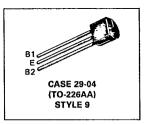

PN Unijunction Transistors Silicon Unijunction Transistors

... designed for pulse and timing circuits, sensing circuits, and thyristor trigger circuits. These devices feature:


- Low Peak Point Current 1 μA Typical
- ◆ Low Emitter Reverse Current 5 nA Typical
- Passivated Surface for Reliability and Uniformity
- One-Piece Injection-Molded Unibloc‡ Plastic Package for Economy and Reliability
- High n for greater bandwidth

PN UJTs

Boca Semicondcutor Corp. BSC

MAXIMUM RATINGS (TA = 25° unless otherwise noted.)

Rating	Symbol	Value	Unit mW	
RMS Power Dissipation, Note 1	PD	300		
RMS Emitter Current	le	50	mA	
Peak-Pulse Emitter Current, Note 2	le	1.5	Amp	
Emitter Reverse Voltage	V _{B2E}	. 30	Volts Volts	
Interbase Voltage, Note 3	· V _{B2B1}	35		
Operating Junction Temperature Range	TJ	-55 to +125	°C	
Storage Temperature Range	T _{stq}	-55 to +150	°C	

Notes: 1. Derate 3 mW/°C increase in ambient temperature.

2. Duty cycle < 1%, PRR = 10 PPS (see Figure 5).

3. Based upon power dissipation at $T_{\Delta} = 25^{\circ}C$.

http://www.bocasemi.com

MOTOROLA SC (DIODES/OPTO) 39E D 🖼 6367255 DD82656 9 🝱 MOTO

2N4870 • 2N4871

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted.)

T-37-21

Characteristic		Fig. No.	Symbol	Min	Тур	Max	Unit
Intrinsic Standoff Ratio, Note 1 (VB2B1 = 10 V)	2N4870 2N4871	4, 7	η	0.56 0.70	=	0.75 0.85	-
Interbase Resistance (VB2B1 = 3 V, IE = 0)		10, 11	R _{BB}	4	6	9.1	k ohms
Interbase Resistance Temperature Coeff (VB2B1 = 3 V, IE = 0, TA = -65 to		11	αRBB	0.10	_	0.90	%/°C
Emitter Saturation Voltage, Note 2 (VB2B1 = 10 V, IE = 50 mA)			V _{EB1(sat)}	_	2.5		Volts
Modulated Interbase Current (VB2B1 = 10 V, I _E = 50 mA)			IB2(mod)	_	15		mA
Emitter Reverse Current (VB2E = 30 V, IB1 = 0)		6	lEB2O	_	0.005	1	μА
Peak-Point Emitter Current (VB2B1 = 25 V)	-	8, 9	lp	-	1	5	μΑ
Valley-Point Current, Note 2 (V _{B2B1} = 20 V, R _{B2} = 100 ohms)	2N4870 2N4871	12, 13	ly	2 4	5 7		mA
Base-One Peak Pulse Voltage	2N4870 2N4871	3, 16	V _{OB1}	3 5	6 8		Volts

Notes: 1. η, Intrinsic standoff ratio, is defined in terms of the peak-point voltage, Vp, by means of the equation: Vp = η Vg281 + Vp, where Vp is about 0.49 volt at 25°C αι Ip = 10 μA and decreases with temperature at about 2.5 mV °C. The test circuit is shown in Figure 4. Components R1, C1, and the UJT form a relaxation oscillator; the remaining circuitry serves as a peak-voltage detector. The forward drop of Diode D1 compensates for Vp. To use, the "cal" button is pushed, and R3 is adjusted to make the current meter, M1, read full scale. When the "cal" button is released, the value of η is read directly from the meter, if full scale on the meter reads 1.

