 2

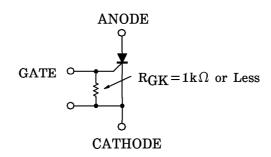
HIGH SPEED SWITCHING AND CONTROL APPLICATIONS

Repetitive Peak Off-State Voltage: VDRM=200V

Average On-State Current $: I_{T(AV)} = 300 mA$

Plastic Mold Type.

MAXIMUM RATINGS

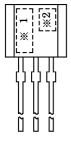

CHARACTERISTIC	SYMBOL	RATING	UNIT
Repetitive Peak Off-State Voltage $(R_{GK}=1k\Omega)$	V _{DRM}	200	v
Non-Repetitive Peak Off-State Voltage $(R_{GK}=1k\Omega)$	$V_{ m DSM}$	250	v
Average On-State Current (Half Sine Waveform Ta=30°C)	I _T (AV)	300	mA
R.M.S On-State Current	I _T (RMS)	450	mA
Peak One Cycle Surge On-State Current (Non-Repetitive)	I _{TSM}	7 (50Hz)	A
I ² t Limit Value	${ m I}^2{ m t}$	0.3	A^2s
Peak Gate Power Dissipation	P_{GM}	0.1	W
Average Gate Power Dissipation	P _G (AV)	0.01	W
Peak Forward Gate Voltage	v_{FGM}	3.5	V
Peak Reverse Gate Voltage	v_{RGM}	-7	V
Peak Forward Gate Current	I_{GM}	125	mA
Junction Temperature	$\mathrm{T_{j}}$	-40~125	°C
Storage Temperature Range	$\mathrm{T_{stg}}$	-40~125	°C

0.45 GATE 2. ANODE 3. CATHODE **JEDEC** TO-92 SC-43 **EIAJ TOSHIBA** 13-5A1A

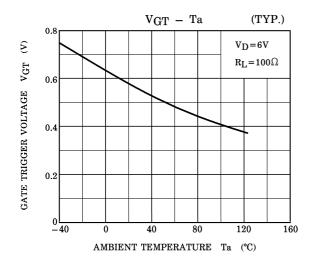
Unit in mm

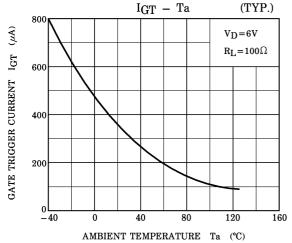
Weight: 0.2g

(Note) Should be used with gate resistance as follows.

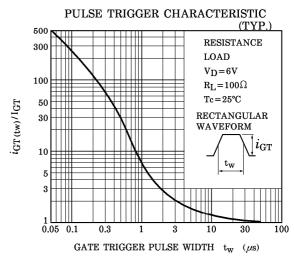

TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor ■ TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
 ● The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
 ● The information contained herein is subject to change without notice

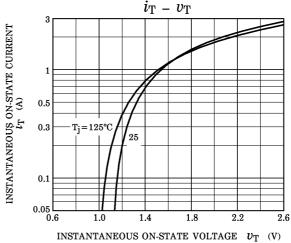
The information contained herein is subject to change without notice.


ELECTRICAL CHARACTERISTICS (Ta = 25°C)


CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	MAX.	UNIT
Repetitive Peak Off-State Current and Peak Reverse Current	${ m I}_{ m DRM}$	$T_j = 125$ °C, $V_{DRM} = Rated$ $R_{GK} = 1 k\Omega$	_	100	μ A
Peak On-State Voltage	$ m V_{TM}$	I _{TM} =2A	_	1.8	V
Gate Trigger Voltage	v_{GT}	$V_D = 6V, R_L = 100\Omega$	_	0.9	V
Gate Trigger Current	I_{GT}	$\frac{1}{1}$ VD=0V, $\frac{1}{1}$ L= $\frac{10022}{100}$	_	1.0	mA
Gate Non-Trigger Voltage	$v_{ m GD}$	V _D =Rated, T _c =110°C	0.3	_	V
Turn-On Time	t_{gt}	V_D =Rated, I_{TM} =4A I_G =10mA	_	2.0	μs
Turn-Off Time	t_{q}	V_D =20V, I_P =1A, R_{GK} =1k Ω	_	6.0	μs
Critical Rate of Rise of Off- State Voltage	dv / dt	V_D =Rated, R_{GK} =1k Ω Tc=110°C, Exponential Rise	15	_	V/μs
Holding Current	$I_{ m H}$	$R_L = 100\Omega, R_{GK} = 1k\Omega$	_	15	mA
Thermal Resistance	R _{th (j-c)}	Junction to Ambient		250	°C/W

MARKING




NUMBER	SYMBOL		MARK
%1	TYPE	SH0R3D42	H0R3D
※2		nth (Starting from) Alphabet A ar (Last Decimal Digit) of the Current Year)	Example 8A: January 1998 8B: February 1998 8L: December 1998

