ProASIC3 Flash Family FPGAs

ARM7 ${ }^{\text {TM }}$ Soft IP Support in ProASIC3 ARM7-Ready Devices

Features and Benefits

High Capacity

- 30 k to 1 Million System Gates
- Up to 144 kbits of True Dual-Port SRAM
- Up to 300 User I/Os

Reprogrammable Flash Technology

- 130-nm, 7-Layer Metal (6 Copper), Flash-Based CMOS Process
- Live At Power-Up (LAPU) Level 0 Support
- Single-Chip Solution
- Retains Programmed Design When Powered Off

On-Chip User Nonvolatile Memory

- 1 kbit of FlashROM (FROM)

High Performance

- 350 MHz System Performance
- $3.3 \mathrm{~V}, 66 \mathrm{MHz} 64$-Bit PCI (except A3P030)

In-System Programming (ISP) and Security

- Secure ISP Using On-Chip 128-Bit Advanced Encryption Standard (AES) Decryption (except A3P030) via JTAG (IEEE1532-compliant)
- FlashLock ${ }^{\circledR}$ to Secure FPGA Contents

Low Power

- 1.5 V Core Voltage for Low Power
- Support for 1.5-V-Only Systems
- Low-Impedance Flash Switches

High-Performance Routing Hierarchy

- Segmented, Hierarchical Routing and Clock Structure
- Ultra-Fast Local and Long-Line Network
- Enhanced High-Speed, Very-Long-Line Network
- High-Performance, Low-Skew Global Network

- Architecture Supports Ultra-High Utilization

Advanced I/O

- 700 Mbps DDR, LVDS-Capable I/Os (A3P250 and above)
- $1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, and 3.3 V Mixed-Voltage Operation
- Bank-Selectable I/O Voltages - Up to 4 Banks per Chip
- Single-Ended I/O Standards: LVTTL, LVCMOS 3.3 V/ $2.5 \mathrm{~V} /$ $1.8 \mathrm{~V} / 1.5 \mathrm{~V}, 3.3 \mathrm{~V} \mathrm{PCI} / 3.3 \mathrm{~V} \mathrm{PCI}-\mathrm{X}$ (except A3P030), and LVCMOS 2.5 V/5.0 V Input
- Differential I/O Standards: LVPECL and LVDS (A3P250 and above)
- I/O Registers on Input, Output, and Enable Paths
- Hot-Swappable and Cold Sparing I/Os (A3P030 only)
- Programmable Output Slew Rate (except A3P030) and Drive Strength
- Weak Pull-Up/Down
- IEEE1149.1 (JTAG) Boundary Scan Test
- Pin-Compatible Packages Across the ProASIC3 Family

Clock Conditioning Circuit (CCC) and PLL (except
A3P030)

- Six CCC Blocks, One with an Integrated PLL
- Flexible Phase-Shift, Multiply/Divide, and Delay Capabilities
- Wide Input Frequency Range (1.5 MHz to 350 MHz)

SRAMs and FIFOs (except A3P030)

- Variable-Aspect Ratio 4,608-Bit RAM Blocks (x1, x2, x4, x9, x18 Organizations Available)
- True Dual-Port SRAM (except x18)
- 24 SRAM and FIFO Configurations with Synchronous Operation up to 350 MHz

ARM7 Processor

- Soft Core Support in ARM7-Ready Devices

Table 1 - ProASIC3 Product Family

ProASIC3 Devices	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
ARM7-Ready ProASIC3 Devices ${ }^{1}$				M7A3P250	M7A3P400	M7A3P600	M7A3P1000
System Gates	30 k	60 k	125 k	250 k	400 k	600 k	1 M
VersaTiles (D-Flip-Flops)	768	1,536	3,072	6,144	9,216	13,824	24,576
RAM kbits (1,024 bits)	-	18	36	36	54	108	144
4,608 Bit Blocks	-	4	8	8	12	24	32
FlashROM (FROM) Bits	1 k	1 k	1 k	1 k	1 k	1 k	1 k
Secure (AES) ISP ${ }^{2}$	-	Yes	Yes	Yes	Yes	Yes	Yes
Integrated PLL in CCCs	-	1	1	1	1	1	1
VersaNet Globals ${ }^{3}$	6	18	18	18	18	18	18
I/O Banks	2	2	2	4	4	4	4
Maximum User I/Os	81	96	133	157	194	227	300
Package Pins							
QFN	QN132						
VQFP	VQ100	VQ100	VQ100	VQ100			
TQFP		TQ144	TQ144				
PQFP			PQ208	PQ208		PQ208	PQ208
FBGA		FG144		$\begin{aligned} & \text { FG144, } \\ & \text { FG2565 } \end{aligned}$	$\begin{gathered} \text { FG144, FG256, } \\ \text { FG484 } \end{gathered}$	$\begin{gathered} \text { FG144, FG256, } \\ \text { FG484 } \end{gathered}$	$\begin{gathered} \text { FG144, FG256, } \\ \text { FG484 } \end{gathered}$

Notes:

1. Refer to the CoreMP7 datasheet for more information.
2. AES is not available for ARM7-ready ProASIC3 devices.
3. Six chip (main) and three quadrant global networks are available for A3P060 and above.
4. For higher densities and support of additional features, refer to the ProASIC3E Flash FPGAs datasheet.
5. This package is not supported for the M7A3P250 device.

ProASIC3 Flash Family FPGAs

I/Os Per Package

ProASIC3 Devices	A3P030	A3P060	A3P125	A3P250 ${ }^{2}$		A3P400 ${ }^{2}$		A3P600		A3P1000	
ARM7-Ready ProASIC3 Devices				M7A3P2504		M7A3P400		M7A3P600		M7A3P1000	
Package											n 0
QN132	81	-	-	-	-	-	-		-	-	-
VQ100	79	71	71	68	13	-	-		-	-	-
TQ144	-	91	100	-	-	-	-	-	-	-	-
PQ208	-	-	133	151	34	151	33	154	35	154	35
FG144	-	96	97	97	24	97	24	97	24	97	25
FG256	-	-	-	157	38	178	38	179	45	177	44
FG484	-	-	-	-	-	194	38	227	56	300	74

Notes:

1. Each used differential I/O pair reduces the number of single-ended I/Os available by two.
2. For A3P250 and A3P400 devices, the maximum number of LVPECL pairs in east and west banks cannot exceed 15. Refer to "Package Pin Assignments" starting on page 4-1 for position assignments of the 15 LVPECL pairs.
3. FG256 and FG484 are footprint-compatible packages.
4. The FG256 package is not supported for the M7A3P250 device

ProASIC3 Ordering Information

Note: *-F Speed Grade - DC and switching based only on simulation. The characteristics are subject to change after establishing FPGA specifications. Some restrictions might be added and will be reflected in future revisions of this document. This speed grade is only supported in commercial temperature range.

ProASIC3 Flash Family FPGAs

Temperature Grade Offerings

Package	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
				M7A3P250	M7A3P400	M7A3P600	M7A3P1000
	C, I	-	-	-	-	-	-
VQ100	C,I	C,I	C,I	C,I	-	-	-
TQ144	-	C, I	C, I	-	-	-	-
PQ208	-	-	C, I				
FG144	-	C, I					
FG256	-	-	-	C, I	C, I	C, I	C, I
FG484	-	-	-	C, I	C, I	C, I	

Note: C = Commercial Temperature Range: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Ambient
I = Industrial Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Ambient

Speed Grade and Temperature Grade Matrix

	$\mathbf{F F}^{\mathbf{3}}$	$\mathbf{S t d}$	$\mathbf{- 1}$	$\mathbf{- 2}$
C	\checkmark	\checkmark	\checkmark	\checkmark
I	-	\checkmark	\checkmark	\checkmark

Notes:

1. $\mathrm{C}=$ Commercial Temperature Range: $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ Ambient
2. $I=$ Industrial Temperature Range: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Ambient
3. DC and switching characteristics for -F speed grade targets based only on simulation. The characteristics provided for $-F$ speed grade are subject to change after establishing FPGA specifications. Some restrictions might be added and will be reflected in future revisions of this document. The -F speed grade is only supported in commercial temperature range.

Datasheet references made to ProASIC3 devices also apply to ARM7-ready ProASIC3 devices. The part numbers start with M7.
Contact your local Actel representative for device availability (http://www.actel.com/contact/offices/index.html).

Device Architecture

Introduction and Overview
General Description 1-1
Related Documents 1-6
Device Architecture
Introduction 2-1
Device Overview 2-2
Pin Descriptions 2-48
Software Tools 2-50
Programming 2-50
Security 2-50
ISP 2-51
DC and Switching Characteristics
General Specifications 3-1
Calculating Power Dissipation 3-5
User I/O Characteristics 3-10
VersaTile Characteristics 3-41
Global Resource Characteristics 3-45
Embedded SRAM and FIFO Characteristics 3-50
Embedded FROM Characteristics 3-59
JTAG 1532 Characteristics 3-60
Package Pin Assignments
132-Pin QFN 4-1
100-Pin VQFP 4-2
144-Pin TQFP 4-6
208-Pin PQFP 4-11
144-Pin FBGA 4-22
256-Pin FBGA 4-29
484-Pin FBGA 4-42
Datasheet Information
List of Changes 5-1
Datasheet Categories 5-3
Export Administration Regulations (EAR) 5-3

Introduction and Overview

General Description

ProASIC3, the third-generation family of Actel Flash FPGAs, offers performance, density, and features beyond those of the ProASIC릉 ${ }^{8}$ family. The nonvolatile Flash technology gives ProASIC3 devices the advantage of being a secure, low-power, single-chip solution that is live at power-up. ProASIC3 is reprogrammable and offers time-to-market benefits at an ASIC-level unit cost. These features enable designers to create high-density systems using existing ASIC or FPGA design flows and tools.
ProASIC3 devices offer 1 kbit of on-chip, programmable, nonvolatile FlashROM (FROM) memory storage as well as clock conditioning circuitry based on an integrated phase-locked loop (PLL). The A3P030 device has no PLL or RAM support. ProASIC3 devices have up to 1 million system gates, supported with up to 144 kbits of true dual-port SRAM, and up to 288 user I/Os.
ProASIC3 devices support the ARM7 soft IP core in devices with at least 250 k system gates. The ARM7-ready devices have Actel ordering numbers that begin with M7A3P and do not support AES decryption.

Flash Advantages

Reduced Cost of Ownership

Advantages to the designer extend beyond low-unit cost, performance, and ease of use. Unlike SRAM-based FPGAs, the Flash-based ProASIC3 devices allow for all functionality to be live at power-up; no external boot PROM is required. On-board security mechanisms prevent access to all the programming information and enable secure remote updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support future design iterations and field upgrades with confidence that valuable intellectual property (IP) cannot be compromised or copied. Secure ISP can be performed using the industry-standard AES algorithm. The ProASIC3 family device architecture mitigates the need for ASIC migration at higher user volumes. This makes the ProASIC3 family a cost-effective ASIC replacement solution, especially for applications in the consumer, networking/communications, computing, and avionics markets.

Security

The nonvolatile, Flash-based ProASIC3 devices require no boot PROM, so there is no vulnerable external bitstream that can be easily copied. ProASIC3 devices incorporate

FlashLock, which provides a unique combination of reprogrammability and design security without external overhead, advantages that only an FPGA with nonvolatile, Flash programming can offer.
ProASIC3 devices utilize a 128-bit Flash-based lock and a separate AES key to secure programmed intellectual property and configuration data. In addition, all FROM data in the ProASIC3 devices can be encrypted prior to loading, using the industry-leading AES-128 (FIPS192) bit block cipher encryption standard. The AES standard was adopted by the National Institute of Standards and Technology (NIST) in 2000, and replaces the 1977 DES standard. ProASIC3 devices have a built-in AES decryption engine and a Flash-based AES key that make them the most comprehensive programmable logic device security solution available today. ProASIC3 devices with AES-based security allow for secure, remote field updates over public networks such as the Internet, and ensure that valuable IP remains out of the hands of system overbuilders, system cloners, and IP thieves. The contents of a programmed ProASIC3 device cannot be read back, although secure design verification is possible.
ARM7-ready ProASIC3 devices support all security measures except for AES decryption.
Security, built into the FPGA fabric, is an inherent component of the ProASIC3 family. The Flash cells are located beneath seven metal layers, and many device design and layout techniques have been used to make invasive attacks extremely difficult. ProASIC3, with FlashLock and AES security, is unique in being highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected and secure, making remote ISP possible. A ProASIC3 device provides the most impenetrable security for programmable logic designs.

Single Chip

Flash-based FPGAs store the configuration information in on-chip Flash cells. Once programmed, the configuration data is an inherent part of the FPGA structure and no external configuration data needs to be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, Flashbased ProASIC3 FPGAs do not require system configuration components such as EEPROMs or microcontrollers to load the device configuration data. This reduces bill-of-materials costs and printed circuit board (PCB) area, and increases security and system reliability.

ProASIC3 Flash Family FPGAs

Live at Power-Up

The Actel Flash-based ProASIC3 devices support Level 0 of the live at power-up (LAPU) classification standard. This feature helps in system component initialization, execution of critical tasks before the processor wakes up, setup and configuration of memory blocks, clock generation, and bus activity management. The LAPU feature of Flash-based ProASIC3 devices greatly simplifies total system design and reduces total system cost, often eliminating the need for Complex Programmable Logic Devices (CPLDs) and clock generation PLLs that are used for this purpose in a system. In addition, glitches and brownouts in system power will not corrupt the ProASIC3 device's Flash configuration, and unlike SRAMbased FPGAs, the device will not have to be reloaded when system power is restored. This enables the reduction or complete removal of the configuration PROM, expensive voltage monitor, brownout detection, and clock generator devices from the PCB design. Flashbased ProASIC3 devices simplify total system design, and reduce cost and design risk, while increasing system reliability and improving system initialization time.

Refer to the "I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)" section on page 3-3.

Firm Errors

Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. These errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a complete system failure. Firm errors do not exist in the configuration memory of ProASIC3 Flashbased FPGAs. Once it is programmed, the Flash cell configuration element of ProASIC3 FPGAs cannot be altered by high-energy neutrons and is therefore immune to them. Recoverable (or soft) errors occur in the user data SRAM of all FPGA devices. These can easily be mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Low Power

Flash-based ProASIC3 devices exhibit power characteristics similar to an ASIC, making them an ideal choice for power-sensitive applications. ProASIC3 devices have only a very limited power-on current surge, and no high-current transition period, both of which occur on many FPGAs.

ProASIC3 devices also have low dynamic power consumption to further maximize power savings.

Advanced Flash Technology

The ProASIC3 family offers many benefits, including nonvolatility and reprogrammability through an advanced Flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design techniques are used to implement logic and control functions. The combination of fine granularity, enhanced flexible routing resources, and abundant Flash switches allows for very high logic utilization without compromising device routability or performance. Logic functions within the device are interconnected through a four-level routing hierarchy.

Advanced Architecture

The proprietary ProASIC3 architecture provides granularity comparable to standard-cell ASICs. The ProASIC3 device consists of five distinct and programmable architectural features (Figure 1-1 on page 1-3 and Figure 1-2 on page 1-3):

- FPGA VersaTiles
- Dedicated FlashROM (FROM) memory
- Dedicated SRAM/FIFO memory ${ }^{1}$
- Extensive clock conditioning circuitry (CCC) and PLLs ${ }^{1}$
- Advanced I/O structure

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic function or as a D-flip-flop (with or without enable), or as a latch by programming the appropriate Flash switch interconnections. The versatility of the ProASIC3 core tile as either a three-input look-up-table (LUT) equivalent or as a D-flip-flop/latch with enable allows for efficient use of the FPGA fabric. The VersaTile capability is unique to the Actel ProASIC families of Flash-based FPGAs. VersaTiles are connected with any of the four levels of routing hierarchy. Flash switches are distributed throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core utilization is possible for virtually any design.
In addition, extensive on-chip programming circuitry allows for rapid, single-voltage (3.3 V) programming of the ProASIC3 devices via an IEEE1532 JTAG interface.

Note: *Not supported by A3P030.
Figure 1-1 • Device Architecture Overview with Two I/O Banks (A3P030, A3P060, A3P125)

Figure 1-2 • Device Architecture Overview with Four I/O Banks (A3P250, A3P400, A3P600, and A3P1000)

ProASIC3 Flash Family FPGAs

VersaTiles

The ProASIC3 core consists of VersaTiles, which have been enhanced from the ProASICPLUS core tiles. The ProASIC3 VersaTile supports the following:

- All three-input logic functions - LUT-3 equivalent
- Latch with clear or set
- D-flip-flop with clear or set
- Enable D-flip-flop with clear or set

Refer to Figure 1-3 for VersaTile configurations.
For more information about VersaTiles, refer to the "VersaTile" section on page 2-2.

LUT-3 Equivalent

D-Flip-Flop with Clear or Set

Enable D-Flip-Flop with Clear or Set

Figure 1-3 • VersaTile Configurations

User Nonvolatile FlashROM (FROM)

Actel ProASIC3 devices have 1 kbit of on-chip, useraccessible, nonvolatile FlashROM (FROM). The FROM can be used in diverse system applications:

- Internet protocol addressing (wireless or fixed)
- System calibration settings
- Device serialization and/or inventory control
- Subscription-based business models (for example, set-top boxes)
- Secure key storage for secure communications algorithms
- Asset management/tracking
- Date stamping
- Version management

The FROM is written using the standard ProASIC3 IEEE1532 JTAG programming interface. The core can be individually programmed (erased and written), and onchip AES decryption can be used selectively to securely load data over public networks (except in the A3P030 device), such as security keys stored in the FROM for a user design.
The FROM can be programmed via the JTAG programming interface, and its contents can be read back either through the JTAG programming interface or via direct FPGA core addressing. Note that the FROM can ONLY be programmed from the JTAG interface, and cannot be programmed from the internal logic array.
The FROM is programmed as 8 banks of 128 bits; however, reading is performed on a random byte-by-
byte basis. A 7-bit address from the FPGA core defines which of the 8 banks and which of the 16 bytes within that bank are being read. The three most significant bits (MSBs) of the FROM address determine the bank, and the four least significant bits (LSBs) of the FROM address define the byte.
The Actel ProASIC3 development software solutions, Libero ${ }^{\circledR}$ Integrated Design Environment (IDE) and Designer v6.1 or later, have extensive support for the FROM memory. One such feature is auto-generation of sequential programming files for applications requiring a unique serial number in each part. The second part allows the inclusion of static data for system version control. Data for the FROM can be generated quickly and easily using Actel Libero IDE and Designer software tools. Comprehensive programming file support is also included to allow for easy programming of large numbers of parts with differing FROM contents.

SRAM and FIFO

ProASIC3 devices (except in the A3P030 device) have embedded SRAM blocks along the north and south sides of the device. Each variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are $256 x 18,512 \times 9,1 \mathrm{kx} 4,2 \mathrm{kx} 2$, or 4 kx 1 bits. The individual blocks have independent read and write ports that can be configured with different bit widths on each port. For example, data can be sent through a 4-bit port and read as a single bitstream. The embedded SRAM blocks can be initialized via the device JTAG port (ROM emulation mode), using the UJTAG macro (except for the A3P030
device). For more information, refer to the application note, UJTAG Applications in ProASIC3/E Devices.
In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width and depth are programmable. The FIFO also features programmable Almost-Empty (AEMPTY) and Almost-Full (AFULL) flags in addition to the normal Empty and Full flags. The embedded FIFO control unit contains the counters necessary for the generation of the read and write address pointers. The embedded SRAM/FIFO blocks can be cascaded to create larger configurations.

PLL and Clock Conditioning Circuitry (CCC)

ProASIC3 devices provide designers with very flexible clock conditioning capabilities. Each member of the ProASIC3 family contains six CCCs. One CCC (center west side) has a PLL (Figure 2-10 on page 2-11). The A3P030 does not have a PLL.
The six CCC blocks are located in the four corners and the centers of the east and west sides.
All six CCC blocks are usable; the four corner CCCs and the east CCC allow simple clock delay operations as well as clock spine access (refer to the "Clock Conditioning Circuits" section on page 2-15 for more information).
The inputs of the six CCC blocks are accessible from the FPGA core or from one of several I/O inputs located near the CCC that have dedicated connections to the CCC block.
The CCC block has the following key features:

- Wide input frequency range $\left(\mathrm{f}_{\mathrm{IN} _\subset C C}\right)=1.5 \mathrm{MHz}$ to 350 MHz
- Output frequency range ($\mathrm{f}_{\text {OUT_CcC }}$) $=0.75 \mathrm{MHz}$ to 350 MHz
- Clock delay adjustment via programmable and fixed delays from -7.56 ns to +11.12 ns
- Two programmable delay types; refer to Figure 2-17 on page 2-19, Table 2-4 on page 2-20, and the "Features Supported on Every I/O" section on page 2-31 for more information.
- Clock skew minimization
- Clock frequency synthesis (for PLL only)

Additional CCC specifications:

- Internal phase shift $=0^{\circ}, 90^{\circ}, 180^{\circ}$, and 270°. Output phase shift depends on the output divider configuration (for PLL only).
- Output duty cycle $=50 \% \pm 1.5 \%$ or better (for PLL only)
- Low output jitter: worst case $<2.5 \% \times$ clock period peak-to-peak period jitter when single global network used (for PLL only)
- Maximum acquisition time $=150 \mu \mathrm{~s}$ (for PLL only)
- Low power consumption of 5 mW
- Exceptional tolerance to input period jitterallowable input jitter is up to 1.5 ns (for PLL only)
- Four precise phases; maximum misalignment between adjacent phases of $40 \mathrm{ps} \times(350 \mathrm{MHz} /$ $f_{\text {OUT_ccc }}$) (for PLL only)

Global Clocking

ProASIC3 devices have extensive support for multiple clocking domains. In addition to the CCC and PLL support described above, there is a comprehensive global clock distribution network.
Each VersaTile input and output port has access to nine VersaNets: six chip (main) and three quadrant global networks (Figure 2-10 on page 2-11). The VersaNets can be driven by the CCC or directly accessed from the core via multiplexers (MUXes). The VersaNets can be used to distribute low-skew clock signals or for rapid distribution of high-fanout nets.

