feATURES

- Four Identical 2nd Order Filters in an SSOP Package
- Maximum Center Frequency up to 200 kHz
($V_{s}= \pm 5 \mathrm{~V}$)
- Center Frequency Error: $\pm 0.3 \%$ (Typ)
- Low Noise: $\leq 40 \mu V_{\text {rms }}$ per 2nd Order Section, $\mathrm{Q} \leq 5$
- High Dynamic Range: THD + Noise $\leq \mathbf{0 . 0 5 \%}$
- Low DC Offsets: $\leq 10 \mathrm{mV}$ per 2nd Order Section
- Clock-to-Center Frequency Ratio: 25:1
- No Aliasing for Input Frequencies up to $50 \times$ fCutoff
- Operates from $\pm 2.375 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ Power Supplies

APPLICATIONS

- High Selectivity Bandpass Filters (40 kHz to 140kHz)
- Dual 4th Order Lowpass Filters up to 200 kHz
- Elliptic Lowpass Filters up to 140 kHz

DESCRIPTIOn

The LTC ${ }^{\circledR} 1068-25$ consists of four identical, low noise, high accuracy 2 nd order switched-capacitor filter building blocks. Each building block, together with three to five resistors, can provide 2 nd order filter functions like lowpass, bandpass, highpass and notch. High precision, high performance, quad 2nd order, dual 4th order or 8th order filters can also be designed with an LTC1068-25. The center frequency of each 2nd order section is tuned by an external clock. The clock-to-center frequency ratio is internally set to $25: 1$ and can be modified by external resistors.
The sampling rate of the LTC1068-25 is twice the clock frequency. The maximum input frequency can approach twice the clock frequency before aliasing occurs.
A customized version of the LTC1068-25 in a 16 -lead SO with internal thin film resistors can be obtained. Clock-tocenter frequency ratios higher or lower than $25: 1$ can also be obtained. Please contact LTC Marketing for details.
The LTC1068-25 is available in a 28 -pin SSOP surface mount package and is supported by FilterCAD ${ }^{\text {TM }} 2.0$ filter design software.

TYPICAL APPLICATION

8th Order 70kHz Elliptic Bandpass Filter

ABSOLUTE mAXIMUM RATINGS

PACKAGE/ORDER INFORMATION
Total Supply Voltage (V^{+}to V^{-}) 12 V
Power Dissipation \qquad 500 mW
Operating Temperature Range LTC1068CG-25 \qquad $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ LTC1068IG-25 \qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Input Voltage at Any Pin ... $\mathrm{V}^{-}-0.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}^{+}+0.3 \mathrm{~V}$ Storage Temperature Range \qquad $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 sec) \qquad $300^{\circ} \mathrm{C}$

Consult factory for Military grade parts.

ELECTRICAL CHARACTERISTICS (Internal Op Amps) $V_{S}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Operating Supply Voltage Range			± 1.57		± 5.5	V
Voltage Swings	$\begin{aligned} & \mathrm{V}_{S}=3.14 \mathrm{~V}, R_{\mathrm{L}}=5 \mathrm{k} \text { (Note 1) } \\ & \mathrm{V}_{S}=4.75 \mathrm{~V}, R_{\mathrm{L}}=5 \mathrm{k} \text { (Note 2) } \\ & \mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \\ & \hline \end{aligned}$	$\stackrel{\bullet}{\bullet}$	$\begin{gathered} 1.2 \\ 2.6 \\ \pm 3.4 \end{gathered}$	$\begin{gathered} 1.6 \\ 3.4 \\ \pm 4.1 \end{gathered}$		$\begin{aligned} & V_{\text {P-P }} \\ & V_{P-P} \\ & V \end{aligned}$
Output Short-Circuit Current (Source/Sink)	$\begin{aligned} & V_{S}=4.75 \mathrm{~V} \\ & V_{S}= \pm 5 \mathrm{~V} \end{aligned}$			$\begin{gathered} 17 / 6 \\ 20 / 15 \end{gathered}$		mA mA
DC Open-Loop Gain	$\mathrm{R}_{\mathrm{L}}=5 \mathrm{k}$			85		dB
GBW Product				6		MHz
Slew Rate				10		$\mathrm{V} / \mathrm{\mu s}$