2. Use pulse techniques: PW ≈ 300 μs, duty cycle ≤ 2% to avoid internal heating, which may result in erroneous readings.

FIGURE 1 – UNIJUNCTION TRANSISTOR SYMBOL AND NOMENCLATURE

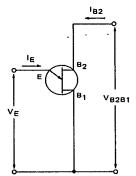
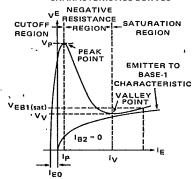
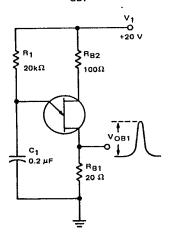



FIGURE 2 – STATIC EMITTER CHARACTERISTICS CURVES

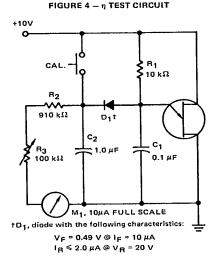
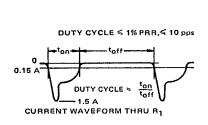
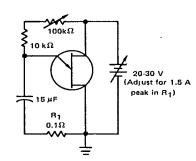


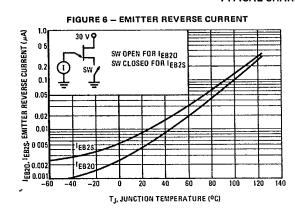
http://www.bocasemi.com

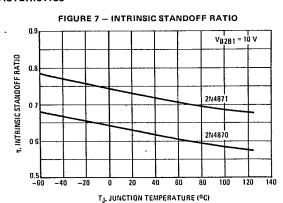
2N4870 ● 2N4871

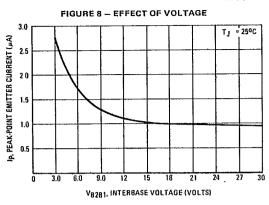
7-37-21

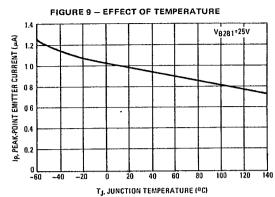
FIGURE 3 - VOB1 TEST CIRCUIT


FIGURE 5 - PRR TEST CIRCUIT AND WAVEFORM




TYPICAL CHARACTERISTICS



http://www.bocasemi.com

PEAK POINT CURRENT

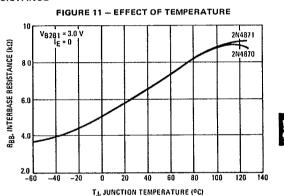
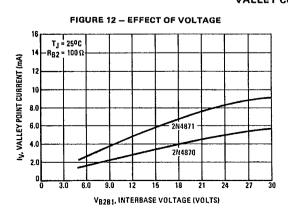
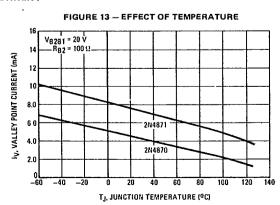

INTERBASE RESISTANCE

FIGURE 10 — EFFECT OF VOLTAGE

1.4 NORMALIZED © 3.0 V
T_J = 25°C
|_E = 0

1.1 | 1.2 | 1.

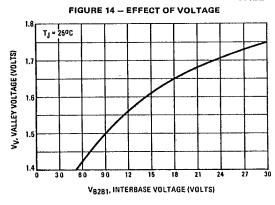

VB281. INTERBASE VOLTAGE (VOLTS)

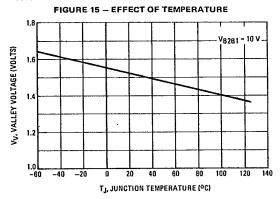


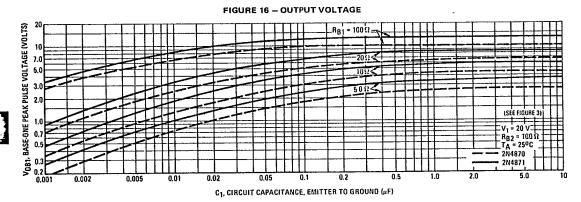
TYPICAL CHARACTERISTICS

http://www.bocasemi.com

VALLEY CURRENT






2N4870 • 2N4871

T-37-21

VALLEY VOLTAGE

8

http://www.bocasemi.com