I/Os with Advanced I/O Standards

The ProASIC3 family of FPGAs features a flexible I/O structure, supporting a range of voltages (1.5 V, 1.8 V , 2.5 V , and 3.3 V). ProASIC3 FPGAs support many different I/O standards: single-ended and differential.
For more information, see Table 2-19 on page 2-45.
The I/Os are organized into banks, with two or four banks per device. Refer to Table 2-18 on page 2-44 for details on I/O bank configuration. The configuration of these banks determines the I/O standards supported (see Table 2-18 on page 2-44 for more information).
Each I/O module contains several input, output, and enable registers (Figure 2-23 on page 2-32). These registers allow the implementation of the following:

- Single-Data-Rate applications
- Double-Data-Rate applications - DDR LVDS I/O for point-to-point communications

ProASIC3 Flash Family FPGAs

Related Documents

Application Notes

In-System Programming (ISP) in ProASIC3IE Using FlashPro3
http://www.actel.com/documents/PA3_E_ISP_AN.pdf
ProASIC3/E FlashROM (FROM)
http://www.actel.com/documents/PA3_E_FROM_AN.pdf
ProASIC3/E Security
http://www.actel.com/documents/PA3_E_Security_AN.pdf
ProASIC3/E SRAMIFIFO Blocks
http://www.actel.com/documents/PA3_E_SRAMFIFO_AN.pdf
Programming a ProASIC3/E Using a Microprocessor
http://www.actel.com/documents/PA3_E_Microprocessor_AN.pdf
UJTAG Applications in ProASIC3/E Devices
http://www.actel.com/documents/PA3_E_UJTAG_AN.pdf
Using DDR for ProASIC3IE Devices
http://www.actel.com/documents/PA3_E_DDR_AN.pdf
Using Global Resources in Actel ProASIC3/E Devices
http://www.actel.com/documents/PA3_E_Global_AN.pdf
Power-Up/Down Behavior of ProASIC3/E Devices
http://www.actel.com/documents/ProASIC3_E_PowerUp_AN.pdf

For additional ProASIC3 application notes, go to http://www.actel.com/techdocs/appnotes/products.aspx.

User's Guides

ACTgen Cores Reference Guide
http://www.actel.com/documents/gen_refguide_ug.pdf
Designer User's Guide
http://www.actel.com/documents/designer_ug.pdf
ProASIC3/E Macro Library Guide
http://www.actel.com/documents/pa3_libguide_ug.pdf

Device Architecture

Introduction

Flash Technology

Advanced Flash Switch

Unlike SRAM FPGAs, the ProASIC3 family uses a live on power-up ISP Flash switch as its programming element. Flash cells are distributed throughout the device to provide nonvolatile, reconfigurable programming to connect signal lines to the appropriate VersaTile inputs and outputs. In the Flash switch, two transistors share the floating gate, which stores the programming
information (Figure 2-1). One is the sensing transistor, which is only used for writing and verification of the floating gate voltage. The other is the switching transistor. The latter is used to connect or separate routing nets, or to configure VersaTile logic. It is also used to erase the floating gate. Dedicated highperformance lines are connected as required using the Flash switch for fast, low-skew, global signal distribution throughout the device core. Maximum core utilization is possible for virtually any design. The use of the Flash switch technology also removes the possibility of firm errors, which are increasingly common in SRAM-based FPGAs.

Figure 2-1 • ProASIC3 Flash-Based Switch

ProASIC3 Flash Family FPGAs

Device Overview

The ProASIC3 device family consists of five distinct programmable architectural features (Figure 2-2 and Figure 2-3 on page 2-3):

- FPGA fabric/core (VersaTiles)
- Routing and clock resources (VersaNets)
- FlashROM (FROM) memory
- Dedicated SRAM/FIFO memory (except A3P030)
- Advanced I/O structure

Core Architecture

VersaTile

The proprietary ProASIC3 family architecture provides granularity comparable to gate arrays. The ProASIC3 device core consists of a sea-of-VersaTiles architecture.

As illustrated in Figure 2-4 on page 2-4, there are four inputs in a logic VersaTile cell, and each VersaTile can be configured using the appropriate Flash switch connections:

- Any three-input logic function
- Latch with clear or set
- D-flip-flop with clear or set
- Enable D-flip-flop with clear or set (on a fourth input)
VersaTiles can flexibly map the logic and sequential gates of a design. The inputs of the VersaTile can be inverted (allowing bubble pushing), and the output of the tile can connect to high-speed, very-long-line routing resources. VersaTiles and larger functions are connected with any of the four levels of routing hierarchy.
When the VersaTile is used as an enable D-flip-flop, the SET/CLR is supported by a fourth input. The fourth input is routed to the core cell over the VersaNet (global) network.
The SET/CLR signal can only be routed to this fourth input over the VersaNet (global) network. However, if in the user design, the SET/CLR signal is not routed over the VersaNet network, a compile warning message will be given and the intended logic function will be implemented by two VersaTiles instead of one.
The output of the VersaTile is F2 when the connection is to the ultra-fast local lines, or YL when the connection is to the efficient long-lines or very-long-lines resources.

Note: *Not supported by A3P030.
Figure 2-2 • Device Architecture Overview with Two I/O Banks (A3P030, A3P060, A3P125)

Figure 2-3 • Device Architecture Overview with Four I/O Banks (A3P250, A3P400, A3P600, A3P1000)

Note: *This input can only be connected to the global clock distribution network.
Figure 2-4 • ProASIC3 Core VersaTile

Array Coordinates

During many place-and-route operations in the Actel Designer software tool, it is possible to set constraints that require array coordinates. Table 2-1 is provided as a reference. The array coordinates are measured from the lower left (0,0). They can be used in region constraints for specific logic groups/blocks, designated by a wildcard, and can contain core cells, memories, and I/Os.

Table 2-1 provides array coordinates of core cells and memory blocks.
I/O and cell coordinates are used for placement constraints. Two coordinate systems are needed because there is not a one-to-one correspondence between l/O cells and core cells. In addition, the I/O coordinate system
changes depending on the die/package combination. It is not listed in Table 2-1. The Designer ChipPlanner tool provides array coordinates of all I/O locations. I/O and cell coordinates are used for placement constraints. However, I/O placement is easier by package pin assignment.
Figure 2-5 on page 2-6 illustrates the array coordinates of an A3P600 device. For more information on how to use array coordinates for region/placement constraints, see the Designer User's Guide or online help (available in the software) for ProASIC3 software tools.

Table 2-1 - ProASIC3 Array Coordinates

	VersaTiles				Memory Rows		All	
	Min.		Max.		Bottom	Top	Min.	Max.
Device	\mathbf{x}	y	\mathbf{x}	y	(x, y)			
A3P030	-	-	-	-	-	-	-	-
A3P060	3	2	66	25	None	$(3,26)$	(0, 0)	$(69,29)$
A3P125	3	2	130	25	None	$(3,26)$	$(0,0)$	$(133,29)$
A3P250	3	2	130	49	None	$(3,50)$	(0, 0)	$(133,53)$
A3P400	3	2	194	49	None	$(3,50)$	$(0,0)$	$(197,53)$
A3P600	3	4	194	75	$(3,2)$	$(3,76)$	$(0,0)$	$(197,79)$
A3P1000	3	4	258	99	$(3,2)$	$(3,100)$	(0, 0)	$(261,103)$

Note: The vertical I/O tile coordinates are not shown. West side coordinates are $\{(0,2)$ to $(2,2)\}$ to $\{(0,77)$ to $(2,77)\}$; east side coordinates are $\{(195,2)$ to $(197,2)\}$ to $\{(195,77)$ to $(197,77)\}$.
Figure 2-5 • Array Coordinates for A3P600

Routing Architecture

Routing Resources

The routing structure of ProASIC3 devices is designed to provide high performance through a flexible four-level hierarchy of routing resources: ultra-fast local resources, efficient long-line resources, high-speed, very-long-line resources, and the high-performance VersaNet networks.
The ultra-fast local resources are dedicated lines that allow the output of each VersaTile to connect directly to every input of the eight surrounding VersaTiles (Figure 2-6). The exception to this is that the SET/CLR input of a VersaTile configured as a D-type flip-flop is driven only by the VersaTile global network.
The efficient, long-line resources provide routing for longer distances and higher fanout connections. These resources vary in length (spanning 1, 2, or 4 VersaTiles), run both vertically and horizontally, and cover the entire ProASIC3 device (Figure 2-7 on page 2-8). Each VersaTile can drive signals onto the efficient long-line resources, which can access every input of every VersaTile. Active buffers are inserted automatically by routing software to limit the loading effects.

The high-speed, very-long-line resources, which span the entire device with minimal delay, are used to route very long or high-fanout nets: length $+/-12$ VersaTiles in the vertical direction and length $+/-16$ in the horizontal direction from a given core VersaTile (Figure 2-8 on page 2-9). Very long lines in ProASIC3 devices have been enhanced over those in previous ProASIC families. This provides a significant performance boost for long-reach signals.
The high-performance VersaNet global networks are low-skew, high-fanout nets that are accessible from external pins or from internal logic (Figure 2-9 on page 2-10). These nets are typically used to distribute clocks, resets, and other high-fanout nets requiring minimum skew. The VersaNet networks are implemented as clock trees, and signals can be introduced at any junction. These can be employed hierarchically with signals accessing every input on all VersaTiles.

Note: Input to the core cell for the D-flip-flop set and reset is only available via the VersaNet global network connection.
Figure 2-6 • Ultra-Fast Local Lines Connected to the Eight Nearest Neighbors

Figure 2-7 • Efficient Long-Line Resources

ProASIC3 Flash Family FPGAs

Clock Resources (VersaNets)

ProASIC3 devices offer powerful and flexible control of circuit timing through the use of analog circuitry. Each chip has up to six CCCs. The west CCC also contains a phase-locked loop (PLL) core, delay lines, phase shifter ($0^{\circ}, 90^{\circ}, 180^{\circ}, 270^{\circ}$), and clock multiplier/dividers. Each CCC has all the circuitry needed for the selection and interconnection of inputs to the VersaNet global network. The east and west CCCs each have access to three VersaNet global lines on each side of the chip (six total lines). The CCCs at the four corners each have access to three Quadrant global lines on each quadrant of the chip (except A3P030).

Advantages of the VersaNet Approach

One of the architectural benefits of ProASIC3 is the set of powerful and low-delay VersaNet global networks. ProASIC3 offers six chip (main) global networks that are distributed from the center of the FPGA array (Figure 2-9). In addition, ProASIC3 devices have three regional globals in each of the four chip quadrants. Each core VersaTile has access to nine global network resources: three quadrant and six chip (main) global networks, and a total of 18
globals on the device. Each of these networks contains spines and ribs that reach all the VersaTiles in the quadrants (Figure 2-10 on page 2-11). This flexible VersaNet global network architecture allows users to map up to 144 different internal/external clocks in a ProASIC3 device. Details on the VersaNet networks are given in Table 2-2 on page 2-11. The flexible use of the ProASIC3 VersaNet global network allows the designer to address several design requirements. User applications that are clock-resourceintensive can easily route external or gated internal clocks using VersaNet global routing networks. Designers can also drastically reduce delay penalties and minimize resource usage by mapping critical, high-fanout nets to the VersaNet global network.
In A3P030 devices, all six VersaNets are driven from three southern I/Os, located toward the east and west sides. These tiles can be configured to select a central I/O on the respective side or an internal routed signal as the input signal. The A3P030 does not support any clock conditioning circuitry nor does it contain the VersaNet global network concept of top and bottom spines.

Note: Not applicable to the A3P030 device.
Figure 2-9 • Overview of ProASIC3 VersaNet Global Network
\qquad

Note: This does not apply to the A3PO3O device.
Figure 2-10 • Global Network Architecture
Table 2-2 • ProASIC3 Globals/Spines/Rows by Device

	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
Global VersaNets (Trees)*	6	9	9	9	9	9	9
VersaNet Spines/Tree	4	4	4	8	8	12	16
Total Spines	24	36	36	72	72	108	144
VersaTiles in Each Top or Bottom Spine	384	384	384	768	768	1,152	1,536
Total VersaTiles	768	1,536	3,072	6,144	9,216	13,824	24,576
Rows in Each Top or Bottom Spine	-	12	12	24	24	36	48

Note: *There are six chip (main) globals and three globals per quadrant (except in the A3P030 device).

VersaNet Global Networks and Spine Access

The ProASIC3 architecture contains a total of 18 segmented global networks that can access the VersaTiles, SRAM memory, and I/O tiles on the ProASIC3 device. There are nine global network resources in each device quadrant: three quadrant globals and six chip (main) global networks. Each device has a total of 18 globals. These VersaNet global networks offer fast, lowskew routing resources for high-fanout nets, including clock signals. In addition, these highly-segmented global networks offer users the flexibility to create low-skew local networks using spines for up to 144 internal/ external clocks (in an A3P1000 device) or other highfanout nets in ProASIC3 devices. Optimal usage of these low-skew networks can result in significant improvement in design performance on ProASIC3 devices.
The nine spines available in a vertical column reside in global networks with two separate regions of scope: the quadrant global network, which has three spines, and the chip (main) global network, which has six spines. Note that there are three quadrant spines in each quadrant of the device (except for A3P030). There are four quadrant global network regions per device (Figure 2-10 on page 2-11).
The spines are the vertical branches of the global network tree, shown in Figure 2-11 on page 2-13. Each spine in a vertical column of a chip (main) global network is further divided into two equal-length spine segments: one in the top and one in the bottom half of the die.

Each spine and its associated ribs cover a certain area of the ProASIC3 device (the "scope" of the spine; see Figure 2-9 on page 2-10). Each spine is accessed by the dedicated global network MUX tree architecture, which defines how a particular spine is driven-either by the signal on the global network from a CCC, for example, or another net defined by the user (Figure 2-12 on page 214). Quadrant spines can be driven from user I/Os on the north and south sides of the die. The ability to drive spines in the quadrant global networks can have a significant effect on system performance for high-fanout inputs to a design.
Details of the chip (main) global network spine-selection MUX are presented in Figure 2-12 on page 2-14. The spine drivers for each spine are located in the middle of the die.
Quadrant spines are driven from a north or south rib. Access to the top and bottom ribs is from the corner CCC or from the I/O on the north and south sides of the device.
For details on using spines in ProASIC3 devices, see the Actel application note Using Global Resources in Actel ProASIC3/E Devices.

Figure 2-11 • Spines in a Global Clock Tree Network

ProASIC3 Flash Family FPGAs

Clock Aggregation

Clock aggregation allows for multi-spine clock domains. A MUX tree provides the necessary flexibility to allow long lines or I/Os to access domains of one, two, or four global spines. Signal access to the clock aggregation system is achieved through long-line resources in the central rib, and also through local resources in the north and south ribs, allowing I/Os to directly feed into the clock system. As Figure 2-13 indicates, this access system is contiguous.

There is no break in the middle of the chip for the north and south I/O VersaNet access. This is different from the quadrant clocks, located in these ribs, which only reach the middle of the rib. Refer to the Using Global Resources in Actel ProASIC3/E Devices application note.

Figure 2-12 • Spine Selection MUX of Global Tree

Figure 2-13 • Clock Aggregation Tree Architecture

Clock Conditioning Circuits

Overview of Clock Conditioning Circuitry

In ProASIC3 devices, the clock conditioning circuits (CCCs) are used to implement frequency division, frequency multiplication, phase shifting, and delay operations.
The CCCs are available in six chip locations - each of the four chip corners and in the middle of the east and west chip sides.
Each CCC can implement up to three independent global buffers (with or without programmable delay), or a PLL function (programmable frequency division/ multiplication, phase shift, and delays) with up to three global outputs. Unused global outputs of a PLL can be used to implement independent global buffers, up to a maximum of three global outputs for a given CCC.
A global buffer can be placed in any of the three global locations (CLKA-GLA, CLKB-GLB, and CLKC-GLC) of a given CCC.
A PLL macro uses the CLKA CCC input to drive its reference clock. It uses the GLA and optionally the GLB and GLC global outputs to drive the global networks. A PLL macro can also drive the YB and YC regular core outputs. The GLB (or GLC) global outputs cannot be reused if the YB (or YC) outputs are used (Figure 2-14 on page 2-16). Refer to the "PLL Macro" section on page 217 for more information.
Each global buffer, as well as the PLL reference clock, can be driven from one of the following:

- Three dedicated single-ended I/Os using a hardwired connection
- Two dedicated differential I/Os using a hardwired connection
- The FPGA core

The CCC block is fully configurable, either via Flash configuration bits set in the programming bitstream or through an asynchronous interface. This asynchronous interface is dynamically accessible from inside the ProASIC3 device to permit parameter changes (such as divide ratios) during device operation. To increase the versatility and flexibility of the clock conditioning system, the CCC configuration is determined either by the user during the design process, with configuration data being stored in Flash memory as part of the device programming procedure, or by writing data into a dedicated shift register during normal device operation. This latter mode allows the user to dynamically reconfigure the CCC without the need for core programming. The shift register is accessed through a simple serial interface. Refer to the UJTAG Applications in ProASIC3/E Device application note and the "CCC Electrical Specifications" section on page 2-20 for more information.

Global Buffers with No Programmable Delays

The CLKBUF and CLKBUF_LVPECL/LVDS macros are composite macros that include an I/O macro driving a global buffer, which uses a hardwired connection.
The CLKBUF, CLKBUF_LVPECL/LVDS, and CLKINT macros are pass-through clock sources and do not use the PLL or provide any programmable delay functionality.
The CLKINT macro provides a global buffer function driven by the FPGA core.
Many specific CLKBUF macros support the wide variety of single-ended and differential I/O standards supported by ProASIC3 devices. The available CLKBUF macros are described in the ProASIC3IE Macro Library Guide.

Global Buffer with Programmable Delay

The CLKDLY macro is a pass-through clock source that does not use the PLL, but provides the ability to delay the clock input using a programmable delay. The CLKDLY macro takes the selected clock input and adds a userdefined delay element. This macro generates an output clock phase shift from the input clock.
The CLKDLY macro can be driven by an INBUF* macro to create a composite macro, where the I/O macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the I/O must be placed in one of the dedicated global I/O locations.
Many specific INBUF macros support the wide variety of single-ended and differential I/O standards supported by the ProASIC3 family. The available INBUF macros are described in the ProASIC3/E Macro Library Guide.
The CLKDLY macro can be driven directly from the FPGA core.
The CLKDLY macro can also be driven from an I/O that is routed through the FPGA regular routing fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate from the hardwired I/O connection described earlier.
The visual CLKDLY configuration in the ACTgen part of the Libero IDE and Designer tools allows the user to select the desired amount of delay, and configures the delay elements appropriately. ACTgen also allows the user to select where the input clock is coming from. ACTgen will automatically instantiate the special macro, PLLINT, when needed.

Notes:

1. Visit the Actel website for future application notes concerning dynamic PLL reconfiguration. The PLL is only supported on the west center CCC. The A3P030 has no PLL support. Refer to the "PLL Macro" section on page 2-17 for signal descriptions.
2. Refer to the ProASIC3/E Macro Library Guide for more information.
3. Many specific INBUF macros support the wide variety of single-ended and differential I/O standards supported by the ProASIC3 family. The available INBUF macros are described in the ProASIC3/E Macro Library Guide.
Figure 2-14 • ProASIC3 CCC Options

PLL Macro ${ }^{1}$

The PLL functionality of the clock conditioning block is supported by the PLL macro. Note that the PLL macro reference clock uses the CLKA input of the CCC block, which is only accessible from the global A[0:2] package pins. Refer to Figure 2-15 on page 2-18 for more information.
The PLL macro provides five derived clocks (three independent) from a single reference clock. The PLL macro also provides power-down input and lock output signals. See Figure 2-17 on page 2-19 for more information.
Inputs:

- CLKA: selected clock input
- Powerdown (active low): disables PLLs. The default state is Powerdown On (active low).
Outputs:
- Lock: indicates that PLL output has locked on the input reference signal
- GLA, GLB, GLC: outputs to respective global networks
- YB, YC: allows output from the CCC to be routed back to the FPGA core
As previously described, the PLL allows up to five flexible and independently-configurable clock outputs. Figure 2-19 on page 2-21 illustrates the various clock output options and delay elements.
As illustrated, the PLL supports three distinct output frequencies from a given input clock. Two of these (GLB and GLC) can be routed to the B and C global network access, respectively, and/or routed to the device core (YB and $Y C$).

There are five delay elements to support phase control on all five outputs (GLA, GLB, GLC, YB, and YC).
There is also a delay element in the feedback loop that can be used to advance the clock relative to the reference clock.
The PLL macro reference clock can be driven by an INBUF* macro to create a composite macro, where the I/O macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the I/O must be placed in one of the dedicated global I/O locations.
The PLL macro reference clock can be driven by an INBUF* macro to create a composite macro, where the I/O macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the I/O must be placed in one of the dedicated global I/O locations.
The PLL macro reference clock can be driven directly from the FPGA core.
The PLL macro reference clock can also be driven from an I/O that is routed through the FPGA regular routing fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate from the hardwired I/O connection described earlier.
The visual PLL configuration in ACTgen, associated with the Libero IDE and Designer tools, will derive the necessary internal divider ratios based on the input frequency and desired output frequencies selected by the user. ACTgen also allows the user to select the various delays and phase shift values necessary to adjust the phases between the reference clock (CLKA) and the derived clocks (GLA, GLB, GLC, YB and YC). ACTgen also allows the user to select where the input clock is coming from. ACTgen automatically instantiates the special macro, PLLINT, when needed.

GAA[0:2]: GA represents global in the northwest corner of the device. A[0:2]: designates specific A clock source.

Notes:

1. Represents the global input pins. Globals have direct access to the clock conditioning block and are not routed via the FPGA fabric. Refer to the "User I/O Naming Convention" on page 2-46 for more information.
2. Instantiate the routed clock source input as follows:
a) Connect the output of a logic element to the clock input of PLL, CLKDLY, or CLKINT macro.
b) Do not place a clock source I/O (INBUF or INBUF_LVPECL/LVDS) in a relevant global pin location.
3. LVDS-based clock sources are only available on A3P250 through A3P1000 family members. A3P060 and A3P125 only support singleended clock sources. The A3P030 device does not support this feature.
Figure 2-15 • Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT

CLKBUF_LVDS/LVPECL

Note: The A3P030 device does not support this feature.

[^0]Table 2-3 • Available Selections of I/O Standards within CLKBUF and CLKBUF_LVDS/LVPECL Macros

CLKBUF Macros
CLKBUF_LVCMOS5
CLKBUF_LVCMOS33*
CLKBUF_LVCMOS18
CLKBUF_LVCMOS15
CLKBUF_PCI
CLKBUF_LVDS
CLKBUF_LVPECL

Note: *By default, the CLKBUF macro uses the 3.3 V LVTTL I/O technology. For more details refer to the ProASIC3/E Macro Library Guide.

Note: *Visit the Actel website for future application notes concerning the dynamic PLL.
The A3P030 device does not support PLL.