(Complete Filter) $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Clock-to-Center Frequency, $\mathrm{f}_{\text {CLK }} / \mathrm{f}_{0}$ (Note 5)	$\begin{aligned} & V_{S}=4.75 \mathrm{~V}, f_{\text {CLK }}=500 \mathrm{kHz}, \text { Mode } 1 \text { (Note 2), } \\ & f_{0}=20 \mathrm{kHz}, Q=5, V_{I N}=0.5 V_{\text {RMS }}, \\ & R 1=R 3=49.9 \mathrm{k}, R 2=10 \mathrm{k} \end{aligned}$	\bullet		$25 \pm 0.3 \%$	$\begin{aligned} & 25 \pm 0.8 \% \\ & 25 \pm 0.9 \% \end{aligned}$	
	$\begin{aligned} & V_{S}= \pm 5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz}, \text { Mode } 1, \\ & \mathrm{f}_{0}=40 \mathrm{kHz}, \mathrm{Q}=5, \mathrm{~V}_{\text {IN }}=1 \mathrm{~V}_{\text {RMS }}, \\ & \mathrm{R} 1=\mathrm{R} 3=49.9 \mathrm{k}, \mathrm{R} 2=10 \mathrm{k} \end{aligned}$	\bullet		$25 \pm 0.3 \%$	$\begin{aligned} & 25 \pm 0.8 \% \\ & 25 \pm 0.9 \% \end{aligned}$	
Clock-to-Center Frequency Ratio, Side-to-Side Matching (Note 5)	$\begin{aligned} & V_{S}=4.75 \mathrm{~V}, f_{C L K}=500 \mathrm{kHz}, Q=5 \text { (Note 2) } \\ & V_{S}= \pm 5 \mathrm{~V}, f_{C L K}=1 \mathrm{MHz}, Q=5 \end{aligned}$	\bullet		$\begin{aligned} & \pm 0.25 \\ & \pm 0.25 \end{aligned}$	$\begin{aligned} & \pm 0.9 \\ & \pm 0.9 \end{aligned}$	\%
Q Accuracy (Note 5)	$\begin{aligned} & V_{S}=4.75 \mathrm{~V}, f_{\text {CLK }}=500 \mathrm{kHz}, Q=5 \text { (Note 2) } \\ & V_{S}= \pm 5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz}, Q=5 \end{aligned}$	\bullet		$\begin{aligned} & \pm 1 \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \pm 3 \\ & \pm 3 \end{aligned}$	\%

ELECTRICAL CHARACTERISTICS (Complete Filter) $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
f_{0} Temperature Coefficient				± 1		ppm/ ${ }^{\circ} \mathrm{C}$
Q Temperature Coefficient				± 5		ppm $/{ }^{\circ} \mathrm{C}$
DC Offset Voltage (Note 5) (See Table 1)	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz}, \mathrm{~V}_{0 S 1}$ (DC Offset of Input Inverter)	-		0	± 15	mV
	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz}, \mathrm{~V}_{0 S 2}$ (DC Offset of First Integrator)	-		-2	± 25	mV
	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}, \mathrm{f}_{\mathrm{CLK}}=1 \mathrm{MHz}, \mathrm{~V}_{0 S 3}$ (DC Offset of Second Integrator)	\bullet		-5	± 40	mV
Clock Feedthrough	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=1 \mathrm{MHz}$			0.25		mV RMS
Maximum Clock Frequency (Note 4)	$V_{S}= \pm 5 \mathrm{~V}, \mathrm{Q} \leq 1.6$, Mode 1			5.6		MHz
Power Supply Current	$\begin{aligned} & V_{S}=3.14 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=1 \mathrm{MHz} \text { (Note 1) } \\ & V_{S}=4.75 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=1 \mathrm{MHz} \text { (Note 2) } \\ & V_{S}= \pm 5 \mathrm{~V}, \mathrm{f}_{\text {CLK }}=1 \mathrm{MHz} \end{aligned}$	$\bullet \bullet$		$\begin{aligned} & \hline 3.5 \\ & 6.5 \\ & 9.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 8 \\ 11 \\ 15 \end{gathered}$	mA mA mA

The - denotes specifications which apply over the full operating temperature range.
Note 1: Production testing for single 3.14 V supply is achieved by using the equivalent dual supplies of $\pm 1.57 \mathrm{~V}$.
Note 2: Production testing for single 4.75V supply is achieved by using the equivalent dual supplies of $\pm 2.375 \mathrm{~V}$.

