
Octal Buffer/Line Driver with 3-State Outputs

The SN74LS541 is an octal buffer and line driver with the same functions as the LS241, but with pinouts on the opposite side of the package.

This device type is designed to be used as a memory address driver, clock driver and bus-oriented transmitter/receiver. This device is especially useful as output ports for the microprocessors, allowing ease of layout and greater PC board density.

- Hysteresis at Inputs to Improve Noise Margin
- PNP Inputs Reduce Loading
- 3-State Outputs Drive Bus Lines
- Inputs and Outputs Opposite Side of Package, Allowing Easier Interface to Microprocessors
- Input Clamp Diodes Limit High-Speed Termination Effects

LOGIC AND CONNECTION DIAGRAM DIP (TOP VIEW)

GUARANTEED OPERATING RANGES

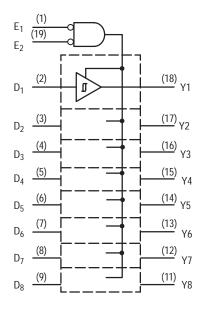
Symbol	Parameter	Min	Тур	Мах	Unit
V _{CC}	Supply Voltage	4.75	5.0	5.25	V
T _A	Operating Ambient Temperature Range	0	25	70	°C
I _{OH}	Output Current – High			-15	mA
I _{OL}	Output Current – Low			24	mA

ON Semiconductor

Formerly a Division of Motorola http://onsemi.com

> LOW POWER SCHOTTKY

PLASTIC N SUFFIX CASE 738



DW SUFFIX CASE 751D

ORDERING INFORMATION

Device	Package	Shipping	
SN74LS541N 16 Pin DIP		1440 Units/Box	
SN74LS541DW	16 Pin	2500/Tape & Reel	

BLOCK DIAGRAM

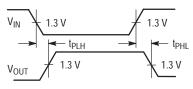
INPUTS			OUTPUTS		
E ₁	E ₂	D	LS540	LS541	
L	L	Н	L	Н	
Н	Х	Х	Z	Z	
Х	Н	Х	Z	Z	
L	L	L	Н	L	

L = LOW Voltage Level H = HIGH Voltage Level

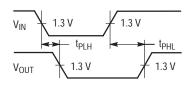
X = Immaterial

Z = High Impedance

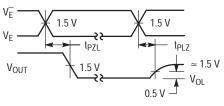
DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)


			Limits					
Symbol	Parameter	Min	Тур	Мах	Unit	Tes	t Conditions	
V _{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs		
V _{IL}	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs		
V _{IK}	Input Clamp Diode Voltage		-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} =$	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$	
M		2.4	3.4		V	$V_{CC} = MIN, I_{OH} = -3.0 \text{ mA}$		
V _{OH}	Output HIGH Voltage	2.0			V	V_{CC} = MIN, I_{OH} = MAX, V_{IL} = 0.5 V		
	Output LOW Voltage		0.25	0.4	V	I _{OL} = 12 mA		
V _{OL}			0.35	0.5	V	I _{OL} = 24 mA		
V _{T+} -V _{T-}	Hysteresis	0.2	0.4		V	V _{CC} = MIN		
I _{OZH}	Output Off Current HIGH			20	μΑ	V _{CC} = MAX, V _{OUT} = 2.7 V		
I _{OZL}	Output Off Current LOW			-20	μΑ	$V_{CC} = MAX, V_{OUT} = 0.4 V$		
				20	μΑ	$V_{CC} = MAX, V_{IN}$	= 2.7 V	
Iн	Input HIGH Current			0.1	mA	$V_{CC} = MAX, V_{IN} = 7.0 V$		
I _{IL}	Input LOW Current			-0.2	mA	$V_{CC} = MAX, V_{IN} = 0.4 V$		
I _{OS}	Short Circuit Current (Note 1)	-40		-225	mA	V _{CC} = MAX		
I _{CC}	Power Supply Current Total, Output HIGH			32	mA	V _{CC} = MAX		
	Total, Output LOW			52	mA			
	Total Output 3-State			55	mA			

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.


AC CHARACTERISTICS ($T_A = 25^{\circ}C$)

		Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
t _{PLH}	Propagation Delay,		12	15			
t _{PHL}	Data to Output		12	18	ns	V 50V	
t _{PZH}	Output Enable Time to HIGH Level		15	32	ns	$V_{CC} = 5.0 V$ $C_{L} = 45 \text{ pF}$ $R_{L} = 667 \Omega$	
t _{PZL}	Output Enable Time to LOW Level		20	38	ns		
t _{PHZ}	Output Disable Time to HIGH Level		10	18	ns	0.505	
t _{PLZ}	Output Disable Time to LOW Level		15	29	ns	С _L = 5.0 рF	


AC WAVEFORMS

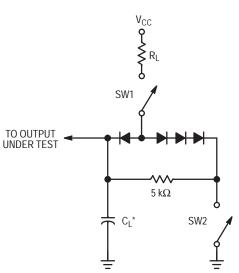
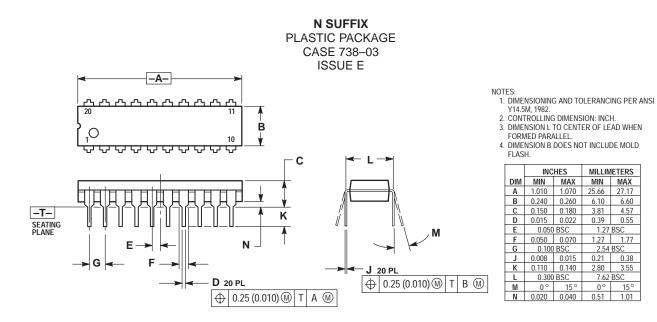
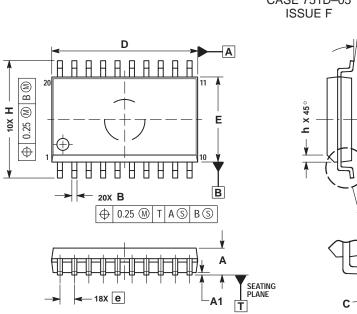



Figure 4.


SWITCH POSITIONS

SYMBOL	SW1	SW2
t _{PZH}	Open	Closed
t _{PZL}	Closed	Open
t _{PLZ}	Closed	Closed
t _{PHZ}	Closed	Closed


Figure 5.

PACKAGE DIMENSIONS

15°

PACKAGE DIMENSIONS

NOTES:
DIMENSIONS ARE IN MILLIMETERS.
INTERPRET DIMENSIONS AND TOLERANCES
PER ASME Y14.5M, 1994.
DIMENSIONS DA NO E DO NOT INCLUDE MOLD
PROTRUSION.
MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
DIMENSION B DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE PROTRUSION SHALL
BE 0.13 TOTAL IN EXCESS OF B DIMENSION AT
MAXIMUM MATERIAL CONDITION.
MILLIMETERS
DIM MIN MAX

A

	MILLIMETERS					
DIM	MIN	MAX				
Α	2.35	2.65				
A1	0.10	0.25				
В	0.35	0.49				
С	0.23	0.32				
D	12.65	12.95				
Е	7.40	7.60				
е	1.27 BSC					
Н	10.05	10.55				
h	0.25	0.75				
L	0.50	0.90				
θ	0 °	7 °				

http://onsemi.com

<u>Notes</u>

Notes

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and idistributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time) Email: ONlit–german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time) Email: ONlit@hibbertco.com ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5487–8345 Email: r14153@onsemi.com

Fax Response Line: 303–675–2167 800–344–3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.