Note: The CLKDLY macro uses programmable delay element type 2. Figure 2-18 • CLKDLY

ProASIC3 Flash Family FPGAs

CCC Electrical Specifications

Timing Characteristics

Table 2-4 • ProASIC3 CCC/PLL Specification

Parameter	Min.	Typ.	Max.	Unit
Clock Conditioning Circuitry Input Frequency fin_ccc	1.5		350	MHz
Clock Conditioning Circuitry Output Frequency fout_ccc	0.75		350	MHz
Delay Increments in Programmable Delay Blocks ${ }^{1,2}$		160		ps
Number of Programmable Values in Each Programmable Delay Block			32	
Input Period Jitter			1.5	ns
CCC Output Peak-to-Peak Period Jitter F $\mathrm{CCC}_{\text {_out }}$	Max Peak-to-Peak Period Jitter			
	1 Global Network Used		3 Global Networks Used	
0.75 MHz to 24 MHz	0.50\%		0.70\%	
24 MHz to 100 MHz	1.00\%		1.20\%	
100 MHz to 250 MHz	1.75\%		2.00\%	
250 MHz to 350 MHz	2.50\%		5.60\%	
Acquisition Time			150	$\mu \mathrm{s}$
Output Duty Cycle	48.5		51.5	\%
Delay Range in Block: Programmable Delay 1 ${ }^{1,2}$	0.6		5.56	ns
Delay Range in Block: Programmable Delay $2{ }^{1,2}$	0.025		5.56	ns
Delay Range in Block: Fixed Delay 1, 2		2.2		ns

Notes:

1. This delay is a function of voltage and temperature. See Table 3-6 on page 3-4 for deratings.
2. $T_{J}=25^{\circ} \mathrm{C}, V_{\mathrm{CC}}=1.5 \mathrm{~V}$
3. The A3P030 device does not support PLL.
\qquad

CCC Physical Implementation ${ }^{2}$

The CCC circuit is composed of the following (Figure 2-19):

- PLL core
- Three phase selectors
- Six programmable delays and one fixed delay that advance/delay phase
- Five programmable frequency dividers that provide frequency multiplication/division (not shown in Figure 2-19, because they are automatically configured based on the user's required frequencies)
- One dynamic shift register that provides CCC dynamic reconfiguration capability

CCC Programming

The clock conditioning circuit block is fully configurable, either via static Flash configuration bits in the array, set by the user in the programming bitstream, or through an asynchronous dedicated shift register dynamically accessible from inside the ProASIC3 device. The dedicated shift register permits parameter changes such as PLL divide ratios and delays during device operation. This latter mode allows the user to dynamically reconfigure the PLL without the need for core programming. The register file is accessed through a simple serial interface. Refer to the UJTAG Applications in ProASIC3/E Devices application note for more information.

Note: Refer to the "Clock Conditioning Circuits" section on page 2-15 and Table 2-4 on page 2-20 for signal descriptions.
Figure 2-19 • PLL Block

Nonvolatile Memory (NVM)

Overview of User Nonvolatile FlashROM (FROM)

ProASIC3 devices have 1 kbit of on-chip nonvolatile Flash memory that can be read from the FPGA core fabric. The FROM is arranged in 8 banks of 128 bits during programming. The 128 bits in each bank are addressable as 16 bytes during the read back of the FROM from the FPGA core (Figure 2-20).
The FROM can only be programmed via the IEEE1532 JTAG port. It cannot be programmed directly from the FPGA core. When programming, each of the 8 128-bit banks can be selectively reprogrammed. The FROM can only be reprogrammed on a bank boundary.

Programming involves an automatic, on-chip bank erase prior to reprogramming the bank. The FROM supports asynchronous read with a nominal 10 ns access time. The FROM can be read on byte boundaries. The upper 3 bits of the FROM address from the FPGA core define the bank that is being accessed. The lower 4 bits of the FROM address from the FPGA core define which of the 16 bytes in the bank is being accessed.

SRAM and FIFO ${ }^{3}$

ProASIC3 devices have embedded SRAM blocks along the north side of the device. In addition, A3P600 and A3P100 have an embedded SRAM block on the south side of the device. To meet the needs of high-performance designs, the memory blocks operate strictly in synchronous mode for both read and write operations. The read and write clocks are completely independent, and each may operate at any desired frequency less than or equal to 350 MHz .

- 4kx1, 2kx2, 1kx4, 512x9 (dual-port RAM - two read, two write or one read, one write)
- $512 \times 9,256 \times 18$ (two-port RAM - one read and one write)
- Sync write, sync pipelined / nonpipelined read

The ProASIC3 memory block includes dedicated FIFO control logic to generate internal addresses and external flag logic (Full, Empty, AFULL, AEMPTY). Block diagrams of the memory modules are illustrated in Figure 2-21 on page 2-24.
During RAM operation, addresses are sourced by the user logic and the FIFO controller is ignored. In FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by internal MUXes. Refer to Figure 2-22 on page 2-25 for more information about the implementation of the embedded FIFO controller.

The ProASIC3 architecture enables the read and write sizes of RAMs to be organized independently, allowing for bus conversion. For example, the write side size can be set to 256×18 and the read size to 512×9.
Both the write width and read width for the RAM blocks can be specified independently with the WW (write width) and RW (read width) pins. The different DxW configurations are: $256 \times 18,512 \mathrm{x} 9,1 \mathrm{kx} 4,2 \mathrm{kx} 2$, and 4 kx 1 .
Refer to the allowable RW and WW values supported for each of the RAM macro types in Table 2-5 on page 2-26.
When widths of one, two, and four are selected, the ninth bit is unused. For example, when writing nine-bit values and reading four-bit values, only the first four bits and the second four bits of each nine-bit value are addressable for read operations. The ninth bit is not accessible.
Conversely, when writing four-bit values and reading nine-bit values, the ninth bit of a read operation will be undefined. The RAM blocks employ little-endian byte order for read and write operations.

ProASIC3 Flash Family FPGAs

Note: The A3P030 device does not support SRAM and FIFO.
Figure 2-21 • Supported Basic RAM Macros

Note: The A3P030 device does not support SRAM and FIFO.
Figure 2-22 • ProASIC3 RAM Block with Embedded FIFO Controller

Signal Descriptions for RAM4K9 ${ }^{4}$

The following signals are used to configure the RAM4K9 memory element:

WIDTHA and WIDTHB

These signals enable the RAM to be configured in one of four allowable aspect ratios (Table 2-5).

Table 2-5 • Allowable Aspect Ratio Settings for WIDTHA[1:0]

WIDTHA1, WIDTHA0	WIDTHB1, WIDTHB0	DxW
00	00	4 kx 1
01	01	2 kx 2
10	10	1 kx 4
11	11	512×9

Note: The aspect ratio settings are constant and cannot be changed on-the-fly.

BLKA and BLKB

These signals are active low and will enable the respective ports when asserted. When a BLKx signal is deasserted, that port's outputs hold the previous value.

WENA and WENB

These signals switch the RAM between read and write modes for the respective ports. A Low on these signals indicates a write operation, and a High indicates a read.

CLKA and CLKB

These are the clock signals for the synchronous read and write operations. These can be driven independently or with the same driver.

PIPEA and PIPEB

These signals are used to specify pipelined read on the output. A Low on PIPEA and/or PIPEB indicates a nonpipelined read and the data appears on the corresponding output in the same clock cycle. A High indicates a pipelined read and data appears on the corresponding output in the next clock cycle.

WMODEA and WMODEB

These signals are used to configure the behavior of the output when RAM is in the write mode. A Low on these signals makes the output retain data from the previous read. A High indicates pass-through behavior where the data being written will appear immediately on the output. This signal is overridden when the RAM is being read.

RESET

This active low signal resets the output to zero when asserted. It does not reset the contents of the memory.

ADDRA and ADDRB

These are used as read or write addresses, and they are 12 bits wide. When a depth of less than 4 k is specified, the unused high-order bits must be grounded (Table 2-6).

Table 2-6 • Address Pins Unused/Used for Various Supported Bus Widths

Dxw	ADDRx	
	Unused	Used
$4 k \times 1$	None	$[11: 0]$
$2 k x 2$	$[11]$	$[10: 0]$
$1 k x 4$	$[11: 10]$	$[9: 0]$
512×9	$[11: 9]$	$[8: 0]$

Note: The "x" in ADDRx implies A or B.

DINA and DINB

These are the input data signals, and they are nine bits wide. Not all nine bits are valid in all configurations. When a data width less than nine is specified, unused high-order signals must be grounded (Table 2-7).

DOUTA and DOUTB

These are the nine-bit output data signals. Not all nine bits are valid in all configurations. As with DINA and DINB, high-order bits may not be used (Table 2-7). The output data on unused pins is undefined.

Table 2-7 • Unused/Used Input and Output Data Pins for Various Supported Bus Widths

Dxw	DINx/DOUTx	
	Unused	Used
4 kx 1	$[8: 1]$	$[0]$
2 kx 2	$[8: 2]$	$[1: 0]$
1 kx 4	$[8: 4]$	$[3: 0]$
512×9	None	$[8: 0]$

Note: The " x " in DINx or DOUTx implies A or B.

Signal Descriptions for RAM512X18 ${ }^{5}$

RAM512X18 has slightly different behavior than the RAM4K9, as it has dedicated read and write ports.

WW and RW

These signals enable the RAM to be configured in one of the two allowable aspect ratios (Table 2-8).
Table 2-8 • Aspect Ratio Settings for WW[1:0]

WW1, WW0	RW1, RW0	DxW
01	01	512×9
10	10	256×18
00,11	00,11	Reserved

WD and RD

These are the input and output data signals, and they are 18 bits wide. When a 512×9 aspect ratio is used for write, WD[17:9] are unused and must be grounded. If this aspect ratio is used for read, then RD[17:9] are undefined.

WADDR and RADDR

These are read and write addresses, and they are nine bits wide. When the 256×18 aspect ratio is used for write and/or read, WADDR[8] and/or RADDR[8] are/is unused and must be grounded.

WCLK and RCLK

These signals are the write and read clocks, respectively. They are both active high.

WEN and REN

These signals are the write and read enables, respectively. They are both active low by default. These signals can be configured as active high.

RESET

This active low signal resets the output to zero when asserted. It does not reset the contents of the memory.

PIPE

This signal is used to specify pipelined read on the output. A Low on PIPE indicates a nonpipelined read and the data appears on the output in the same clock cycle. A High indicates a pipelined read and data appears on the output in the next clock cycle.

Clocking

The dual-port SRAM blocks are only clocked on the rising edge. ACTgen allows falling-edge triggered clocks by adding inverters to the netlist, hence achieving dual-port SRAM blocks that are clocked on either edge (rising or falling). For dual-port SRAM, each port can be clocked on either edge and/or by separate clocks by port.

ProASIC3 devices support inversion (bubble pushing) throughout the FPGA architecture, including the clock input to the SRAM modules. Inversions added to the SRAM clock pin on the design schematic or in the HDL code will be automatically accounted for during design compile without incurring additional delay in the clock path.
The two-port SRAM can be clocked on the rising edge or falling edge of the WCLK and RCLK.
If negative-edge RAM and FIFO clocking is selected for memory macros, clock edge inversion management (bubble pushing) is automatically used within the ProASIC3 development tools, without performance penalty.

Modes of Operation

There are two read modes and one write mode:

- Read Nonpipelined (synchronous - one clock edge): In the standard read mode, new data is driven onto the RD bus in the same clock cycle following RA and REN valid. The read address is registered on the read port clock active edge and data appears at RD after the RAM access time. Setting PIPE to OFF enables this mode.
- Read Pipelined (synchronous - two clock edges): The pipelined mode incurs an additional clock delay from the address to the data but enables operation at a much higher frequency. The read address is registered on the read port active clock edge, and the read data is registered and appears at RD after the second read clock edge. Setting the PIPE to ON enables this mode.
- Write (synchronous - one clock edge): On the write clock active edge, the write data is written into the SRAM at the write address when WEN is high. The setup times of the write address, write enables, and write data are minimal with respect to the write clock. Write and read transfers are described with timing requirements in the "DDR Module Specifications" section on page 3-37.

RAM Initialization

Each SRAM block can be individually initialized on power-up by means of the JTAG port using the UJTAG mechanism (refer to the "JTAG 1532" section on page 251 and the ProASIC3/E SRAMIFIFO Blocks application note). The shift register for a target block can be selected and loaded with the proper bit configuration to enable serial loading. The 4,608 bits of data can be loaded in a single operation.

Signal Descriptions for FIFO4K18 ${ }^{6}$

The following signals are used to configure the FIFO4K18 memory element:

WW and RW

These signals enable the FIFO to be configured in one of the five allowable aspect ratios (Table 2-9).

Table 2-9 • Aspect Ratio Settings for WW[2:0]

WW2, WW1, WW0	RW2, RW1, RW0	DxW
000	000	$4 \mathrm{kx1}$
001	001	2 kx 2
010	010	$1 \mathrm{kx4}$
011	011	512×9
100	100	256×18
$101,110,111$	$101,110,111$	Reserved

WBLK and RBLK

These signals are active low and will enable the respective ports when low. When the RBLK signal is high, that port's outputs hold the previous value.

WEN and REN

Read and write enables. WEN is active low and REN is active high by default. These signals can be configured as active high or low.

WCLK and RCLK

These are the clock signals for the synchronous read and write operations. These can be driven independently or with the same driver.

RPIPE

This signal is used to specify pipelined read on the output. A Low on RPIPE indicates a nonpipelined read and the data appears on the output in the same clock cycle. A High indicates a pipelined read and data appears on the output in the next clock cycle.

RESET

This active low signal resets the output to zero when asserted. It resets the FIFO counters. It also sets all the RD pins low, the Full and AFULL pins low, and the Empty and AEMPTY pins high (Table 2-10).

WD

This is the input data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. When a data width less than 18 is specified, unused higher-order signals must be grounded (Table 2-10).

RD

This is the output data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. Like the WD bus, highorder bits become unusable if the data width is less than
18. The output data on unused pins is undefined (Table 2-10).

Table 2-10 • Input Data Signal Usage for Different Aspect Ratios

DxW	WD/RD Unused
$4 k x 1$	$\mathrm{WD}[17: 1], R D[17: 1]$
2 kx 2	$\mathrm{WD}[17: 2], \mathrm{RD}[17: 2]$
$1 \mathrm{kx4}$	$\mathrm{WD}[17: 4], \mathrm{RD}[17: 4]$
512×9	$\mathrm{WD}[17: 9], \mathrm{RD}[17: 9]$
256×18	-

ESTOP, FSTOP

ESTOP is used to stop the FIFO read counter from further counting once the FIFO is empty (i.e., the Empty flag goes high). A High on this signal inhibits the counting.
FSTOP is used to stop the FIFO write counter from further counting once the FIFO is full (i.e., the Full flag goes high). A High on this signal inhibits the counting.
For more information on these signals, refer to the "ESTOP and FSTOP Usage" section.

FULL, EMPTY

When the FIFO is full and no more data can be written, the Full flag asserts high. The Full flag is synchronous to WCLK to inhibit writing immediately upon detection of a full condition and to prevent overflows. Since the write address is compared to a resynchronized (and thus timedelayed) version of the read address, the Full flag will remain asserted until two WCLK active edges after a read operation eliminates the full condition.
When the FIFO is empty and no more data can be read, the Empty flag asserts high. The Empty flag is synchronous to RCLK to inhibit reading immediately upon detection of an empty condition and to prevent underflows. Since the read address is compared to a resynchronized (and thus time delayed) version of the write address, the Empty flag will remain asserted until two RCLK active edges, after a write operation, removes the empty condition.
For more information on these signals, refer to the "FIFO Flag Usage Considerations" section on page 2-29.

AFULL, AEMPTY

These are programmable flags and will be asserted on the threshold specified by AFVAL and AEVAL, respectively.
When the number of words stored in the FIFO reaches the amount specified by AEVAL while reading, the AEMPTY output will go high. Likewise, when the number of words stored in the FIFO reaches the amount specified by AFVAL while writing, the AFULL output will go high.

AFVAL, AEVAL

The AEVAL and AFVAL pins are used to specify the almost-empty and almost-full threshold values, respectively. They are 12-bit signals. For more information on these signals, refer to the "FIFO Flag Usage Considerations" section.

ESTOP and FSTOP Usage

The ESTOP pin is used to stop the read counter from counting any further once the FIFO is empty (i.e., the EMPTY flag goes high). Likewise, the FSTOP pin is used to stop the write counter from counting any further once the FIFO is full (i.e., the Full flag goes high).
The FIFO counters in the ProASIC3 device start the count at 0 , reach the maximum depth for the configuration (e.g., 511 for a 512×9 configuration), and then restart at 0 . An example application for the ESTOP, where the read counter keeps counting, would be writing to the FIFO once and reading the same content over and over without doing another write.

FIFO Flag Usage Considerations

The AEVAL and AFVAL pins are used to specify the 12-bit AEMPTY and AFULL threshold values, respectively. The FIFO contains separate 12-bit write address (WADDR) and read address (RADDR) counters. WADDR is incremented every time a write operation is performed, and RADDR is incremented every time a read operation is performed. Whenever the difference between WADDR and RADDR is greater than or equal to AFVAL, the AFULL output is asserted. Likewise, whenever the difference between WADDR and RADDR is less than or equal to AEVAL, the AEMPTY output is asserted. To handle different read and write aspect ratios, AFVAL and AEVAL are expressed in terms of total data bits instead of total data words. When users specify AFVAL and AEVAL in terms of read or write words, the ACTgen tool translates them into bit addresses and configures these signals automatically. ACTgen configures the AFULL flag, AFULL, to assert when the write address exceeds the read address by at least a predefined value. In a 2 kx 8 FIFO, for example, a value of 1,500 for AFVAL means that the AFULL flag will be asserted after a write when the difference between the write address and the read address reaches 1,500 (there have been at least 1,500 more writes than reads). It will stay asserted until the difference between the write and read addresses drops below 1,500.
The AEMPTY flag is asserted when the difference between the write address and the read address is less than a predefined value. In the example above, a value of 200 for AEVAL means that the AEMPTY flag will be asserted when a read causes the difference between the write address and the read address to drop to 200 . It will stay asserted until that difference rises above 200. Note that the FIFO can be configured with different read and
write widths; In this case the AFVAL setting is based on the number of write data entries and the AEVAL setting is based on the number of read data entries. For aspect ratios of 512×9 and 256×18, only 4,096 bits can be addressed by the 12 bits of AFVAL and AEVAL, the number of words must be multiplied by 8 and 16 , instead of 9 and 18. The ACTgen tool automatically uses the proper values. To avoid half-words being written or read, which could happen if different read and write aspect ratios are specified, the FIFO will assert Full or Empty as soon as at least a minimum of one word cannot be written or read. For example, if a two-bit word is written and a four-bit word is being read, FIFO will remain in the Empty state when the first word is written. This occurs even if the FIFO is not completely empty, because in this case a complete word cannot be read. The same is applicable in the Full state. If a four-bit word is written and a two-bit word is read, the FIFO is full and one word is read. The FULL flag will remain asserted because a complete word cannot be written at this point.
Refer to the ProASIC3/E SRAMIFIFO Blocks application note for more information.

Advanced I/Os

Introduction

ProASIC3 devices feature a flexible I/O structure, supporting a range of mixed voltages ($1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, and 3.3 V) through a bank-selectable voltage. Table 2-11 on page 2-30, Table 2-12 on page 2-30, and Table 2-18 on page 2-44 show the voltages and the compatible I/O standards. I/Os provide programmable slew rates (except A3P030), drive strengths, weak pull-up, and weak pulldown circuits. 3.3 V PCI and $3.3 \mathrm{~V} \mathrm{PCI-X} \mathrm{are} 5 \mathrm{~V}$ tolerant. See the " 5 V Input Tolerance" section on page 2-37 for possible implementations of 5 V tolerance.
All I/Os are in a known state during power-up and any power-up sequence is allowed without current impact. Refer to the for more information.

I/O Tile

The ProASIC3 I/O tile provides a flexible, programmable structure for implementing a large number of I/O standards. In addition, the registers available in the I/O tile in selected I/O banks can be used to support highperformance register inputs and outputs, with register enable if desired (Figure 2-23 on page 2-32). The registers can also be used to support the JESD-79C Double Data Rate (DDR) standard within the I/O structure (see the "Double Data Rate (DDR) Support" section on page 2-33 for more information).
As depicted in Figure 2-23 on page 2-32, all I/O registers share one CLR port. The output register and output enable register share one CLK port. Refer to the "I/O Registers" section on page 2-32 for more information.

I/O Banks and I/O Standards Compatibility

I/Os are grouped into I/O voltage banks. There are four I/O banks on the A3P250 through A3P1000. The A3P030, A3P060, and A3P125 have two I/O banks. Each I/O voltage bank has dedicated input/output supply and ground voltages (VMV/GNDQ for input buffers and $\mathrm{V}_{\mathrm{CCI}} / \mathrm{GND}$ for output buffers). Because of these dedicated supplies, only I/Os with compatible standards can be assigned to the same I/O voltage bank. Table 2-12 shows the required voltage compatibility values for each of these voltages.

For more information about I/O and global assignments to I/O banks, refer to the specific pin table of the device in the "Package Pin Assignments" section on page 4-1 and the "User I/O Naming Convention" section on page 2-46.
I/O standards are compatible if their $\mathrm{V}_{\mathrm{CCI}}$ and VMV values are identical. VMV and GNDQ are "quiet" input power supply pins and are not used on A3P030.