Note 3: Pin 7 (AGND) is the internal analog ground of the device. For single supply applications this pin should be bypassed with a $1 \mu \mathrm{~F}$ capacitor. The biasing voltage of AGND is set with an internal resistive divider from Pin 8 to Pin 23 (see Block Diagram).
Note 4: See performance characteristics.
Note 5: Side D is guaranteed by design.

Table 1. Output DC Offsets One 2nd Order Section

MODE	$\mathrm{V}_{\text {OSN }}$	$V_{\text {OSBP }}$	$\mathrm{V}_{\text {OSLP }}$			
1	$\mathrm{V}_{0 S 1}\left[(1 / Q)+1+\left\\|\mathrm{H}_{0 L P}\right\\| \\|-\mathrm{V}_{0 S 3} / \mathrm{Q}\right.$	V ${ }_{\text {S3 }}$	$V_{\text {OSN }}-V_{\text {OS2 }}$			
1B	$\mathrm{V}_{0 S 1}[(1 / Q)+1+\mathrm{R} 2 / \mathrm{R} 1]-\mathrm{V}_{0 S 3} / \mathrm{Q}$	$V_{0 S 3}$	$\sim\left(\mathrm{V}_{\text {OSN }}-\mathrm{V}_{\text {OS2 }}\right)(1+\mathrm{R} 5 / \mathrm{R} 6)$			
2	$\begin{aligned} & {\left[\mathrm{V}_{0 S 1}(1+\mathrm{R} 2 / R 1+\mathrm{R} 2 / \mathrm{R} 3+\mathrm{R} 2 / \mathrm{R} 4)-\mathrm{V}_{\mathrm{OS} 3}(\mathrm{R} 2 / \mathrm{R} 3) \mathrm{X}\right.} \\ & {[\mathrm{R} 4 /(\mathrm{R} 2+\mathrm{R} 4)]+\mathrm{V}_{0 S 2}[\mathrm{R} 2 /(\mathrm{R} 2+\mathrm{R} 4)]} \end{aligned}$	Vos3	$\mathrm{V}_{\text {OSN }}-\mathrm{V}_{\text {OS2 }}$			
3	$\mathrm{V}_{\text {OS2 }}$	$\mathrm{V}_{0 S 3}$	$\mathrm{V}_{0 S 1}[1+\mathrm{R} 4 / \mathrm{R} 1+\mathrm{R} 4 / \mathrm{R} 2+\mathrm{R} 4 / \mathrm{R} 3]-\mathrm{V}_{\text {OS2 }}(\mathrm{R} 4 / \mathrm{R} 2)-\mathrm{V}_{\text {OS3 }}(\mathrm{R} 4 / \mathrm{R} 3)$			

TYPICAL PERFORMANCE CHARACTERISTICS

1068-25 G01

1068-25 G02

BLOCK DIAGRAM

NOTE: THE RATIO OF Ra/Rb CAN VARY BY $\pm 0.8 \%$. THE ABSOLUTE VALUE OF Ra OR Rb CAN VARY BY $\pm 25 \%$

PACKAGE DESCRIPTION
Dimensions in inches (millimeters) unless otherwise noted.

G Package
 28-Lead Plastic SSOP (0.209)

(LTC DWG \# 05-08-1640)

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
LTC1068	Low Noise Universal Filter	$100: 1$ Clock-to-fo Ratio, f_{C} to 50 kHz
LTC1068-50	Low Power Universal Filter	$50: 1$ Clock-to- f_{0} Ratio, f_{C} to 25 kHz
LTC1068-200	Universal Filter	$200: 1$ Clock-to-f f_{0} Ratio, f_{C} to 25 kHz
LTC1064	Universal Filter	$50: 1$ and $100: 1$ Clock-to- f_{0} Ratios, f_{C} to $100 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=$ Up to $\pm 7.5 \mathrm{~V}$
LTC1164	Low Power Universal Filter	$50: 1$ and $100: 1$ Clock-to- f_{0} Ratios, f_{C} to $20 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=$ Up to $\pm 7.5 \mathrm{~V}$
LTC1264	High Speed Universal Filter	$20: 1$ Clock-to- f_{0} Ratio, f_{C} to $200 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=\mathrm{Up}$ to $\pm 7.5 \mathrm{~V}$