Table 2-11 • ProASIC3 Supported I/O Standards

| | A3P030 | A3P060 | A3P125 | A3P250 | A3P400 | A3P600 | A3P10000 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Single-Ended | | | | | | | |
| LVTTL/LVCMOS 3.3 V, LVCMOS $2.5 \mathrm{~V} / 1.8 \mathrm{~V} / 1.5 \mathrm{~V}$,
 LVCMOS $2.5 / 5.0 \mathrm{~V}$ | \checkmark |
| $3.3 \vee$ PCI/3.3 V PCI-X | | | | | | | |
| Differential | - | \checkmark | \checkmark | \checkmark | \checkmark | \checkmark | \checkmark |
| LVPECL and LVDS | | | | | | | |

Table 2-12 • $\mathbf{V}_{\text {CCI }}$ Voltages and Compatible Standards

$\mathbf{V}_{\text {CCI }}$ and VMV (typical)	Compatible Standards
3.3 V	LVTTL/LVCMOS 3.3, PCI 3.3, LVPECL
2.5 V	LVCMOS 2.5, LVCMOS 2.5/5.0, LVDS
1.8 V	LVCMOS 1.8
1.5 V	LVCMOS 1.5

ProASIC3 Flash Family FPGAs

Features Supported on Every I/O

Table 2-13 lists all features supported by transmitter/receiver for single-ended and differential I/Os.
Table 2-13 • I/O Features

Feature	Description
Single-Ended Transmitter Features	- Hot insertion in every mode except PCI or 5 V input tolerant (these modes use clamp diodes and do not allow hot insertion) (A3P030 only) - Weak pull-up and pull-down - Two slew rates (except A3P030) - Skew between output buffer enable/disable time: 2 ns delay (delay on rising edge) and 0 ns delay on falling edge (see "Selectable Skew between Output Buffer Enable/ Disable Time" on page 2-41 for more information) - Three drive strengths - 5 V tolerant receiver (" 5 V Input Tolerance" section on page 2-37) - LVTTLILVCMOS 3.3 V outputs compatible with 5 V TTL inputs (" 5 V Output Tolerance" section on page 2-40) - High performance (Table 2-14)
Single-Ended Receiver Features	- Electrostatics Discharge (ESD) protection - High performance (Table 2-14) - Separate ground and power planes, GNDQNMV, for input buffers only to avoid output-induced noise in the input circuitry
Differential Receiver Features (A3P250 through A3P1000)	- ESD protection - High performance (Table 2-14) - Separate ground and power plane, GNDQ, and VMV pins for input buffers only to avoid output-induced noise in the input circuitry
CMOS-Style LVDS or LVPECL Transmitter	- Two I/Os and external resistors are used to provide a CMOSstyle LVDS or LVPECL transmitter solution - Weak pull-up and pull-down - Fast slew rate

Table 2-14 • Maximum I/O Frequency for Single-Ended and Differential I/Os (maximum drive strength and high slew selected)

Specification	Performance Up To
LVTTLLVCMOS 3.3 V	200 MHz
LVCMOS 2.5 V	250 MHz
LVCMOS 1.8 V	200 MHz
LVCMOS 1.5 V	130 MHz
PCI	200 MHz
PCI-X	200 MHz
LVDS	350 MHz
LVPECL	350 MHz

ProASIC3 Flash Family FPGAs

I/O Registers

Each I/O module contains several input, output, and enable registers. Refer to Figure 2-23 for a simplified representation of the I/O block.

The number of input registers is selected by a set of switches (not shown in Figure 2-23) between registers to implement single or differential data transmission to and from the FPGA core. The Designer software sets these switches for the user.
A common CLR/PRE signal is employed by all I/O registers when I/O register combining is used. Input Register 2 does not have a CLR/PRE pin, as this register is used for DDR implementation. The I/O registers combining must satisfy some rules.

Note: ProASIC3 I/Os have registers to support DDR functionality (see the "Double Data Rate (DDR) Support" section on page 2-33 for more information).
Figure 2-23 • I/O Block Logical Representation

Double Data Rate (DDR) Support

ProASIC3 devices support 350 MHz DDR inputs and outputs. In DDR mode, new data is present on every transition of the clock signal. Clock and data lines have identical bandwidths and signal integrity requirements, making it very efficient for implementing very highspeed systems.
In addition, high-speed DDR interfaces can be implemented using LVDS.

Input Support for DDR

The basic structure to support a DDR input is shown in Figure 2-24. Three input registers are used to capture incoming data, which is presented to the core on each rising edge of the I/O register clock.
Each I/O tile on ProASIC3 devices supports DDR inputs.

Output Support for DDR

The basic DDR output structure is shown in Figure 2-25 on page 2-34. New data is presented to the output every half clock cycle. Note: DDR macros and I/O registers do not require additional routing. The combiner automatically recognizes the DDR macro and pushes its registers to the I/O register area at the edge of the chip. The routing delay from the I/O registers to the I/O buffers is already taken into account in the DDR macro.
Refer to the Actel application note Using DDR for ProASIC3/E Devices for more information.

Figure 2-24 • DDR Input Register Support in ProASIC3 Devices

ProASIC3 Flash Family FPGAs

Figure 2-25 • DDR Output Support in ProASIC3 Devices

Hot-Swap Support

Hot-swapping (also called hot plugging) is the operation of hot insertion or hot removal of a card in (or from) a powered-up system. The levels of hot-swap support and examples of related applications are described in Table 215. The I/Os also need to be configured in hot insertion mode if hot plugging compliance is required. The A3P030 device has an I/O structure that allows the support of Level 3 and Level 4 hot swap with only two levels of staging.
For boards and cards with three levels of staging, it is required that card power supplies have time to reach their final value before the I/Os are connected. Pay attention to the sizing of power supply decoupling
capacitors on the card to ensure that the power supplies are not overloaded with capacitance.
Cards with three levels of staging should have the following sequence:

- Grounds
- Powers
- I/Os and other pins

For Level 3 and Level 4 compliance with the A3P030 device, cards with two levels of staging should have the following sequence:

- Grounds
- Powers, I/Os, other pins

Table 2-15 • Levels of Hot-Swap Support

Hot swapping Level	Description	Power Applied to Device	Bus State	Card Ground Connection	Device Circuitry Connected to Bus Pins	Example of Application with Cards That Contain ProASIC3 Devices	Compliance of ProASIC3 Devices
1	Cold Swap	No	-	-	-	System and card with Actel's FPGA chip are powered down, then the card gets plugged into the system, then the power supplies are turned on for the system but not for the FPGA on the card.	A3P030: Compliant Other ProASIC3 devices: Compliant if the bus switch is used to isolate FPGA I/Os from the rest of the system.
2	Hot Swap while reset	Yes	Held in reset state	Must be made and maintained for 1 msec before, during, and after insertion/ removal	$-$	In $\quad \mathrm{PCl} \quad$ hot-plug specification Reset control circuitry isolates the card busses until the card supplies are at their nominal operating levels and stable.	A3P030: Compliant I/Os can but do not have to be set to hot-insertion mode. Other ProASIC3 devices: Compliant
3	Hot Swap while bus idle	Yes	Held idle (no ongoing I/O processes during insertion/ removal)	$\begin{gathered} \text { Same as Level } \\ 2 \end{gathered}$	Must remain glitch-free during power up or power down	Board bus shared with card bus is "frozen," and there is no toggling activity on the bus. It is critical that the logic states set on the bus signal do not get disturbed during card insertion/removal.	A3P030: Compliant with cards with two levels of staging. Other ProASIC3 devices: Compliant with cards with three levels of staging.
4	Hot Swap on an active bus	Yes	Bus may have active I/O processes ongoing, but device being inserted or removed must be idle	$\begin{array}{\|c} \hline \text { Same as Level } \\ 2 \end{array}$	Same as Level 3	There is activity on the system bus, and it is critical that the logic states set on the bus signal do not get disturbed during card insertion/removal.	A3P030: Compliant with cards with two levels of staging. Other ProASIC3 devices: Compliant with cards with three levels of staging.

ProASIC3 Flash Family FPGAs

Cold-Sparing Support

Cold-sparing means that a subsystem with no power applied (usually a circuit board) is electrically connected to the system that is in operation. This means that all input buffers of the subsystem must present very high input impedance with no power applied so as not to disturb the operating portion of the system.
A3P030 device fully supports cold-sparing since the I/O clamp diode is always off (see table 2-16). For other ProASIC3 devices, due to the I/O clamp diode always being active, cold-sparing can be accomplished by either employing bus switch to isolate the device I/Os from the rest of the system, or by driving each ProASIC3 IO pin to 0 V .
In designs where ProASIC3 A3P030 are expected to be cold sparing compliant after supplies are turned off, a discharge resistor, switched resistor, or discharge path needs to be provided from each power supply to ground. If the resistor is chosen, the resistor value must be calculated based on decoupling capacitance on a given power supply on the board (this decoupling capacitor is in parallel with this resistor). The RC constant should ensure full discharge of supplies before cold-sparing functionality is required. The resistor is necessary to ensure that the power pins get discharged to ground every time there is an interruption of power supply on the device.

Electrostatic Discharge (ESD) Protection

ProASIC3 devices are tested per JEDEC Standard JESD22-A114-B.

ProASIC3 devices contain clamp diodes at every I/O, global, and power pad. Clamp diodes protect all device pads against damage from ESD as well as from excessive voltage transients.

Each I/O has two clamp diodes. One diode has its positive (P) side connected to the pad and its negative (N) side connected to $V_{C C I}$. The second diode has its P side connected to GND, and its N side connected to the pad. During operation, these diodes are normally biased in the Off state, except when transient voltage is significantly above V_{CC} or below GND levels.
In A3P030, the first diode is always off. On other ProASIC3 devices, the clamp diode is always on and cannot be switched off.

By selecting the appropriate I/O configuration, the diode is turned on or off. Refer to Table 2-16 for more information about the I/O standards and the clamp diode.

The second diode is always connected to the pad, regardless of the I/O configuration selected.

Table 2-16 • I/O Hot-Swap and 5 V Input Tolerance Capabilities

I/O Assignment	Clamp Diode ${ }^{1}$		Hot Insertion		5 V Input Tolerance ${ }^{2}$		Input Buffer	Output Buffer
	A3P030	Other ProASIC3 Devices	A3P030	Other ProASIC3 Devices	A3P030	Other ProASIC3 Devices		
3.3 V LVTTL/VCMOS	No	Yes	Yes	No	Yes ${ }^{2}$	Yes ${ }^{2}$	Enab	sabled
$3.3 \mathrm{VPCI}, 3.3 \mathrm{VPCI}-\mathrm{X}$	N/A	Yes	N/A	No	N/A	Yes ${ }^{2}$	Enabl	Disabled
LVCMOS $2.5 \mathrm{~V}^{4}$	No	Yes	Yes	No	Yes ${ }^{2}$	Yes ${ }^{3}$	Enable	Disabled
LVCMOS $2.5 \mathrm{~V} / 5.0 \mathrm{~V}^{5}$	No	Yes	Yes	No	Yes ${ }^{2}$	Yes ${ }^{3}$	Enabl	Disabled
LVCMOS 1.8 V	No	Yes	Yes	No	No	No	Enable	Disabled
LVCMOS 1.5 V	No	Yes	Yes	No	No	No	Enable	Disabled
Differential, LVDS/ LVPECL ${ }^{6}$	N/A	Yes	N/A	No	N/A	No	Enable	Disabled

Notes:

1. The clamp diode is always off for the A3PO30 device and always active for other ProASIC3 devices.
2. Can be implemented with an external IDT bus switch, resistor divider, or zener with resistor.
3. Can be implemented with an external resistor and an internal clamp diode.
4. LVCMOS 2.5 V I/O standard is supported by the A3PO30 device only. In the ACTgen Cores Reference Guide, select the LVCMOS25 macro for LVCMOS 2.5 V I/O standard support for the A3P030 device.
5. LVCMOS 2.5 V / 5.0 V I/O standard is supported by all ProASIC3 devices except A3P030. In the ACTgen Cores Reference Guide, select the LVCMOS5 macro for LVCMOS2.5 V/5.0 V I/O standard for all ProASIC3 devices except A3P030.
6. Bidirectional LVDS or LVPECL buffers are not supported. I/Os can either be configured as input buffers or output buffers.

5 V Input Tolerance

I/Os can support 5 V input tolerance when LVTTL 3.3 V , LVCMOS 3.3 V, LVCMOS 2.5 V , and LVCMOS 2.5 V configurations are used (see Table 2-17 on page 2-40 for more details). There are four recommended solutions (see Figure 2-26 to Figure 2-29 on page 2-40 for details of board and macro setups) to achieve 5 V receiver tolerance. All the solutions meet a common requirement of limiting the voltage at the I/O input to 3.6 V or less. In fact, the I/O absolute maximum voltage rating is 3.6 V , and any voltage above 3.6 V may cause long term gate oxide failures.

Solution 1

The board-level design needs to ensure that the reflected waveform at the pad does not exceed the limits provided in Table 3-3 on page 3-2. This is a long term reliability requirement.
This scheme will also work for a $3.3 \mathrm{~V} \mathrm{PCl} / \mathrm{PCI}-\mathrm{X}$ configuration, but the internal diode should not be used for clamping, and the voltage must be limited by the two external resistors as explained below. Relying on the diode clamping would create an excessive pad DC voltage of $3.3 \mathrm{~V}+0.7 \mathrm{~V}=4 \mathrm{~V}$.
Here are some examples of possible resistor values (based on a simplified simulation model with no line effects, and 10Ω transmitter output resistance, where Rtx_out_high $=\left(\mathrm{V}_{\mathrm{CCI}}-\mathrm{V}_{\mathrm{OH}}\right) / \mathrm{I}_{\mathrm{OH}}$, Rtx_out_low $\left.=\mathrm{V}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OL}}\right)$.

Example 1 (high speed, high current):
Rtx_out_high = Rtx_out_low $=10 \Omega$
$\mathrm{R} 1=36 \Omega(+/-5 \%), \mathrm{P}(\mathrm{r} 1) \mathrm{min}=0.069 \Omega$
$R 2=82 \Omega(+/-5 \%), P(r 2) \min =0.158 \Omega$
Imax_tx $=5.5 \mathrm{~V} /(82 * 0.95+36 * 0.95+10)=45.04$ mA
$\mathrm{t}_{\text {RISE }}=\mathrm{t}_{\text {FALL }}=0.85 \mathrm{~ns}$ at C_pad_load $=10 \mathrm{pF}$ (includes up to 25% safety margin)
$t_{\text {RISE }}=t_{\text {FALL }}=4 \mathrm{~ns}$ at C_pad_load $=50 \mathrm{pF}$ (includes up to 25% safety margin)
Example 2 (low-medium speed, medium current):
Rtx_out_high = Rtx_out_low $=10 \Omega$
$\mathrm{R} 1=220 \Omega(+/-5 \%), \mathrm{P}(\mathrm{r} 1) \min =0.018 \Omega$
$\mathrm{R} 2=390 \Omega(+/-5 \%), \mathrm{P}(\mathrm{r} 2) \min =0.032 \Omega$
Imax_tx $=5.5 \mathrm{~V} /(220 * 0.95+390 * 0.95+10)=9.17$ mA
$t_{\text {RISE }}=t_{\text {FALL }}=4 \mathrm{~ns}$ at C_pad_load $=10 \mathrm{pF}$ (includes up to 25% safety margin)
$t_{\text {RISE }}=t_{\text {FALL }}=20 \mathrm{~ns}$ at C_pad_load $=50 \mathrm{pF}$ (includes up to 25% safety margin)
Other values of resistors are also allowed as long as the resistors are sized appropriately to limit the voltage at the receiving end to $2.5 \mathrm{~V}<\operatorname{Vin}(r x)<3.6 \mathrm{~V}^{*}$ when the transmitter sends a logic ' 1 '. This range of Vin_dc(rx) must be assured for any combination of transmitter supply ($5 \mathrm{~V}+/-0.5 \mathrm{~V}$), transmitter output resistance, and board resistor tolerances.
Temporary overshoots are allowed according to Table 3-3 on page 3-2.

Solution 1

ProASIC3 Flash Family FPGAs

Solution 2

The board-level design must ensure that the reflected waveform at the pad does not exceed limits provided in Table 3-3 on page 3-2. This is a long-term reliability requirement.
This scheme will also work for a $3.3 \mathrm{~V} \mathrm{PCI} / \mathrm{PCIX}$ configuration, but the internal diode should not be used for clamping, and the voltage must be limited by the external resistors and zener, as shown in Figure 2-27. Relying on the diode clamping would create an excessive pad DC voltage of $3.3 \mathrm{~V}+0.7 \mathrm{~V}=4 \mathrm{~V}$.

Solution 2

Figure 2-27 • Solution 2

Solution 3

The board-level design must ensure that the reflected waveform at the pad does not exceed limits provided in Table 3-3 on page 3-2. This is a long-term reliability requirement.
This scheme will also work for a 3.3 V PCI/PCIX configuration, but the internal diode should not be used for clamping, and the voltage must be limited by the bus switch, as shown in Figure 2-28. Relying on the diode clamping would create an excessive pad DC voltage of $3.3 \mathrm{~V}+0.7 \mathrm{~V}=4 \mathrm{~V}$.

Solution 4

Solution 4

Figure 2-29 • Solution 4
Table 2-17 •Comparison Table for 5 V Compliant Receiver Scheme

Solution	Board Components	Speed	Current Limitations
1	Two resistors	Low to High ${ }^{1}$	Limited by transmitter's drive strength
2	Resistor and Zener 3.3 V	Medium	Limited by transmitter's drive strength
3	Bus switch	High	N/A
4	Resistor		
	$R=250 \Omega$ at $T_{J}=70^{\circ} \mathrm{C}$	Low	Diode current
$R=500 \Omega$ at $T_{J}=85^{\circ} \mathrm{C}$		12 mA at $\mathrm{T}_{J}=70^{\circ} \mathrm{C}$	
	$R=1000 \Omega$ at $\mathrm{T}_{J}=100^{\circ} \mathrm{C}$		mA at $\mathrm{T}_{J}=85^{\circ} \mathrm{C}$
			mA at $\mathrm{T}_{J}=100^{\circ} \mathrm{C}$

Notes:

1. Speed and current consumption increase as the board resistance values decrease.
2. Resistor values ensure I/O diode long term reliability.

5 V Output Tolerance

ProASIC3 I/Os must be set to 3.3 V LVTTL or 3.3 V LVCMOS mode to reliably drive 5 V TTL receivers. It is also critical that there be NO external I/O pull-up resistor to 5 V , since this resistor would pull the I/O pad voltage beyond the 3.6 V absolute maximum value, and consequently cause damage to the I/O.

When set to 3.3 V LVTTL or 3.3 V LVCMOS mode, ProASIC3 I/Os can directly drive signals into 5 V TTL receivers. In fact, $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$ in both 3.3 V LVTTL and 3.3 V LVCMOS modes exceed the $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ and $\mathrm{V}_{1 \mathrm{H}}=2 \mathrm{~V}$ level requirements of 5 V TTL receivers. Therefore, level ' 1 ' and level ' 0 ' will be recognized correctly by 5 V TTL receivers.

Selectable Skew between Output Buffer Enable/Disable Time

The configurable skew block is used to delay the output buffer assertion (enable) without affecting deassertion (disable) time.

Figure 2-30 • Block Diagram of Output Enable Path

Figure 2-31 • Timing Diagram (Option1: Bypasses Skew Circuit)

Less than
0.1 ns

[^1]At the system level, the skew circuit can be used in applications where transmission activities on bidirectional data lines need to be coordinated. This circuit, when selected, provides a timing margin that can prevent bus contention and subsequent data loss and/or transmitter over-stress due to transmitter-to-transmitter
current shorts. Figure 2-33 presents an example of the skew circuit implementation in a bidirectional communication system. Figure 2-34 shows how bus contention is created, and Figure 2-32 on page 2-41 shows how it can be avoided with the skew circuit.

Figure 2-33 • Example of Implementation of Skew Circuits in Bidirectional Transmission Systems Using ProASIC3 Devices

[^2]

Figure 2-35 • Timing Diagram (with Skew Circuit Selected)

ProASIC3 Flash Family FPGAs

I/O Software Support

In the ProASIC3 development software, default settings have been defined for the various I/O standards that are supported. Changes can be made to the default settings via the use of attributes; however, not all I/O attributes are applicable for all I/O standards. Table 2-18 lists the valid I/O attributes that can be manipulated by the user for each I/O standard.
Single-ended I/O standards in ProASIC3 support up to five different drive strengths.
Table 2-18 • I/O Attributes vs. I/O Standard Applications

I/O Standards	SLEW (output only)	OUT_DRIVE (output only)	SKEW (all macros with OE)*	RES_PULL	OUT_LOAD (output only)	COMBINE_REGISTER
LVTTLLVCMOS 3.3 V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
LVCMOS 2.5 V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
LVCMOS $2.5 / 5.0 \mathrm{~V}$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
LVCMOS 1.8 V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
LVCMOS 1.5 V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
PCI $(3.3 \mathrm{~V})$			\checkmark		\checkmark	\checkmark
PCI-X $(3.3 \mathrm{~V})$	\checkmark		\checkmark		\checkmark	\checkmark
LVDS					\checkmark	\checkmark
LVPECL					\checkmark	

[^3]\qquad

Table 2-19 lists the default values for the above selectable I/O attributes as well as those that are preset for that I/O standard. See Table 2-21 for SLEW and OUT_DRIVE settings.

Table 2-19 • I/O Default Attributes

I/O Standards	SLEW (output only)	OUT DRIVE (output only)	SKEW) (tribuf and bibuf only)	RES_PULL	OUT LOAD (output only)	COMBINE_REGISTER
LVTTL/LVCMOS 3.3 V	See Table 2-21	See Table 2-21	Off	None	35 pF	-
LVCMOS 2.5 V			Off	None	35 pF	-
LVCMOS 2.5/5.0 V			Off	None	35 pF	-
LVCMOS 1.8 V			Off	None	35 pF	-
LVCMOS 1.5 V			Off	None	35 pF	-
$\mathrm{PCI}(3.3 \mathrm{~V}$)			Off	None	10 pF	-
PCI-X (3.3 V)			Off	None	10 pF	-
LVDS			Off	None	0 pF	-
LVPECL			Off	None	0 pF	-

Weak Pull-Up and Weak Pull-Down Resistors

ProASIC3 devices support optional weak pull-up and pull-down resistors per I/O pin. When the I/O is pulled up, it is connected to the $\mathrm{V}_{\mathrm{CCI}}$ of its corresponding I/O bank. When it is pulled-down it is connected to GND. Refer to Table 3-20 on page 3-16 for more information.

Slew Rate Control and Drive Strength

ProASIC3 devices support output slew rate control: high and low. The A3P030 device does not support slew rate control. The high slew rate option is recommended to minimize the propagation delay. This high-speed option may introduce noise into the system if appropriate signal integrity measures are not adopted. Selecting a low slew rate reduces this kind of noise but adds some delays in the system. Low slew rate is recommended when bus transients are expected. Drive strength should also be selected according to the design requirements and noise immunity of the system.

The output slew rate and multiple drive strength controls are available in LVTTL/LVCMOS 3.3 V , LVCMOS 2.5 V , LVCMOS $2.5 \mathrm{~V} / 5.0 \mathrm{~V}$ input, LVCMOS 1.8 V , and LVCMOS 1.5 V. All other I/O standards have a high output slew rate by default.
For A3P030, refer to Table 2-20; for other ProASIC3 devices, refer to Table 2-21 for more information about the slew rate and drive strength specification.

Table 2-20 • A3P030 I/O Standards-OUT_DRIVE Settings

I/O Standards	OUT_DRIVE (mA)		
	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{8}$
	\checkmark	\checkmark	\checkmark
LVCMOS 2.5 V	\checkmark	\checkmark	\checkmark
LVCMOS 1.8 V	\checkmark	\checkmark	-
LVCMOS 1.5 V	\checkmark	-	-

Table 2-21 • Other ProASIC3 Device I/O Standards—SLEW and OUT_DRIVE Settings

I/O Standards	OUT_DRIVE (mA)							
	2	4	6	8	12	16		
LVTTL/LVCMOS 3.3 V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	High	Low
LVCMOS 2.5 V	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-	High	Low
LVCMOS 1.8 V	\checkmark	\checkmark	\checkmark	\checkmark	-	-	High	Low
LVCMOS 1.5 V	\checkmark	\checkmark	-	-	-	-	High	Low

ProASIC3 Flash Family FPGAs

User I/O Naming Convention

Due to the comprehensive and flexible nature of ProASIC3 device user I/Os, a naming scheme is used to show the details of the I/O (Figure 2-36 and Figure 2-37 on page 2-47). The name identifies to which I/O bank it belongs, as well as the pairing and pin polarity for differential I/Os.

I/O Nomenclature $=$ Gmn/IOuxwBy
Gmn is only used for I/Os that also have CCC access - i.e., global pins.
$\mathrm{G}=$ Global
$m=$ Global pin location associated with each CCC on the device: A (northwest corner), B (northeast corner), C (east middle), D (southeast corner), E (southwest corner), and F (west middle).
$n=$ Global input MUX and pin number of the associated Global location m, either A0, A1, A2, B0, B1, B2, C0, C1, or C2. Figure 2-15 on page 2-18 shows the three input pins per each clock source MUX at the CCC location m.
$\mathrm{u}=\mathrm{I} / \mathrm{O}$ pair number in the bank, starting at 00 from the northwest I/O bank in a clockwise direction.
$\mathrm{x}=\mathrm{P}$ (Positive) or N (Negative) for differential pairs, or R (Regular - single-ended) for the I/Os that support singleended and voltage-referenced I/O standards only. U (Positive-LVDS only) or V (Negative-LVDS only) restrict the I/O differential pair from being selected as LVPECL pair.
$\mathrm{w}=\mathrm{D}$ (Differential Pair), P (Pair), S (Single-Ended). D (Differential Pair) if both members of the pair are bonded out to adjacent pins or are separated only by one GND or NC pin; P (Pair) if both members of the pair are bonded out but do not meet the adjacency requirement; or S (Single-Ended) if the I/O pair is not bonded out. For Differential (D) pairs, adjacency for ball grid packages means only vertical or horizontal. Diagonal adjacency does not meet the requirements for a true differential pair.
B = Bank
y = Bank number [0..3]. The Bank number starts at 0 from the northwest I/O bank and proceeds in a clockwise direction.

Note: The A3P030 device does not support PLL ($V_{\text {COMPLF }}$ and $V_{\text {CCPLF }}$ pins).
Figure 2-36 • Naming Conventions of ProASIC3 Devices with Two I/O Banks

Pin Descriptions

Supply Pins
GND Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I / O banks. Within the package, the GNDQ plane is decoupled from the simultaneous switching noise originated from the output buffer ground domain. This minimizes the noise transfer within the package, and improves input signal integrity. GNDQ needs to always be connected on the board to GND.

$\mathbf{V}_{\text {cC }} \quad$ Core Supply Voltage

Supply voltage to the FPGA core, nominal 1.5 V .

$\mathbf{V}_{\mathbf{C C I}} \mathbf{B x} \quad \quad I / O$ Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are eight I/O banks on ProASIC3 devices plus a dedicated $\mathrm{V}_{\text {JTAG }}$ bank. Each bank can have a separate $\mathrm{V}_{\mathrm{CCI}}$ connection. All I/Os in a bank will run off the same $\mathrm{V}_{\mathrm{CCI}} \mathrm{Bx}$ supply. $\mathrm{V}_{\mathrm{CCI}}$ can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V nominal voltage. Unused I/O banks should have their corresponding $\mathrm{V}_{\mathrm{CCI}}$ pins tied to GND.

VMVx I/O Supply Voltage (quiet)

Quiet supply voltage to the input buffers of each I/O bank. X is the bank number. Within the package, the VMV plane is decoupled from the simultaneous switching noise originated from the output buffer $\mathrm{V}_{\mathrm{CCl}}$ domain. This minimizes the noise transfer within the package, and improves input signal integrity. Each bank must have at least one VMV connection. All I/Os in a bank run off the same VMVx supply. VMV is used to provide a quiet supply voltage to the input buffers of each I/O bank. VMVx can be $1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}$, or 3.3 V nominal voltage. Unused I/O banks should have their corresponding VMV pins tied to GND. VMV and $\mathrm{V}_{\mathrm{CCI}}$ should be at the same voltage within a given I/O bank. Used VMV pins must be connected to the corresponding $\mathrm{V}_{\mathrm{CCI}}$ pins of the same bank (i.e., VMV0 to $\mathrm{V}_{\mathrm{CCI}} \mathrm{B0}$, VMV1 to $\mathrm{V}_{\mathrm{Cl}} \mathrm{B} 1$, etc.).

$\mathbf{V}_{\text {CCPLF }} \quad$ PLL Supply Voltage ${ }^{7}$

Supply voltage to analog PLL, nominal 1.5 V . If unused, $V_{\text {CCPLF }}$ should be tied to GND. Refer to the PLL application note for a complete board solution for the PLL analog power supply and ground.

$\mathbf{V}_{\text {COMPLF }} \quad$ PLL Ground ${ }^{7}$

Ground to analog PLL. Unused $\mathrm{V}_{\text {COMPLF }}$ pin should be connected to GND.

$V_{\text {JTAG }} \quad$ JTAG Supply Voltage

ProASIC3 devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility with supply selection and simplifies power supply and printed circuit board design. If the JTAG interface is not used nor planned to be used, the $\mathrm{V}_{\text {JTAG }}$ pin together with the TRST pin could be tied to GND.

VPUMP Programming Supply Voltage

ProASIC3 devices support single-voltage ISP programming of the configuration Flash and FROM. For programming, $\mathrm{V}_{\text {PUMP }}$ should be 3.3 V nominal. During normal device operation, $\mathrm{V}_{\text {PUMP }}$ can be left floating or can be tied (pulled up) to any voltage between 0 V and 3.6 V .

User Pins

I/O

User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are compatible with the I/O standard selected. Unused I/O pins are configured as inputs with pull-up resistors.
During programming, I/Os become tristated and weakly pulled up to $\mathrm{V}_{\mathrm{CCI}}$. With $\mathrm{V}_{\mathrm{CCI}}, \mathrm{VMV}$ and V_{CC} supplies continuously powered-up, and the device transitions from programming to operating mode, the I/Os get instantly configured to the desired user configuration.

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the global network (spines). Additionally, the global I/Os can be used as I/Os, since they have identical capabilities. Unused GL pins are configured as inputs with pull-up resistors. See more detailed descriptions of global I/O connectivity in the "Clock Conditioning Circuits" section on page 2-15.
Refer to the "User I/O Naming Convention" section on page 2-46 for a description of naming of global pins.

JTAG Pins

ProASIC3 devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives greater flexibility with supply selection and simplifies power supply and printed circuit board design. If the JTAG interface is not used nor planned to be used, the $\mathrm{V}_{\text {JTAG }}$ pin together with the TRST pin could be tied to GND.

TCK
 Test Clock

Test clock input for JTAG boundary scan, ISP, and UJTAG. The TCK pin does not have an internal pull-up/down resistor. If JTAG is not used, Actel recommends tying off TCK to GND or $\mathrm{V}_{\text {JTAG }}$ through a resistor placed close to the FPGA pin. This prevents JTAG operation in case TMS enters an undesired state.
Note that to operate at all $\mathrm{V}_{\text {JTAG }}$ voltages, 500Ω to $1 \mathrm{k} \Omega$ will satisfy the requirements. Refer to Table 2-22 for more information.

Table 2-22 • Recommended Tie-Off Values for the TCK and TRST Pins

$\mathbf{V}_{\text {JTAG }}$	Tie Off Resistance ${ }^{\mathbf{2 , 3}}$
$\mathrm{V}_{\text {JTAG }}$ at 3.3 V	200Ω to $1 \mathrm{k} \Omega$
$\mathrm{V}_{\text {JTAG }}$ at 2.5 V	200Ω to $1 \mathrm{k} \Omega$
$\mathrm{V}_{\text {JTAG }}$ at 1.8 V	500Ω to $1 \mathrm{k} \Omega$
$\mathrm{V}_{\text {JTAG }}$ at 1.5 V	500Ω to $1 \mathrm{k} \Omega$

Notes:

1. Equivalent parallel resistance if more than one device is on JTAG chain.
2. The TCK pin can be pulled-up/down.
3. The TRST pin can only be pulled-down.

Note that to operate at all $\mathrm{V}_{\text {JTAG }}$ voltages, 500Ω to $1 \mathrm{k} \Omega$ will satisfy the requirements.

TDI Test Data Input

Serial input for JTAG boundary scan, ISP, and UJTAG usage. There is an internal weak pull-up resistor on the TDI pin.

TDO Test Data Output

Serial output for JTAG boundary scan, ISP, and UJTAG usage.

TMS
 Test Mode Select

The TMS pin controls the use of the IEEE1532 boundary scan pins (TCK, TDI, TDO, TRST). There is an internal weak pull-up resistor on the TMS pin.

TRST

Boundary Scan Reset Pin

The TRST pin functions as an active-low input to asynchronously initialize (or reset) the boundary scan circuitry. There is an internal weak pull-up resistor on the TRST pin. If JTAG is not used, an external pull-down resistor could be included to ensure the TAP is held in reset mode. The resistor values must be chosen from Table 2-22 and must satisfy the parallel resistance value requirement. The values in Table 2-22 correspond to the resistor recommended when a single device is used and to the equivalent parallel resistor when multiple devices are connected via a JTAG chain.
In critical applications an upset in the JTAG circuit could allow entering an undesired JTAG state. In such cases, Actel recommends tying off TRST to GND through a resistor placed close to the FPGA pin.
Note that to operate at all VJTAG voltages, 500Ω to $1 \mathrm{k} \Omega$ will satisfy the requirements.

Special Function Pins

NC

No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be left floating with no effect on the operation of the device.

DC

Don't Connect

This pin should not be connected to any signals on the printed circuit board (PCB). These pins should be left unconnected.

Software Tools

Overview of Tools Flow

The ProASIC3 family of FPGAs is fully supported by both Actel Libero IDE and Designer FPGA Development software. Actel Libero IDE is an integrated design manager that seamlessly integrates design tools while guiding the user through the design flow, managing all design and log files, and passing necessary design data among tools. Additionally, Libero IDE allows users to integrate both schematic and HDL synthesis into a single flow and verify the entire design in a single environment (see the Libero IDE flow diagram located on the Actel website). Libero IDE includes Synplify ${ }^{\circledR}$ AE from Synplicity ${ }^{\circledR}$, ViewDraw ${ }^{\circledR}$ AE from Mentor Graphics ${ }^{\circledR}$, ModelSim ${ }^{\circledR}$ HDL Simulator from Mentor Graphics, WaveFormer Lite ${ }^{\text {TM }}$ AE from SynaptiCAD ${ }^{\circledR}$, PALACE ${ }^{\text {TM }}$ AE Physical Synthesis from Magma Design Automation ${ }^{T M}$, and Designer software from Actel.
Actel Designer software is a place-and-route tool and provides a comprehensive suite of back-end support tools for FPGA development. The Designer software includes the following:

- Timer - a world-class integrated static timing analyzer and constraints editor that supports timing-driven place-and-route
- NetlistViewer - a design netlist schematic viewer
- ChipPlanner - a graphical floorplanner viewer and editor
- SmartPower - tool which enables the designer to quickly estimate the power consumption of a design
- PinEditor - a graphical application for editing pin assignments and I/O attributes
- I/O Attribute Editor - tool which displays all assigned and unassigned I/O macros and their attributes in a spreadsheet format
With the Designer software, a user can lock the design pins before layout while minimally impacting the results of place-and-route. Additionally, Actel back-annotation flow is compatible with all the major simulators. Another tool included in the Designer software is the ACTgen core generator, which easily creates popular and commonly used logic functions for implementation into your schematic or HDL design.
Actel Designer software is compatible with the most popular FPGA design entry and verification tools from EDA vendors, such as Mentor Graphics, Synplicity, Synopsys, and Cadence ${ }^{\circledR}$. The Designer software is available for both the Windows ${ }^{\circledR}$ and UNIX operating systems.

Programming

Programming can be performed using various programming tools, such as Silicon Sculptor II (BP Micro Systems) or FlashPro3 (Actel).
The user can generate *.stp programming files from the Designer software and can use these files to program a device.
ProASIC3 devices can be programmed in system. For more information on ISP of ProASIC3 devices, refer to the In-System Programming (ISP) in ProASIC3IE Using FlashPro3 and Programming a ProASIC3/E Using a Microprocessor application notes.

Security

ProASIC3 devices have a built-in 128-bit AES decryption core (except the A3P030 device). The decryption core facilitates secure, in-system programming of the FPGA core array fabric and the FROM. The FROM and the FPGA core fabric can be programmed independently from each other, allowing the FROM to be updated without the need for change to the FPGA core fabric. The AES master key is stored in on-chip nonvolatile memory (Flash). The AES master key can be preloaded into parts in a secure programming environment (such as the Actel in-house programming center) and then "blank" parts can be shipped to an untrusted programming or manufacturing center for final personalization with an AES encrypted bitstream. Late stage product changes or personalization can be implemented easily and securely by simply sending a STAPL file with AES encrypted data. Secure remote field updates over public networks (such as the Internet) are possible by sending and programming a STAPL file with AES encrypted data.

128-Bit AES Decryption ${ }^{8}$

The 128-bit AES standard (FIPS-192) block cipher is the NIST (National Institute of Standards and Technology) replacement for the DES (Data Encryption Standard FIPS46-2). AES has been designed to protect sensitive government information well into the 21st century. It replaces the aging DES, which NIST adopted in 1977 as a Federal Information Processing Standard used by federal agencies to protect sensitive, unclassified information. The 128 -bit AES standard has 3.4×10^{38} possible 128 -bit key variants, and it has been estimated that it would take 1,000 trillion years to crack 128 -bit AES cipher text using exhaustive techniques. Keys are stored (securely) in ProASIC3 devices in nonvolatile Flash memory. All programming files sent to the device can be authenticated by the part prior to programming to
8. The A3P030 device does not support AES decryption.
ensure that bad programming data is not loaded into the part that may possibly damage it. All programming verification is performed on-chip, ensuring that the contents of ProASIC3 devices remain secure.
ARM7-ready ProASIC3 devices do not support the AES decryption capability.
AES decryption can also be used on the 1,024-bit FROM to allow for secure remote updates of the FROM contents. This allows for easy, secure support for subscription model products. See the application note, ProASIC3/E Security, for more details.

ISP

ProASIC3 devices support IEEE1532 ISP via JTAG and require a single $\mathrm{V}_{\text {PUMP }}$ voltage of 3.3 V during programming. In addition, programming via a Microcontroller (MCU) in a target system can be achieved. See the application note In-System Programming (ISP) in ProASIC3/E Using FlashPro3 for more details.

JTAG 1532

Programming

ProASIC3 devices support the JTAG-based IEEE1532 standard for ISP. As part of this support, when a ProASIC3 device is in an unprogrammed state, all user I/O pins are disabled. This is achieved by keeping the global IO_EN signal deactivated, which also has the effect of disabling the input buffers. Consequently, the SAMPLE instruction will have no effect while the ProASIC3 device is in this unprogrammed state-different behavior from that of the ProASICPLUS device family. This is done because SAMPLE is defined in the IEEE1532 specification as a noninvasive instruction. If the input buffers were to be enabled by SAMPLE temporarily turning on the I/Os, then it would not truly be a noninvasive instruction. Refer to the standard or the In-System Programming (ISP) in ProASIC3/E Using FlashPro3 application note for more details.
For JTAG timing information of setup, hold, and fall times refer to the FlashPro User's Guide.

Boundary Scan

ProASIC3 devices are compatible with IEEE Standard 1149.1, which defines a hardware architecture and the set of mechanisms for boundary scan testing. The basic ProASIC3 boundary scan logic circuit is composed of the TAP (test access port) controller, test data registers, and instruction register (Figure 2-38 on page 2-52). This circuit supports all mandatory IEEE 1149.1 instructions (EXTEST, SAMPLE/PRELOAD, and BYPASS) and the optional IDCODE instruction (Table 2-24 on page 2-52).

Each test section is accessed through the TAP, which has five associated pins: TCK (test clock input), TDI, TDO (test data input and output), TMS (test mode selector), and TRST (test reset input). TMS, TDI, and TRST are equipped with pull-up resistors to ensure proper operation when no input data is supplied to them. These pins are dedicated for boundary scan test usage. Refer to the "JTAG Pins" section on page 2-49 for pull-up/down recommendations for TDO and TCK pins. The TAP controller is a 4-bit state machine (16 states) that operates as shown in Figure 2-38 on page 2-52. The 1s and 0 s represent the values that must be present at TMS at a rising edge of TCK for the given state transition to occur. IR and DR indicate that the instruction register or the data register is operating in that state.

Table 2-23 • TRST and TCK Pull-Down Recommendations

$\mathbf{V}_{\text {JTAG }}$	Tie-off Resistance*
$\mathrm{V}_{\text {JTAG }}$ at 3.3 V	200Ω to $1 \mathrm{k} \Omega$
$\mathrm{V}_{\text {JTAG }}$ at 2.5 V	200Ω to $1 \mathrm{k} \Omega$
$\mathrm{V}_{\text {JTAG }}$ at 1.8 V	500Ω to $1 \mathrm{k} \Omega$
$\mathrm{V}_{\text {JTAG }}$ at 1.5 V	500Ω to $1 \mathrm{k} \Omega$

Note: *Equivalent parallel resistance if more than one device is on JTAG chain.

The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset state. To guarantee a reset of the controller from any of the possible states, TMS must remain high for five TCK cycles. The TRST pin may also be used to asynchronously place the TAP controller in the Test-Logic-Reset state.
ProASIC3 devices support three types of test data registers: bypass, device identification, and boundary scan. The bypass register is selected when no other register needs to be accessed in a device. This speeds up test data transfer to other devices in a test data path. The 32-bit device identification register is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan register observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register cells, each with a serial-in, serialout, parallel-in, and parallel-out pin.
The serial pins are used to serially connect all the boundary scan register cells in a device into a boundary scan register chain, which starts at the TDI pin and ends at the TDO pin. The parallel ports are connected to the internal core logic I/O tile and the input, output, and control ports of an I/O buffer to capture and load data into the register to control or observe the logic state of each I/O.

ProASIC3 Flash Family FPGAs

Figure 2-38 • Boundary Scan Chain in ProASIC3
Table 2-24 • Boundary Scan Opcodes

	Hex Opcode
EXTEST	00
HIGHZ	07
USERCODE	$0 E$
SAMPLE/PRELOAD	01
IDCODE	$0 F$
CLAMP	05
BYPASS	FF

\qquad

DC and Switching Characteristics

General Specifications

DC and switching characteristics for $-F$ speed grade targets are based only on simulation.
The characteristics provided for -F speed grade are subject to change after establishing FPGA specifications. Some restrictions might be added and will be reflected in future revisions of this document. The -F speed grade is only supported in the commercial temperature range.

Operating Conditions

Stresses beyond those listed in the Table 3-1 may cause permanent damage to the device.
Exposure to absolute maximum rated conditions for extended periods may affect device reliability. Devices should not be operated outside the recommended operating ranges specified in Table 3-2 on page 3-2.

Table 3-1 • Absolute Maximum Ratings

Symbol	Parameter	Limits	Units
$V_{\text {CC }}$	DC core supply voltage	-0.3 to 1.65	V
$\mathrm{~V}_{\text {JTAG }}$	JTAG DC voltage	-0.3 to 3.75	V
$\mathrm{~V}_{\text {PUMP }}$	Programming voltage	-0.3 to 3.75	V
$\mathrm{~V}_{\text {CCPLL }}$	Analog power supply (PLL)	-0.3 to 1.65	V
$\mathrm{~V}_{\text {CCI }}$	DC I/O output buffer supply voltage	-0.3 to 3.75	V
VMV	DC I/O input buffer supply voltage	-0.3 to 3.75	V
VI	I/O input voltage	-0.3 V to 3.6 V (when I/O hot insertion mode is enabled) -0.3 V to $\left(\mathrm{V}_{\text {CCI }}+1 \mathrm{~V}\right)$ or 3.6 V, whichever voltage is lower (when I/O hot-insertion mode is disabled)	V

Notes:

1. Device performance is not guaranteed if storage temperature exceeds $110^{\circ} \mathrm{C}$.
2. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may undershoot or overshoot according to the limits shown in Table 3-3 on page 3-2.

ProASIC3 Flash Family FPGAs

Table 3-2 • Recommended Operating Conditions

Symbol	Parameter		Commercial	Industrial	Units
T_{a}	Ambient temperature		0 to +70	-40 to +85	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {CC }}$	1.5 V DC core supply voltage		1.425 to 1.575	1.425 to 1.575	V
$\mathrm{V}_{\text {JTAG }}$	JTAG DC voltage		1.4 to 3.6	1.4 to 3.6	V
$\mathrm{V}_{\text {PUMP }}$	Programming voltage	Programming Mode	3.0 to 3.6	3.0 to 3.6	V
		Operation ${ }^{3}$	0 to 3.6	0 to 3.6	V
$\mathrm{V}_{\text {CCPLL }}$	Analog power supply (PLL)		1.4 to 1.6	1.4 to 1.6	V
$\mathrm{V}_{\text {CCI }}$ and VMV	1.5 V DC supply voltage		1.425 to 1.575	1.425 to 1.575	V
	1.8 V DC supply voltage		1.7 to 1.9	1.7 to 1.9	V
	2.5 V DC supply voltage		2.3 to 2.7	2.3 to 2.7	V
	3.3 V DC supply voltage		3.0 to 3.6	3.0 to 3.6	V
	LVDS differential I/O		2.375 to 2.625	2.375 to 2.625	V
	LVPECL differential I/O		3.0 to 3.6	3.0 to 3.6	V

Notes:

1. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 3-13 on page 3-14. VMV and $V_{\text {CCI }}$ should be at the same voltage within a given I/O bank.
2. All parameters representing voltages are measured with respect to GND unless otherwise specified.
3. $V_{\text {PUMP }}$ can be left floating during operation (not programming mode).

Table 3-3 • Overshoot and Undershoot Limits (as measured on quiet I/Os) ${ }^{1}$

$\mathbf{V}_{\mathbf{C C I}}$ and VMV	Average $\mathbf{V C C I}^{\text {-GND Overshoot or Undershoot Duration as }}$ Percentage of Clock Cycle ${ }^{2}$	Maximum Overshoot/ Undershoot ${ }^{2}$
2.7 V or less	10\%	1.4 V
	5\%	1.49 V
3 V	10\%	1.1 V
	5\%	1.19 V
3.3 V	10\%	0.79 V
	5\%	0.88 V
3.6 V	10\%	0.45 V
	5\%	0.54 V

Notes:

1. Based on reliability requirements at $85^{\circ} \mathrm{C}$.
2. The duration is allowed at one cycle out of six clock cycles (estimated SSO density over cycles). If the overshoot/undershoot occurs at one out of two cycles, then the maximum overshoot/undershoot has to be reduced by 0.15 V .

Table 3-4 • Flash Programming, Storage, and Operating Limits

Product Grade		Program	Storage Temperature		Maximum Operating Junction Temperature $\mathrm{T}_{\mathbf{J}}\left({ }^{\circ} \mathbf{C}\right)$
			Max.	110	
Industrial	500	20 years	0	110	110

Note: This is a stress rating only. Functional operation at any other condition other than those indicated is not implied.

I/O Power-Up and Supply Voltage Thresholds for Power-On Reset (Commercial and Industrial)

Sophisticated power-up management circuitry is designed into every ProASIC3 device. These circuits ensure easy transition from the powered-off state to the powered-up state of the device. The many different supplies can power-up in any sequence with minimized current spikes or surges. In addition, the I/O will be in a known state through the power-up sequence. The basic principle is shown in Figure 3-1.
There are five regions to consider during power-up.
ProASIC3 I/Os are activated only if ALL of the following three conditions are met:

1. V_{CC} and $\mathrm{V}_{\mathrm{CCI}}$ are above the minimum specified trip points (Figure 3-1).
2. $\mathrm{V}_{\mathrm{CCI}}>\mathrm{V}_{\mathrm{CC}}-0.75 \mathrm{~V}$ (Typical).
3. Chip is in the operating mode.

$\mathbf{V}_{\text {ccl }}$ Trip Point:

Ramping up: $0.6 \mathrm{~V}<$ trip_point_up $<1.2 \mathrm{~V}$
Ramping down: $0.5 \mathrm{~V}<$ trip_point_down $<1.1 \mathrm{~V}$

$\mathbf{V}_{\text {cc }}$ Trip Point:

Ramping up: $0.6 \mathrm{~V}<$ trip_point_up $<1.1 \mathrm{~V}$
Ramping down: $0.5 \mathrm{~V}<$ trip_point_down $<1 \mathrm{~V}$
V_{CC} and $\mathrm{V}_{\mathrm{CCI}}$ ramp-up trip points are about 100 mV higher than ramp-down trip points. This specifically built-in hysteresis prevents undesirable power-up oscillations and current surges. Note the following:

- During programming, I/Os become tristated and weakly pulled up to V_{Cl}.
- JTAG supply, PLL power supplies, and charge pump $V_{\text {PUMP }}$ supply have no influence on I/O behavior.

Internal Power-Up Activation Sequence

1. Core
2. Input buffers
3. Output buffers, after 200 ns delay from input buffer activation.

Figure 3-1 • I/O State as a Function of $\mathbf{V}_{\mathbf{C C I}}$ and $\mathbf{V}_{\mathbf{C C}}$ Voltage Levels

Thermal Characteristics

Introduction

The temperature variable in the Actel Designer software refers to the junction temperature, not the ambient temperature. This is an important distinction because dynamic and static power consumption cause the chip junction to be higher than the ambient temperature.
EQ 3-1 can be used to calculate junction temperature.

$$
\mathrm{T}_{\mathrm{J}}=\text { Junction Temperature }=\Delta \mathrm{T}+\mathrm{T}_{\mathrm{a}}
$$

Where $T_{a}=$ Ambient Temperature
$\Delta \mathrm{T}=$ Temperature gradient between junction (silicon) and ambient $\Delta T=\theta_{j a}$ * P
$\theta_{\mathrm{ja}}=$ Junction-to-ambient of the package. θ_{ja} numbers are located in Table 3-5.
P = Power dissipation

Package Thermal Characteristics

The device junction-to-case thermal resistivity is θ_{jc} and the junction-to-ambient air thermal resistivity is θ_{ja}. The thermal characteristics for θ_{ja} are shown for two air flow rates. The absolute maximum junction temperature is EQ 3-1 $110^{\circ} \mathrm{C}$. EQ 3-2 shows a sample calculation of the absolute maximum power dissipation allowed for a 484-pin FBGA package at commercial temperature and still air.

$$
\text { Maximum Power Allowed }=\frac{\text { Max. junction temp. }\left({ }^{\circ} \mathrm{C}\right)-\text { Max. ambient temp. }\left({ }^{\circ} \mathrm{C}\right)}{\theta_{j a}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)}=\frac{150^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}}{20.5^{\circ} \mathrm{CM}}=3.90 \mathrm{~W}
$$

EQ 3-2
Table 3-5 • Package Thermal Resistivities

Package Type	Pin Count	$\theta_{\mathbf{j c}}$	$\theta_{\mathbf{j a}}$			Units
			Still Air	200 ft./min.	500 ft./min.	
Quad Flat No Lead (QFN)	132	13.2	28.9	24.6	23.1	CM
Very Thin Quad Flat Pack (VQFP)	100	10.0	35.3	29.4	27.1	C/W
Thin Quad Flat Pack (TQFP)	144	11.0	33.5	28.0	25.7	C/W
Plastic Quad Flat Package (PQFP)	208	8.0	26.1	22.5	20.8	C/W
Plastic Quad Flat Package (PQFP) with embedded heat spreader	208	3.8	16.2	13.3	11.9	C/W
Fine Pitch Ball Grid Array (FBGA)	144	3.8	26.9	22.9	21.5	CM
	256	3.8	26.6	22.8	21.5	C/W
	484	3.2	20.5	17.0	15.9	C/W

Temperature and Voltage Derating Factors

Table 3-6 - Temperature and Voltage Derating Factors for Timing Delays

$$
\text { (Normalized to } \mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=1.425 \mathrm{~V} \text {) }
$$

Array Voltage $\mathbf{V}_{\mathbf{C C}} \mathbf{(V)}$	Junction Temperature $\left.\mathbf{(}^{\circ} \mathbf{C}\right)$					
	$\mathbf{- 4 0}^{\circ} \mathbf{C}$	$\mathbf{0}^{\circ} \mathbf{C}$	$\mathbf{2 5}^{\circ} \mathbf{C}$	$\mathbf{7 0}^{\circ} \mathbf{C}$	$\mathbf{8 5}^{\circ} \mathbf{C}$	$\mathbf{1 1 0}^{\circ} \mathbf{C}$
1.425	0.88	0.93	0.95	1.00	1.02	1.05
1.500	0.83	0.87	0.89	0.94	0.96	0.98
1.575	0.80	0.84	0.86	0.91	0.92	0.95

\qquad

Calculating Power Dissipation

Quiescent Supply Current

Table 3-7 • Quiescent Supply Current Characteristics

	A3P030	A3P060	A3P125	A3P250	A3P400	A3P600	A3P1000
Typical $\left(25^{\circ} \mathrm{C}\right)$	2 mA	2 mA	2 mA	3 mA	3 mA	5 mA	8 mA
Maximum (Commercial)	10 mA	10 mA	10 mA	20 mA	20 mA	30 mA	50 mA
Maximum (Industrial)	15 mA	15 mA	15 mA	30 mA	30 mA	45 mA	75 mA

Notes.

1. I Includes $V_{C C}, V_{P U M P}, V_{C C l}$ and VMV currents. Values do not include I/O static contribution, which is shown in Table 3-8 and Table 3-9 on page 3-6.
2. $-F$ speed grade devices may experience higher standby $I_{D D}$ of up to five times the standard $I_{D D}$ and higher I/O leakage.

Power Per I/O Pin

Table 3-8 • Summary of I/O Input Buffer Power (Per Pin) - Default I/O Software Settings

	VMV (V)	Static Power $P_{\text {DC2 }}(\mathrm{mW}){ }^{1}$	Dynamic Power $\mathbf{P}_{\text {AC9 }}(\boldsymbol{\mu W} / \mathbf{M H z})^{2}$
Single-Ended			
3.3 V LVTTL / 3.3 V LVCMOS	3.3	-	16.69
2.5 V LVCMOS	2.5	-	5.12
1.8 V LVCMOS	1.8	-	2.13
1.5 V LVCMOS (JESD8-11)	1.5	-	1.45
3.3 V PCI	3.3	-	18.11
3.3 V PCI-X	3.3	-	18.11
Differential			
LVDS	2.5	2.26	1.20
LVPECL	3.3	5.72	1.87

Notes:

1. $P_{D C 2}$ is the static power (where applicable) measured on VMV.
2. $P_{A C 9}$ is the total dynamic power measured on $V_{C C}$ and $V M V$.

Table 3-9 • Summary of I/O Output Buffer Power (Per Pin) - Default I/O Software Settings ${ }^{1}$

	$\begin{gathered} \hline \text { CLOAD } \\ (\mathrm{pF}) \end{gathered}$	$\begin{gathered} \mathbf{V}_{\mathbf{C C I}} \\ (\mathrm{V}) \end{gathered}$	Static Power $\mathbf{P D C 3}^{(\mathrm{mW})}{ }^{2}$	Dynamic Power $\mathbf{P A C 1 0}^{(\mu \mathrm{W} / \mathrm{MHz})^{3}}$
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	468.67
2.5 V LVCMOS	35	2.5	-	267.48
1.8 V LVCMOS	35	1.8	-	138.32
1.5 V LVCMOS (JESD8-11)	35	1.5	-	96.13
3.3 V PCI	10	3.3	-	201.02
$3.3 \mathrm{~V} \mathrm{PCI-X}$	10	3.3	-	201.02
Differential				
LVDS	-	2.5	7.74	88.92
LVPECL	-	3.3	19.54	166.52

Notes:

1. Dynamic power consumption is given for standard load and software default drive strength and output slew.
2. $P_{D C 3}$ is the static power (where applicable) measured on $V_{C C 1}$.
3. $P_{A C 10}$ is the total dynamic power measured on $V_{C C}$ and $V_{C C 1}$.

Power Consumption of Various Internal Resources

Table 3-10 • Different Components Contributing to Dynamic Power Consumption in ProASIC3 Devices

Parameter	Definition	Device Specific Dynamic Power ($\mu \mathrm{W} / \mathrm{MHz}$)
		A3P250
$\mathrm{P}_{\text {AC1 }}$	Clock contribution of a Global Rib	100
$\mathrm{P}_{\text {AC2 }}$	Clock contribution of a Global Spine	10
$\mathrm{P}_{\text {AC3 }}$	Clock contribution of a VersaTile row	1.00
$\mathrm{P}_{\text {AC4 }}$	Clock contribution of a VersaTile used as a sequential module	0.11
$\mathrm{P}_{\text {AC5 }}$	First contribution of a VersaTile used as a sequential module	0.07
$\mathrm{P}_{\text {AC6 }}$	Second contribution of a VersaTile used as a sequential module	0.29
$\mathrm{P}_{\text {AC7 }}$	Contribution of a VersaTile used as a combinatorial Module	0.29
$\mathrm{P}_{\text {AC8 }}$	Average contribution of a routing net	0.70
$\mathrm{P}_{\text {AC9 }}$	Contribution of an I/O input pin (standard dependent)	See Table 3-7 on page 3-5.
$\mathrm{P}_{\text {AC10 }}$	Contribution of an I/O output pin (standard dependent)	See Table 3-8 on page 3-5
$\mathrm{P}_{\text {AC11 }}$	Average contribution of a RAM block during a read operation	25.00
$\mathrm{P}_{\text {AC12 }}$	Average contribution of a RAM block during a write operation	30.00
$\mathrm{P}_{\text {AC13 }}$	First contribution of a PLL	4.00
$\mathrm{P}_{\text {AC } 14}$	Second contribution of a PLL	2.00

Note: *For a different output load, drive strength, or slew rate, Actel recommends using the Actel Power spreadsheet calculator or SmartPower tool in Libero IDE software.

Power Calculation Methodology

The section below describes a simplified method to estimate power consumption of an application. For more accurate and detailed power estimations, use the SmartPower tool in Actel Libero IDE software.
The power calculation methodology described below uses the following variables:

- The number of PLLs as well as the number and the frequency of each output clock generated
- The number of combinatorial and sequential cells used in the design
- The internal clock frequencies
- The number and the standard of I/O pins used in the design
- The number of RAM blocks used in the design
- Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 3-11 on page 3-9
- Enable rates of output buffers—guidelines are provided for typical applications in Table 3-12 on page 3-9
- Read rate and write rate to the memory-guidelines are provided for typical applications in Table 3-12 on page 3-9. The calculation should be repeated for each clock domain defined in the design.

Methodology

Total Power Consumption- $\mathrm{P}_{\text {TOTAL }}$

$P_{\text {TOTAL }}=P_{\text {STAT }}+P_{\text {DYN }}$
$\mathrm{P}_{\text {STAT }}$ is the total static power consumption.
$P_{\text {DYN }}$ is the total dynamic power consumption.

Total Static Power Consumption- $\mathrm{P}_{\text {STAT }}$

$P_{\text {STAT }}=P_{\text {DC1 }}+N_{\text {INPUTS }}{ }^{*} P_{D C 2}+N_{\text {OUTPUTS }} * P_{\text {DC3 }}$
$\mathrm{N}_{\text {INPUTS }}$ is the number of I/O input buffers used in the design.
$\mathrm{N}_{\text {OUTPUTS }}$ is the number of I/O output buffers used in the design.
Total Dynamic Power Consumption- $P_{\text {DYN }}$
$P_{\text {DYN }}=P_{\text {CLOCK }}+P_{\text {S-CELL }}+P_{\text {C-CELL }}+P_{\text {NET }}+P_{\text {INPUTS }}+P_{\text {OUTPUTS }}+P_{\text {MEMORY }}+P_{\text {PLL }}$

Global Clock Contribution- $\mathrm{P}_{\text {CLOCK }}$

$P_{\text {CLOCK }}=\left(P_{\text {AC1 }}+N_{\text {SPINE }} * P_{A C 2}+N_{\text {ROW }} * P_{A C 3}+N_{\text {S-CELL }} * P_{A C 4}\right) * F_{C L K}$
$\mathrm{N}_{\text {SPINE }}$ is the number of global spines used in the user design—guideline are provided in Table 3-11 on page 3-9.
$\mathrm{N}_{\text {ROW }}$ is the number of VersaTile rows used in the design—guidelines are provided in Table 3-11 on page 3-9.
$\mathrm{F}_{\mathrm{CLK}}$ is the global clock signal frequency.
$\mathrm{N}_{\text {S-CELL }}$ is the number of VersaTiles used as sequential modules in the design.

Sequential Cells Contribution- $\mathbf{P}_{\text {S-CELL }}$

$P_{S-C E L L}=N_{S-C E L L} *\left(P_{A C 5}+\alpha_{1} * P_{A C 6}\right) * F_{\text {CLK }}$
$\mathrm{N}_{\text {S-CELL }}$ is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.
α_{1} is the toggle rate of VersaTile outputs-guidelines are provided in Table 3-11 on page 3-9.
$\mathrm{F}_{\text {CLK }}$ is the global clock signal frequency.

Combinational Cells Contribution- $\mathrm{P}_{\text {C-CELL }}$

$P_{\text {C-CELL }}=N_{\text {C-CELL }}{ }^{*} \alpha 1 * P_{\text {AC7 }}{ }^{*} F_{\text {CLK }}$
$\mathrm{N}_{\mathrm{C} \text { CELL }}$ is the number of VersaTiles used as combinatorial modules in the design.
α_{1} is the toggle rate of VersaTile outputs-guidelines are provided in Table 3-11 on page 3-9.
$\mathrm{F}_{\text {CLK }}$ is the global clock signal frequency.
Routing Net Contribution- $\mathbf{P}_{\text {NET }}$
$P_{\text {NET }}=\left(N_{\text {S-CELL }}+N_{\text {C-CELL }}\right) * \alpha_{1} * P_{\text {AC8 }} * F_{\text {CLK }}$
$\mathrm{N}_{\text {S-CELL }}$ is the number VersaTiles used as sequential modules in the design.
$\mathrm{N}_{\mathrm{C} \text { CeLL }}$ is the number of VersaTiles used as combinatorial modules in the design.
α_{1} is the toggle rate of VersaTile outputs-guidelines are provided in Table 3-11 on page 3-9.
$\mathrm{F}_{\text {CLK }}$ is the global clock signal frequency.
I/O Input Buffer Contribution- $\mathrm{P}_{\text {INPUTS }}$
$\mathrm{P}_{\text {INPUTS }}=\mathrm{N}_{\text {INPUTS }} * \alpha_{2} * \mathrm{P}_{\text {AC9 }} * \mathrm{~F}_{\text {CLK }}$
$\mathrm{N}_{\text {INPUTS }}$ is the number of I/O input buffers used in the design.
α_{2} is the I/O buffer toggle rate-guidelines are provided in Table 3-11 on page 3-9.
$\mathrm{F}_{\text {CLK }}$ is the global clock signal frequency.
I/O Output Buffer Contribution-Poutputs
$P_{\text {OUTPUTS }}=N_{\text {OUTPUTS }} * \alpha_{2} * \beta_{1} * P_{\text {AC } 10} * F_{\text {CLK }}$
$\mathrm{N}_{\text {OUtPUTS }}$ is the number of I/O output buffers used in the design.
α_{2} is the I/O buffer toggle rate-guidelines are provided in Table 3-11 on page 3-9.
β_{1} is the I/O buffer enable rate-guidelines are provided in Table 3-12 on page 3-9.
$\mathrm{F}_{\text {CLK }}$ is the global clock signal frequency.

RAM Contribution- $\mathbf{P}_{\text {MEMORY }}$

$P_{\text {MEMORY }}=P_{\text {AC11 }} * N_{\text {BLOCKS }} * F_{\text {READ-CLOCK }} * \beta_{2}+P_{\text {AC12 }}$ *
$\mathrm{N}_{\text {block }}$ * $\mathrm{F}_{\text {WRITE-Clock }}$ * β_{3}
$\mathrm{N}_{\text {BLOCKS }}$ is the number RAM blocks used in the design.
$\mathrm{F}_{\text {READ-CLOCK }}$ is the memory read clock frequency.
β_{2} is the RAM enable rate for read operations.
$\mathrm{F}_{\text {WRITE-CLOCK }}$ is the memory write clock frequency.
β_{3} the RAM enable rate for write operations-guidelines are provided in Table 3-12 on page 3-9.

PLL/CCC Contribution- $\mathrm{P}_{\mathrm{PLL}}$

$P_{\text {PLL }}=P_{\text {AC } 13} * F_{\text {CLKIN }}+\Sigma P_{\text {AC14 }} * F_{\text {CLKOUT }}$
$\mathrm{F}_{\text {CLKIN }}$ is the input clock frequency.
$\mathrm{F}_{\text {CLKOUT }}$ is the output clock frequency. ${ }^{1}$

[^4]
Guidelines

Toggle Rate Definition

A toggle rate defines the frequency of a net or logic element relative to a clock. It is a percentage. If the toggle rate of a net is 100%, this means that this net switches at half the clock frequency. Below are some examples:

- The average toggle rate of a shift-register is 100% because all flip-flop outputs toggle at half of the clock frequency.
- The average toggle rate of an 8 -bit counter is 25\%:
- Bit 0 (LSB) $=100 \%$
- Bit $1=50 \%$
- Bit $2=25 \%$
- ...
- Bit 7 (MSB) $=0.78125 \%$
- The average toggle rate is $=(100 \%+50 \%+$ $25 \%+12.5 \%+\ldots 0.78125 \%) / 8$.

Enable Rate Definition

Output enable rate is the average percentage of time during which tristate outputs are enabled. When nontristate output buffers are used, the enable rate should be 100%.

Table 3-11 • Toggle Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
α_{1}	Toggle rate of VersaTile outputs	10%
α_{2}	I/O buffer toggle rate	10%

Table 3-12 • Enable Rate Guidelines Recommended for Power Calculation

Component	Definition	Guideline
$\boldsymbol{\beta}_{1}$	I/O output buffer enable rate	100%
$\boldsymbol{\beta}_{2}$	RAM enable rate for read operations	12.5%
$\boldsymbol{\beta}_{3}$	RAM enable rate for write operations	12.5%

ProASIC3 Flash Family FPGAs

User I/O Characteristics

Timing Model

Figure 3-2 • Timing Model
Operating Conditions: -2 Speed, Commercial Temperature Range ($\mathrm{T}_{\mathrm{J}}=\mathbf{7 0 ^ { \circ }} \mathrm{C}$), Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

ProASIC3 Flash Family FPGAs

Figure 3-4 • Output Buffer Model and Delays (example)

Figure 3-5 • Tristate Output Buffer Timing Model and Delays (example)

Overview of I/O Performance

Summary of I/O DC Input and Output Levels - Default I/O Software Settings

Table 3-13 • Summary of Maximum and Minimum DC Input and Output Levels Applicable to Commercial and Industrial Conditions

I/O Standard	Drive Strength	Slew Rate	$\mathbf{V}_{\text {IL }}$		$\mathbf{V}_{\mathbf{I H}}$		$\mathrm{V}_{\text {OL }}$	$\mathrm{V}_{\mathbf{O H}}$	IOL	$\mathrm{IOH}^{\text {a }}$
			Min, V	Max, V	Min, V	Max, V	Max, V	Min, V	mA	mA
$\begin{aligned} & \hline \text { 3.3 V LVTTL / } \\ & \text { 3.3 V LVCMOS } \end{aligned}$	12 mA	High	-0.3	0.8	2	3.6	0.4	2.4	12	12
2.5 V LVCMOS	12 mA	High	-0.3	0.7	1.7	3.6	0.7	1.7	12	12
1.8 V LVCMOS	8 mA	High	-0.3	$0.35 * \mathrm{~V}_{\mathrm{CCI}}$	0.65 * $\mathrm{V}_{\mathrm{CCI}}$	3.6	0.45	$\mathrm{V}_{\mathrm{CCI}}-0.45$	8	8
1.5 V LVCMOS	4 mA	High	-0.3	0.30 * VCll	0.7 * $\mathrm{V}_{\mathrm{ClI}}$	3.6	0.25 * $\mathrm{V}_{\mathrm{ClI}}$	0.75 * VClI	4	4
3.3 VPCl					Per PCI specifi	ations				
$3.3 \mathrm{~V} \mathrm{PCI-X}$					Per PCI-X specific	cations				

Note: Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.
Table 3-14 • Summary of Maximum and Minimum DC Input Levels Applicable to Commercial and Industrial Conditions

DC I/O Standards	Commercial ${ }^{\mathbf{1}}$		Industrial ${ }^{\mathbf{2}}$	
	$I_{\text {IL }}$	$\mathbf{I I H}$	IIL	$\mathbf{I}_{\mathbf{I H}}$
	$\boldsymbol{\mu} \mathbf{A}$	$\mu \mathrm{A}$	$\mu \mathrm{A}$	$\mu \mathrm{A}$
3.3 V LVTTL /3.3V LVCMOS	10	10	15	15
2.5 V LVCMOS	10	10	15	15
1.8 V LVCMOS	10	10	15	15
1.5 V LVCMOS	10	10	15	15
3.3 V PCI	10	10	15	15
$3.3 \mathrm{~V} \mathrm{PCI-X}$	10	10	15	15

Notes:

1. Commercial range $\left(0^{\circ} \mathrm{C}<T_{j}<70^{\circ} \mathrm{C}\right)$
2. Industrial range $\left(-40^{\circ} \mathrm{C}<T_{j}<85^{\circ} \mathrm{C}\right)$

Summary of I/O Timing Characteristics - Default I/O Software Settings
Table 3-15 - Summary of AC Measuring Points

Standard	Measuring Trip Point (V ${ }_{\text {trip }}$)
$3.3 \mathrm{~V} \mathrm{LVTTL} \mathrm{/} \mathrm{3.3} \mathrm{~V} \mathrm{LVCMOS}$	1.4 V
2.5 V LVCMOS	1.2 V
1.8 V LVCMOS	0.90 V
1.5 V LVCMOS	0.75 V
3.3 V PCI	$0.285 * \mathrm{~V}_{\mathrm{CCI}}(\mathrm{RR})$
	$0.615 * \mathrm{~V}_{\mathrm{CCI}}(\mathrm{FF})$
$3.3 \mathrm{~V} \mathrm{PCI-X}$	$0.285 * \mathrm{~V}_{\mathrm{CCI}}(\mathrm{RR})$

Table 3-16 • I/O AC Parameter Definitions

Parameter	
$t_{\text {DP }}$	Data to Pad delay through the Output Buffer
$t_{\text {PY }}$	Pad to Data delay through the Input Buffer
$t_{\text {DOUT }}$	Data to Output Buffer delay through the I/O interface
$t_{\text {EOUT }}$	Enable to Output Buffer Tristate Control delay through the I/O interface
$t_{\text {DIN }}$	Input Buffer to Data delay through the I/O interface
$t_{\text {HZ }}$	Enable to Pad delay through the Output Buffer-high to Z
$t_{\text {ZH }}$	Enable to Pad delay through the Output Buffer-Z to high
$t_{\text {LZ }}$	Enable to Pad delay through the Output Buffer—low to Z
$t_{Z L}$	Enable to Pad delay through the Output Buffer-Z to low
$t_{\text {ZHS }}$	Enable to Pad delay through the Output Buffer with delayed enable-Z to high
$t_{Z L S}$	Enable to Pad delay through the Output Buffer with delayed enable-Z to low

Table 3-17 • Summary of I/O Timing Characteristics—Software Default Settings
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=3.0 \mathrm{~V}$

I/O Standard		$\begin{aligned} & \cong \\ & \stackrel{y}{0} \\ & \stackrel{1}{c} \\ & 3 \\ & \vdots \\ & \vdots \end{aligned}$			$\begin{aligned} & 5 \\ & 0 \end{aligned}$	\%	Z	$\stackrel{\text { a }}{\text { a }}$	$\begin{aligned} & \text { 上 } \\ & \text { O} \\ & \text { ب } \end{aligned}$	$\stackrel{N}{+}$	$\underset{\sim}{\mathbf{N}}$	$\xrightarrow{\text { N }}$	$\stackrel{N}{N+}$	$\underset{+}{\sim}$	$\stackrel{n}{N}$	\#
3.3 V LVTTL / 3.3 V LVCMOS	12 mA	High	35 pF	-	0.49	2.64	0.03	0.76	0.32	2.69	2.11	2.40	2.68	4.36	3.78	ns
2.5 V LVCMOS	12 mA	High	35pF	-	0.49	2.66	0.03	0.98	0.32	2.71	2.56	2.47	2.57	4.38	4.23	ns
1.8 V LVCMOS	8 mA	High	35 pF	-	0.49	3.32	0.03	0.91	0.32	3.12	3.32	2.64	2.53	4.79	4.99	ns
1.5 V LVCMOS	4 mA	High	35pF	-	0.49	3.97	0.03	1.07	0.32	3.62	3.97	2.79	2.54	5.29	5.64	ns
3.3 VPCI	Per PCI spec	High	10pF	25^{2}	0.49	2.00	0.03	0.65	0.32	2.04	1.46	2.40	2.68	3.71	3.13	ns
$3.3 \mathrm{~V} \mathrm{PCI-X}$	$\begin{gathered} \text { Per PCI-X } \\ \text { spec } \end{gathered}$	High	10pF	25^{2}	0.49	2.00	0.03	0.65	0.32	2.04	1.46	2.40	2.68	3.71	3.13	ns
LVDS	24 mA	High	-	-	0.49	1.37	0.03	1.20	N/A	ns						
LVPECL	24 mA	High	-	-	0.49	1.34	0.03	1.05	N/A	ns						

Notes:

1. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 3-10 on page 3-26 for connectivity. This resistor is not required during normal operation.

Detailed I/O DC Characteristics

Table 3-18 • Input Capacitance

Symbol	Definition	Conditions	Min.	Max.	Units
$C_{\mathbb{I N}}$	Input Capacitance	$\mathrm{V}_{\mathbb{I N}}=0, \mathrm{f}=1.0 \mathrm{MHz}$		8	pF
$C_{\text {INCLK }}$	Input Capacitance on the clock pin	$\mathrm{V}_{\mathbb{I N}}=0, \mathrm{f}=1.0 \mathrm{MHz}$		8	pF

Table 3-19 • I/O Output Buffer Maximum Resistances ${ }^{\mathbf{1}}$

Standard	Drive Strength	R ${ }_{\text {PULL-DOWN }}$	$\mathbf{R}_{\text {PULL-UP }}$
		$(\Omega)^{2}$	$(\Omega)^{3}$
3.3 V LVTTL / 3.3 V LVCMOS	4 mA	100	300
	8 mA	50	150
	12 mA	25	75
	16 mA	25	75
2.5 V LVCMOS	4 mA	100	200
	8 mA	50	100
	12 mA	25	50
1.8 V LVCMOS	2 mA	200	225
	4 mA	100	112
	8 mA	50	56
1.5 V LVCMOS	2 mA	200	224
	4 mA	100	112
3.3 V PCI/PCI-X	Per PCI/PCI-X specification	25	75

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend on $V_{c \mathrm{cl}}$ drive strength selection, temperature, and process. For board design considerations and detailed output buffer resistances, use the corresponding IBIS models located on the Actel website at http://www.actel.com/techdocs/models/ibis.html.
2. $R_{\text {(PULL-DOWN-MAX })}=\left(V_{\text {OLsped }}\right) / I_{O L s p e c}$
3. $R_{\text {(PULL-UP-MAX })}=\left(V_{\text {CCImax }}-V_{\text {OHspec }}\right) / I_{\text {OHspec }}$

Table 3-20 • I/O Weak Pull-Up/Pull-Down Resistances Minimum and Maximum Weak Pull-Up/Pull-Down Resistance Values

$\mathbf{V}_{\mathbf{c c I}}$	$\begin{gathered} \mathbf{R}_{\text {(WEAK PULL-UP) }}{ }^{1}(\Omega) \end{gathered}$		$\mathbf{R}_{\text {(WEAK PULL-DOWN) }}^{(\Omega)}{ }^{2}$	
	Min.	Max.	Min.	Max.
3.3 V	10 k	45 k	10 k	45 k
2.5 V	11 k	55 k	12 k	74 k
1.8 V	18 k	70 k	17 k	110 k
1.5 V	19 k	90 k	19 k	140 k

Notes:

1. $\left.R_{\text {(WEAK PULL-UP-MAX) }}=\left(V_{\text {OLsped }}\right) / I_{\text {WEAK PULL-UP-MIN }}\right)$
2. $R_{\text {(WEAK PULL-UP-MAX })}=\left(V_{\text {CCImax }}-V_{\text {OHsped }}\right) / I_{\text {(WEAK PULL-UP-MIN })}$

Table 3-21 • I/O Short Currents $\mathrm{I}_{\mathrm{OSH}} / \mathrm{I}_{\mathrm{OSL}}$

	Drive Strength	IOSH (mA)*	IOSL (mA)*
3.3 V LVTTL / 3.3 V LVCMOS	4 mA	25	27
	8 mA	51	54
	12 mA	103	109
	16 mA	103	109
2.5 V LVCMOS	4 mA	16	18
	8 mA	32	37
	12 mA	65	74
1.8 V LVCMOS	2 mA	9	11
	4 mA	17	22
	8 mA	35	44
1.5 V LCMOS	2 mA	13	16
	4 mA	25	33

Note: ${ }^{*} T_{J}=100^{\circ} \mathrm{C}$
The length of time an I/O can withstand $\mathrm{I}_{\mathrm{OSH}} / \mathrm{I}_{\mathrm{OSL}}$ events depends on the junction temperature. The reliability data below is based on a $3.3 \mathrm{~V}, 12 \mathrm{~mA}$ I/O setting, which is the worst case for this type of analysis.
For example, at $110^{\circ} \mathrm{C}$, the short current condition would have to be sustained for more than three months to cause a reliability concern. The I/O design does not contain any short circuit protection, but such protection would only be needed in extremely prolonged stress conditions.
Table 3-22 • Short Current Event Duration before Failure

Temperature	Time Before Failure
$-40^{\circ} \mathrm{C}$	>20 years
$0^{\circ} \mathrm{C}$	>20 years
$25^{\circ} \mathrm{C}$	>20 years
$70^{\circ} \mathrm{C}$	5 years
$85^{\circ} \mathrm{C}$	2 years
$100^{\circ} \mathrm{C}$	6 months
$110^{\circ} \mathrm{C}$	3 months

Table 3-23 • I/O Input Rise Time, Fall Time, and Related I/O Reliability

Input Buffer	Input Rise/Fall Time (Min.)	Input Rise/fall Time (Max.)	Reliability
LVTTL/LVCMOS	No requirement	$10 \mathrm{~ns}^{*}$	20 years $\left(110^{\circ} \mathrm{C}\right)$
LVDS/LVPECL	No requirement	$10 \mathrm{~ns}^{*}$	10 years $\left(100^{\circ} \mathrm{C}\right)$

Note: *The Maximum Input rise/fall time is related only to the noise induced into the input buffer trace. If the noise is low, then the rise time and fall time of input buffers, when Schmitt trigger is disabled, can be increased beyond the maximum value. The longer the rise/fall times, the more susceptible the input signal is to the board noise. Actel recommends signal integrity evaluation/ characterization of the system to ensure that there is no excessive noise coupling into input signals.

Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor-Transistor Logic (LVTTL) is a general purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer.

Table 3-24 • Minimum and Maximum DC Input and Output Levels

$\mathbf{3 . 3} \mathbf{V}$ LVTTL / $\mathbf{3 . 3} \mathbf{V}$ LVCMOS	$\mathbf{V}_{\mathbf{I L}}$		$\mathbf{V}_{\mathbf{I H}}$		$\mathbf{V}_{\mathbf{O L}}$	$\mathbf{V}_{\mathbf{O H}}$	$\mathbf{I}_{\mathbf{O L}}$	$\mathbf{I}_{\mathbf{O H}}$	$\mathbf{I}_{\mathbf{O S L}}$	$\mathbf{I}_{\mathbf{O S H}}$	$\mathbf{I}_{\mathbf{I L}}$	$\mathbf{I}_{\mathbf{I H}}$
Drive Strength	$\mathbf{M i n}, \mathbf{V}$	$\mathbf{M a x}, \mathbf{V}$	$\mathbf{M i n}, \mathbf{V}$	$\mathbf{M a x}, \mathbf{V}$	$\mathbf{M a x}, \mathbf{V}$	$\mathbf{M i n}, \mathbf{V}$	$\mathbf{m A}$	$\mathbf{m A}$	$\mathbf{M a x}, \mathbf{m A}$			
$\mathbf{1}$	$\mathbf{M a x}_{\mathbf{M}} \mathbf{m A}^{\mathbf{1}}$	$\mathbf{\mu A}^{\mathbf{2}}$	$\boldsymbol{\mu A}^{\mathbf{2}}$									
4 mA	-0.3	0.8	2	3.6	0.4	2.4	4	4	27	25	10	10
8 mA	-0.3	0.8	2	3.6	0.4	2.4	8	8	54	51	10	10
12 mA	-0.3	0.8	2	3.6	0.4	2.4	12	12	109	103	10	10
16 mA	-0.3	0.8	2	3.6	0.4	2.4	16	16	109	103	10	10

Notes:

1. Currents are measured at high temperature $\left(100^{\circ} \mathrm{C}\right.$ junction temperature) and maximum voltage.
2. Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.
3. Software default selection highlighted in gray.

Figure 3-6 • AC Loading
Table 3-25 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C LOAD (pF) 40
0	3.3	1.4	35

Note: *Measuring point $=V_{\text {trip. }}$. See Table 3-15 on page 3-14 for a complete table of trip points.

Timing Characteristics

Table 3-26 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=3.0 \mathrm{~V}$

Drive Strength (mA)	Speed Grade	$\mathbf{t}_{\text {DOUT }}$	$\mathbf{t}_{\text {DP }}$	$t_{\text {DIN }}$	$\mathbf{t}_{\mathbf{P Y}}$	$\mathrm{t}_{\text {EOUT }}$	$\mathbf{t}_{\mathbf{z L}}$	$\mathbf{t}_{\mathbf{z H}}$	t_{Lz}	$\mathbf{t}_{\mathbf{H Z}}$	$\mathbf{t z u s}$	$\mathbf{t}_{\text {zHS }}$	Units
4 mA	-F	0.79	12.32	0.05	1.22	0.51	12.55	10.69	3.18	2.95	15.23	13.37	ns
	Std.	0.66	10.26	0.04	1.02	0.43	10.45	8.90	2.64	2.46	12.68	11.13	ns
	-1	0.56	8.72	0.04	0.86	0.36	8.89	7.57	2.25	2.09	10.79	9.47	ns
	-2	0.49	7.66	0.03	0.76	0.32	7.80	6.64	1.98	1.83	9.47	8.31	ns
8 mA	-F	0.79	8.74	0.05	1.22	0.51	8.90	7.55	3.58	3.65	11.59	10.23	ns
	Std.	0.66	7.27	0.04	1.02	0.43	7.41	6.28	2.98	3.04	9.65	8.52	ns
	-1	0.56	6.19	0.04	0.86	0.36	6.30	5.35	2.54	2.59	8.20	7.25	ns
	-2	0.49	5.43	0.03	0.76	0.32	5.53	4.69	2.23	2.27	7.20	6.36	ns
12 mA	-F	0.79	6.70	0.05	1.22	0.51	6.83	5.85	3.85	4.10	9.51	8.54	ns
	Std.	0.66	5.58	0.04	1.02	0.43	5.68	4.87	3.21	3.42	7.92	7.11	ns
	-1	0.56	4.75	0.04	0.86	0.36	4.84	4.14	2.73	2.91	6.74	6.05	ns
	-2	0.49	4.17	0.03	0.76	0.32	4.24	3.64	2.39	2.55	5.91	5.31	ns
16 mA	-F	0.79	6.70	0.05	1.22	0.51	6.83	5.85	3.85	4.10	9.51	8.54	ns
	Std.	0.66	5.58	0.04	1.02	0.43	5.68	4.87	3.21	3.42	7.92	7.11	ns
	-1	0.56	4.75	0.04	0.86	0.36	4.84	4.14	2.73	2.91	6.74	6.05	ns
	-2	0.49	4.17	0.03	0.76	0.32	4.24	3.64	2.39	2.55	5.91	5.31	ns

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.
Table 3-27 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=3.0 \mathrm{~V}$

Drive Strength (mA)	Speed Grade	$t_{\text {DOUT }}$	$t_{\text {DP }}$	$t_{\text {DIN }}$	$\mathbf{t}_{\mathbf{P Y}}$	$\mathrm{t}_{\text {EOUT }}$	$\mathbf{t z L}$	$\mathbf{t}_{\mathbf{z H}}$	t_{Lz}	t_{HZ}	$\mathbf{t z L S}$	$\mathbf{t z H S}$	Units
4 mA	-F	0.79	9.20	0.05	1.22	0.51	9.37	7.91	3.18	3.14	12.05	10.60	ns
	Std.	0.66	7.66	0.04	1.02	0.43	7.80	6.59	2.65	2.61	10.03	8.82	ns
	-1	0.56	6.51	0.04	0.86	0.36	6.63	5.60	2.25	2.22	8.54	7.51	ns
	-2	0.49	5.72	0.03	0.76	0.32	5.82	4.92	1.98	1.95	7.49	6.59	ns
8 mA	-F	0.79	5.89	0.05	1.22	0.51	6.00	4.89	3.59	3.85	8.69	7.57	ns
	Std.	0.66	4.91	0.04	1.02	0.43	5.00	4.07	2.99	3.20	7.23	6.31	ns
	-1	0.56	4.17	0.04	0.86	0.36	4.25	3.46	2.54	2.73	6.15	5.36	ns
	-2	0.49	3.66	0.03	0.76	0.32	3.73	3.04	2.23	2.39	5.40	4.71	ns
12 mA	-F	0.79	4.24	0.05	1.22	0.51	4.32	3.39	3.86	4.30	7.01	6.08	ns
	Std.	0.66	3.53	0.04	1.02	0.43	3.60	2.82	3.21	3.58	5.83	5.06	ns
	-1	0.56	3.00	0.04	0.86	0.36	3.06	2.40	2.73	3.05	4.96	4.30	ns
	-2	0.49	2.64	0.03	0.76	0.32	2.69	2.11	2.40	2.68	4.36	3.78	ns
16 mA	-F	0.79	4.24	0.05	1.22	0.51	4.32	3.39	3.86	4.30	7.01	6.08	ns
	Std.	0.66	3.53	0.04	1.02	0.43	3.60	2.82	3.21	3.58	5.83	5.06	ns
	-1	0.56	3.00	0.04	0.86	0.36	3.06	2.40	2.73	3.05	4.96	4.30	ns
	-2	0.49	2.64	0.03	0.76	0.32	2.69	2.11	2.40	2.68	4.36	3.78	ns

Notes:

1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.

2.5 V LVCMOS

Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general purpose 2.5 V applications. It uses a 5-V-tolerant input buffer and push-pull output buffer.

Table 3-28 • Minimum and Maximum DC Input and Output Levels

2.5 V LVCMOS	$\mathbf{V}_{\text {IL }}$		$\mathbf{V}_{\mathbf{I H}}$		$\mathrm{V}_{\mathbf{O L}}$	$\mathbf{V O H}_{\mathbf{O H}}$	$\mathrm{IOL}^{\text {O }}$	$\mathbf{I O H}^{\prime}$	Iost	IOSH	IIL	$\mathbf{I I H}$
Drive Strength	Min, V	Max, V	Min, V	Max, V	Max, V	Min, V	mA	mA	Max, mA ${ }^{1}$	Max, mA ${ }^{1}$	μA^{2}	μA^{2}
4 mA	-0.3	0.7	1.7	3.6	0.7	1.7	4	4	18	16	10	10
8 mA	-0.3	0.7	1.7	3.6	0.7	1.7	8	8	37	32	10	10
12 mA	-0.3	0.7	1.7	3.6	0.7	1.7	12	12	74	65	10	10

Notes:

1. Currents are measured at high temperature $\left(100^{\circ} \mathrm{C}\right.$ junction temperature) and maximum voltage.
2. Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.
3. Software default selection highlighted in gray.

Figure 3-7 • AC Loading
Table 3-29 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C LOAD (pF)
0	2.5	1.2	35

Note: *Measuring point $=V_{\text {trip. }}$. See Table 3-15 on page 3-14 for a complete table of trip points.

ProASIC3 Flash Family FPGAs

Timing Characteristics

Table 3-30 • 2.5 V LVCMOS Low Slew
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=2.3 \mathrm{~V}$

Drive Strength (mA)	Speed Grade	$\mathbf{t}_{\text {DOUT }}$	$\mathbf{t}_{\mathbf{D P}}$	$t_{\text {dIN }}$	$\mathbf{t}_{\mathbf{P Y}}$	$\mathrm{t}_{\text {EOUT }}$	$\mathbf{t}_{\mathbf{z L}}$	$\mathbf{t}_{\mathbf{Z H}}$	$\mathrm{t}_{\text {Lz }}$	\mathbf{t}_{HZ}	$\mathbf{t}_{\mathbf{z L S}}$	$\mathbf{t}_{\mathbf{Z H S}}$	Units
4 mA	-F	0.72	13.69	0.05	1.57	0.51	13.47	13.69	3.22	2.65	16.16	16.38	ns
	Std.	0.60	11.40	0.04	1.31	0.43	11.22	11.40	2.68	2.20	13.45	13.63	ns
	-1	0.51	9.69	0.04	1.11	0.36	9.54	9.69	2.28	1.88	11.44	11.60	ns
	-2	0.45	8.51	0.03	0.98	0.32	8.38	8.51	2.00	1.65	10.05	10.18	ns
8 mA	-F	0.72	9.56	0.05	1.57	0.51	9.74	9.39	3.66	3.47	12.43	12.07	ns
	Std.	0.60	7.96	0.04	1.31	0.43	8.11	7.81	3.05	2.89	10.34	10.05	ns
	-1	0.51	6.77	0.04	1.11	0.36	6.90	6.65	2.59	2.46	8.80	8.55	ns
	-2	0.45	5.94	0.03	0.98	0.32	6.05	5.83	2.28	2.16	7.72	7.50	ns
12 mA	-F	0.72	7.42	0.05	1.57	0.51	7.56	7.11	3.97	3.99	10.25	9.79	ns
	Std.	0.60	6.18	0.04	1.31	0.43	6.29	5.92	3.30	3.32	8.53	8.15	ns
	-1	0.51	5.26	0.04	1.11	0.36	5.35	5.03	2.81	2.83	7.25	6.94	ns
	-2	0.45	4.61	0.03	0.98	0.32	4.70	4.42	2.47	2.48	6.37	6.09	ns

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.
Table 3-31 • 2.5 V LVCMOS High Slew
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=2.3 \mathrm{~V}$

Drive Strength (mA)	Speed Grade	$t_{\text {DOUT }}$	$\mathbf{t}_{\text {DP }}$	$t_{\text {DIN }}$	$\mathbf{t}_{\mathbf{P Y}}$	$\mathbf{t}_{\text {EOUT }}$	t_{zL}	$\mathbf{t}_{\mathbf{z H}}$	tLz	\mathbf{t}_{HZ}	$\mathbf{t}_{\text {zLS }}$	$\mathbf{t z H S}$	Units
4 mA	-F	0.79	10.41	0.05	1.57	0.51	9.41	10.41	3.22	2.77	12.09	13.09	ns
	Std.	0.66	8.66	0.04	1.31	0.43	7.83	8.66	2.68	2.30	10.07	10.90	ns
	-1	0.56	7.37	0.04	1.11	0.36	6.66	7.37	2.28	1.96	8.56	9.27	ns
	-2	0.49	6.47	0.03	0.98	0.32	5.85	6.47	2.00	1.72	7.52	8.14	ns
8 mA	-F	0.72	6.21	0.05	1.57	0.51	6.05	6.21	3.66	3.60	8.74	8.89	ns
	Std.	0.60	5.17	0.04	1.31	0.43	5.04	5.17	3.05	3.00	7.27	7.40	ns
	-1	0.51	4.39	0.04	1.11	0.36	4.28	4.39	2.59	2.55	6.19	6.30	ns
	-2	0.45	3.86	0.03	0.98	0.32	3.76	3.86	2.28	2.24	5.43	5.53	ns
12 mA	-F	0.79	6.21	0.05	1.57	0.51	6.05	6.21	3.66	3.60	8.74	8.89	ns
	Std.	0.66	5.17	0.04	1.31	0.43	5.04	5.17	3.05	3.00	7.27	7.40	ns
	-1	0.56	4.39	0.04	1.11	0.36	4.28	4.39	2.59	2.55	6.19	6.30	ns
	-2	0.49	3.86	0.03	0.98	0.32	3.76	3.86	2.28	2.24	5.43	5.53	ns

Notes:

1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.

1.8 V LVCMOS

Low-voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general purpose 1.8 V applications. It uses 1.8 V input buffer and push-pull output buffer.

Table 3-32 • Minimum and Maximum DC Input and Output Levels

$\mathbf{1 . 8} \mathbf{V} \mathbf{L V C M O S}$	$\mathbf{V}_{\mathbf{I L}}$		$\mathbf{V}_{\mathbf{I H}}$		$\mathbf{V}_{\mathbf{O L}}$	$\mathbf{V}_{\mathbf{O H}}$	$\mathbf{I}_{\mathbf{O L}}$	$\mathbf{I}_{\mathbf{O H}}$	$\mathbf{I}_{\mathbf{O S L}}$	$\mathbf{I}_{\mathbf{O S H}}$	$\mathbf{I}_{\mathbf{I L}}$	$\mathbf{I}_{\mathbf{I H}}$
Drive Strength	$\mathbf{M i n}$, \mathbf{V}	$\mathbf{M a x}, \mathbf{V}$	$\mathbf{M i n}, \mathbf{V}$	$\mathbf{M a x}$, \mathbf{V}	$\mathbf{M a x}, \mathbf{V}$	$\mathbf{M i n}, \mathbf{V}$	$\mathbf{m A}$	$\mathbf{m A}$	$\mathbf{M a x}_{\boldsymbol{1}}$ $\mathbf{m A}^{\mathbf{1}}$	$\mathbf{M a x}_{\mathbf{M a x}}$ $\mathbf{m A}^{\mathbf{1}}$	$\boldsymbol{\mu A}^{\mathbf{2}}$	$\boldsymbol{\mu A}^{\mathbf{2}}$
2 mA	-0.3	$0.35 * \mathrm{~V}_{\mathrm{CCI}}$	$0.65 * \mathrm{~V}_{\mathrm{CCI}}$	3.6	0.45	$\mathrm{~V}_{\mathrm{CCI}}-0.45$	2	2	11	9	10	10
4 mA	-0.3	$0.35 * \mathrm{~V}_{\mathrm{CCI}}$	$0.65 * \mathrm{~V}_{\mathrm{CCI}}$	3.6	0.45	$\mathrm{~V}_{\mathrm{CCI}}-0.45$	4	4	22	17	10	10
8 mA	-0.3	$0.35 * \mathrm{~V}_{\mathrm{CCI}}$	$0.65 * \mathrm{~V}_{\mathrm{CCI}}$	3.6	0.45	$\mathrm{~V}_{\mathrm{CCI}}-0.45$	8	8	44	35	10	10

Notes:

1. Currents are measured at high temperature $\left(100^{\circ} \mathrm{C}\right.$ junction temperature) and maximum voltage.
2. Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.
3. Software default selection highlighted in gray.

Figure 3-8 • AC Loading
Table 3-33 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C $_{\text {LOAD }}$ (pF)
0	1.8	0.9	35

Note: *Measuring point $=V_{\text {trip. }}$. See Table 3-15 on page 3-14 for a complete table of trip points.
\qquad

Timing Characteristics

Table 3-34 • 1.8 V LVCMOS Low Slew
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=1.7 \mathrm{~V}$

Drive Strength (mA)	Speed Grade	$\mathbf{t}_{\text {DOUT }}$	$\mathbf{t}_{\text {DP }}$	${ }^{\text {t DIN }}$	$\mathbf{t}_{\mathbf{P Y}}$	$\mathrm{t}_{\text {EOUT }}$	$\mathbf{t}_{\mathbf{Z L}}$	$\mathbf{t}_{\mathbf{Z H}}$	$t_{\text {Lz }}$	\mathbf{t}_{HZ}	tzLs	$\mathrm{t}_{\mathbf{z H S}}$	Units
2 mA	-F	0.79	18.66	0.05	1.46	0.51	16.95	18.66	3.34	1.92	19.64	21.34	ns
	Std.	0.66	15.53	0.04	1.22	0.43	14.11	15.53	2.78	1.60	16.35	17.77	ns
	-1	0.56	13.21	0.04	1.04	0.36	12.01	13.21	2.36	1.36	13.91	15.11	ns
	-2	0.49	11.60	0.03	0.91	0.32	10.54	11.60	2.07	1.19	12.21	13.27	ns
4 mA	-F	0.72	12.58	0.05	1.46	0.51	12.51	12.58	3.88	3.28	15.19	15.27	ns
	Std.	0.60	10.48	0.04	1.22	0.43	10.41	10.48	3.23	2.73	12.65	12.71	ns
	-1	0.51	8.91	0.04	1.04	0.36	8.86	8.91	2.75	2.33	10.76	10.81	ns
	-2	0.45	7.82	0.03	0.91	0.32	7.77	7.82	2.41	2.04	9.44	9.49	ns
8 mA	-F	0.79	9.67	0.05	1.46	0.51	9.85	9.42	4.25	3.93	12.53	12.11	ns
	Std.	0.66	8.05	0.04	1.22	0.43	8.20	7.84	3.54	3.27	10.43	10.08	ns
	-1	0.56	6.85	0.04	1.04	0.36	6.97	6.67	3.01	2.78	8.88	8.57	ns
	-2	0.49	6.01	0.03	0.91	0.32	6.12	5.86	2.64	2.44	7.79	7.53	ns

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.
Table 3-35 • 1.8 V LVCMOS High Slew
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=1.7 \mathrm{~V}$

Drive Strength (mA)	Speed Grade	$\mathrm{t}_{\text {DOUT }}$	$\mathbf{t}_{\mathbf{D P}}$	$t_{\text {DIN }}$	$\mathbf{t}_{\mathbf{P Y}}$	$\mathrm{t}_{\text {EOUT }}$	t_{zL}	$\mathbf{t}_{\mathbf{z H}}$	$t_{\text {Lz }}$	$\mathbf{t}_{\mathbf{H Z}}$	$\mathbf{t}_{\mathbf{z L S}}$	$\mathbf{t z H S}$	Units
2 mA	-F	0.79	14.25	0.05	1.46	0.51	10.97	14.25	3.33	1.99	13.66	16.94	ns
	Std.	0.66	11.86	0.04	1.22	0.43	9.14	11.86	2.77	1.66	11.37	14.10	ns
	-1	0.56	10.09	0.04	1.04	0.36	7.77	10.09	2.36	1.41	9.67	11.99	ns
	-2	0.49	8.86	0.03	0.91	0.32	6.82	8.86	2.07	1.24	8.49	10.53	ns
4 mA	-F	0.72	8.31	0.05	1.46	0.51	7.04	8.31	3.87	3.41	9.73	10.99	ns
	Std.	0.60	6.91	0.04	1.22	0.43	5.86	6.91	3.22	2.84	8.10	9.15	ns
	-1	0.51	5.88	0.04	1.04	0.36	4.99	5.88	2.74	2.41	6.89	7.78	ns
	-2	0.45	5.16	0.03	0.91	0.32	4.38	5.16	2.41	2.12	6.05	6.83	ns
8 mA	-F	0.79	5.34	0.05	1.46	0.51	5.02	5.34	4.24	4.06	7.71	8.03	ns
	Std.	0.66	4.45	0.04	1.22	0.43	4.18	4.45	3.53	3.38	6.42	6.68	ns
	-1	0.56	3.78	0.04	1.04	0.36	3.56	3.78	3.00	2.88	5.46	5.69	ns
	-2	0.49	3.32	0.03	0.91	0.32	3.12	3.32	2.64	2.53	4.79	4.99	ns

Notes:

1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.

1.5 V LVCMOS (JESD8-11)

Low-voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general purpose 1.5 V applications. It uses 1.5 V input buffer and push-pull output buffer.

Table 3-36 • Minimum and Maximum DC Input and Output Levels

$\mathbf{1 . 5} \mathbf{V}$ $\mathbf{L V C M O S}$	$\mathbf{V}_{\mathbf{I L}}$		$\mathbf{V}_{\mathbf{I H}}$		$\mathbf{V}_{\mathbf{O L}}$	$\mathbf{V}_{\mathbf{O H}}$	$\mathbf{I}_{\mathbf{O L}}$	$\mathbf{I}_{\mathbf{O H}}$	$\mathbf{I}_{\mathbf{O S L}}$	$\mathbf{I}_{\mathbf{O S H}}$	$\mathbf{I}_{\mathbf{I L}}$	$\mathbf{I}_{\mathbf{I H}}$
Drive $\mathbf{S t r e n g t h}$	$\mathbf{M i n}, \mathbf{v}$	$\mathbf{M a x}, \mathbf{v}$	$\mathbf{M i n}, \mathbf{V}$	$\mathbf{M a x}, \mathbf{v}$	$\mathbf{M a x}, \mathbf{V}$	$\mathbf{M i n}, \mathbf{V}$	$\mathbf{m A}$	$\mathbf{m A}$	$\mathbf{M a x}_{\mathbf{1}}$ $\mathbf{m A}^{\mathbf{1}}$	$\mathbf{M a x}_{\mathbf{1}}$ $\mathbf{m A}^{\mathbf{1}}$	$\boldsymbol{\mu A}^{\mathbf{2}}$	$\boldsymbol{\mu A}^{\mathbf{2}}$
2 mA	-0.3	$0.30 * \mathrm{~V}_{\mathrm{CCI}}$	$0.7 * \mathrm{~V}_{\mathrm{CCI}}$	3.6	$0.25 * \mathrm{~V}_{\mathrm{CCI}}$	$0.75 * \mathrm{~V}_{\mathrm{CCI}}$	2	2	16	13	10	10
4 mA	-0.3	$0.30 * \mathrm{~V}_{\mathrm{CCI}}$	$0.7 * \mathrm{~V}_{\mathrm{CCI}}$	3.6	$0.25 * \mathrm{~V}_{\mathrm{CCI}}$	$0.75 * \mathrm{~V}_{\mathrm{CCI}}$	4	4	33	25	10	10

Notes:

1. Currents are measured at high temperature $\left(100^{\circ} \mathrm{C}\right.$ junction temperature) and maximum voltage.
2. Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.
3. Software default selection highlighted in gray.

Figure 3-9 • AC Loading
Table 3-37 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C $_{\text {LOAD (pF) }}$
0	1.5	0.75	35

Note: *Measuring point $=V_{\text {trip. }}$. See Table 3-15 on page 3-14 for a complete table of trip points.
\qquad

Timing Characteristics

Table 3-38 • 1.5 V LVCMOS Low Slew
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=1.4 \mathrm{~V}$

Drive Strength (mA)	Speed Grade	$t_{\text {DOUT }}$	$\mathbf{t}_{\text {DP }}$	$t_{\text {dIN }}$	$\mathbf{t}_{\mathbf{P Y}}$	$\mathrm{t}_{\text {EOUT }}$	t_{zL}	$\mathrm{t}_{\mathbf{z H}}$	$\mathbf{t}_{\text {Lz }}$	\mathbf{t}_{Hz}	$\mathbf{t z L S}^{\text {z }}$	$\mathbf{t z H S}$	Units
2 mA	-F	0.79	$\begin{gathered} 15.35 \\ 6 \end{gathered}$	0.052	1.728	0.514	$\begin{gathered} 15.38 \\ 7 \end{gathered}$	$\begin{gathered} 15.35 \\ 6 \end{gathered}$	4.081	3.176	$\begin{gathered} 18.07 \\ 3 \end{gathered}$	$\begin{gathered} 18.04 \\ 2 \end{gathered}$	ns
	Std.	0.66	12.78	0.04	1.44	0.43	12.81	12.78	3.40	2.64	15.05	15.02	ns
	-1	0.56	10.87	0.04	1.22	0.36	10.90	10.87	2.89	2.25	12.80	12.78	ns
	-2	0.49	9.55	0.03	1.07	0.32	9.57	9.55	2.54	1.97	11.24	11.22	ns
4 mA	-F	0.79	12.02	0.05	1.73	0.51	12.25	11.47	4.50	3.93	14.93	14.15	ns
	Std.	0.66	10.01	0.04	1.44	0.43	10.19	9.55	3.75	3.27	12.43	11.78	ns
	-1	0.56	8.51	0.04	1.22	0.36	8.67	8.12	3.19	2.78	10.57	10.02	ns
	-2	0.49	7.47	0.03	1.07	0.32	7.61	7.13	2.80	2.44	9.28	8.80	ns

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.
Table 3-39 • 1.5 V LVCMOS High Slew
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=1.4 \mathrm{~V}$

Drive Strength (mA)	Speed Grade	$\mathbf{t}_{\text {DOUT }}$	$\mathbf{t}_{\text {DP }}$	$t_{\text {dIN }}$	$\mathbf{t}_{\mathbf{P Y}}$	$\mathrm{t}_{\text {EOUT }}$	$\mathbf{t}_{\mathbf{z L}}$	$\mathrm{t}_{\mathbf{z H}}$	$t_{\text {Lz }}$	$\mathbf{t}_{\mathbf{H Z}}$	$\mathbf{t z u s}^{\text {z }}$	$\mathbf{t}_{\text {zHS }}$	Units
2 mA	-F	0.79	10.05	0.05	1.73	0.51	8.20	10.05	4.07	3.32	10.88	12.73	ns
	Std.	0.66	8.36	0.04	1.44	0.43	6.82	8.36	3.39	2.77	9.06	10.60	ns
	-1	0.56	7.11	0.04	1.22	0.36	5.80	7.11	2.88	2.35	7.71	9.02	ns
	-2	0.49	6.24	0.03	1.07	0.32	5.10	6.24	2.53	2.06	6.76	7.91	ns
4 mA	-F	0.79	6.38	0.05	1.73	0.51	5.83	6.38	4.49	4.09	8.51	9.07	ns
	Std.	0.66	5.31	0.04	1.44	0.43	4.85	5.31	3.74	3.40	7.09	7.55	ns
	-1	0.56	4.52	0.04	1.22	0.36	4.13	4.52	3.18	2.89	6.03	6.42	ns
	-2	0.49	3.97	0.03	1.07	0.32	3.62	3.97	2.79	2.54	5.29	5.64	ns

Notes:

1. Software default selection highlighted in gray.
2. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.

3.3 V PCI, 3.3 V PCI-X

Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and $66 \mathrm{MHz} \mathrm{PCI} \mathrm{Bus} \mathrm{applications}$.
Table 3-40 • Minimum and Maximum DC Input and Output Levels

$3.3 \mathrm{~V} \mathrm{PCI} / \mathrm{PCI}-\mathrm{X}$	$\mathrm{V}_{\text {IL }}$		$\mathbf{V}_{\mathbf{I H}}$		$\mathbf{V}_{\mathbf{O L}}$	$\mathrm{V}_{\mathbf{O H}}$	$\mathbf{I O L}^{\text {l }}$	$\mathbf{I O H}^{\text {O }}$	IOSL	IOSH	$I_{\text {IL }}$	$\mathbf{I}_{\mathbf{I H}}$
Drive Strength	Min, V	Max, V	Min, V	Max, V	Max, V	Min, V	mA	mA	Max, mA ${ }^{1}$	Max, mA ${ }^{1}$	$\mu \mathrm{A}^{2}$	$\mu \mathrm{A}^{2}$
Per PCI specification					Per PC	I curves					10	10

Notes:

1. Currents are measured at high temperature $\left(100^{\circ} \mathrm{C}\right.$ junction temperature) and maximum voltage.
2. Currents are measured at $85^{\circ} \mathrm{C}$ junction temperature.

AC loadings are defined per the $\mathrm{PCI} / \mathrm{PCI}-X$ specifications for the data path; Actel loadings for enable path characterization are described in Figure 3-10.

Figure 3-10 • AC Loading

AC loading are defined per $\mathrm{PCI} / \mathrm{PCl}-\mathrm{X}$ specifications for the data path; Actel loading for tristate is described in Table 3-41. Table 3-41 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	C $_{\text {LOAD }}$ (pF)
0	3.3	$0.285 * \mathrm{~V}_{\mathrm{CCI}}$ for $\mathrm{t}_{\mathrm{DP}(\mathrm{R})}$	10
		$0.615 * \mathrm{~V}_{\mathrm{CCI}}$ for $\mathrm{t}_{\mathrm{DP}(\mathrm{F})}$	

Note: $\quad *$ Measuring point $=V_{\text {trip. }}$. See Table 3-15 on page 3-14 for a complete table of trip points.

Timing Characteristics

Table 3-42 • 3.3 V PCI/PCI-X
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=3.0 \mathrm{~V}$

| Speed Grade | $\mathbf{t}_{\mathbf{D O U T}}$ | $\mathbf{t}_{\mathbf{D P}}$ | $\mathbf{t}_{\mathbf{D I N}}$ | $\mathbf{t}_{\mathbf{P Y}}$ | $\mathbf{t}_{\mathbf{E O U T}}$ | $\mathbf{t}_{\mathbf{Z L}}$ | $\mathbf{t}_{\mathbf{Z H}}$ | $\mathbf{t}_{\mathbf{L Z}}$ | $\mathbf{t}_{\mathbf{H Z}}$ | $\mathbf{t}_{\mathbf{z L S}}$ | $\mathbf{t}_{\mathbf{z H S}}$ | $\mathbf{U n i t s}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -F | 0.79 | 3.22 | 0.05 | 1.04 | 0.51 | 3.28 | 2.34 | 3.86 | 4.30 | 5.97 | 5.03 | ns |
| Std. | 0.66 | 2.68 | 0.04 | 0.86 | 0.43 | 2.73 | 1.95 | 3.21 | 3.58 | 4.97 | 4.19 | ns |
| -1 | 0.56 | 2.28 | 0.04 | 0.73 | 0.36 | 2.32 | 1.66 | 2.73 | 3.05 | 4.22 | 3.56 | ns |
| -2 | 0.49 | 2.00 | 0.03 | 0.65 | 0.32 | 2.04 | 1.46 | 2.40 | 2.68 | 3.71 | 3.13 | ns |

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.
\qquad

Differential I/O Characteristics

Physical Implementation

Configuration of the I/O modules as a differential pair is handled by Actel Designer software when the user instantiates a differential I/O macro in the design.
Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no support for bidirectional I/Os or tristates with these standards.

LVDS

Low-Voltage Differential Signal (ANSI/TIA/EIA-644) is a high-speed, differential I/O standard. It requires that one data bit is carried through two signal lines, so two pins are needed. It also requires external resistor termination. The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 3-11. The building blocks of the LVDS transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVPECL implementation, because the output standard specifications are different.

Bourns Part Number: CAT16-LV4F12

Figure 3-11 • LVDS Circuit Diagram and Board-Level Implementation
Table 3-43 • Minimum and Maximum DC Input and Output Levels

DC Parameter	Description	Min.	Typ.	Max.	Units
$\mathrm{V}_{\text {CCI }}$	Supply Voltage	2.375	2.5	2.625	V
$\mathrm{~V}_{\text {OL }}$	Output Low Voltage	0.9	1.075	1.25	V
$\mathrm{~V}_{\text {OH }}$	Output High Voltage	1.25	1.425	1.6	V
$\mathrm{~V}_{\text {I }}$	Input Voltage	0		2.925	V
$\mathrm{~V}_{\text {ODIFF }}$	Differential Output Voltage	250	350	450	mV
$\mathrm{V}_{\text {OCM }}$	Output Common Mode Voltage	1.125	1.25	1.375	V
$\mathrm{~V}_{\text {ICM }}$	Input Common Mode Voltage	0.05	1.25	2.35	V
$\mathrm{~V}_{\text {IDIFF }}$	Input Differential Voltage	100	350		mV

Notes:

1. $\pm 5 \%$
2. Differential input voltage $= \pm 350 \mathrm{mV}$.

Table 3-44 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)
1.075	1.325	Cross point

Note: $\quad *$ Measuring point $=V_{\text {trip. }}$. See Table 3-6 on page 3-4 for a complete table of trip points.

ProASIC3 Flash Family FPGAs

Timing Characteristics
Table 3-45 • LVDS
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=2.3 \mathrm{~V}$

Speed Grade	$\mathbf{t}_{\text {Dout }}$	$\mathbf{t}_{\mathbf{D P}}$	$\mathbf{t}_{\mathbf{D I N}}$	$\mathbf{t}_{\mathbf{P Y}}$	Units
-F	0.79	2.20	0.05	1.92	ns
Std.	0.66	1.83	0.04	1.60	ns
-1	0.56	1.56	0.04	1.36	ns
-2	0.49	1.37	0.03	1.20	ns

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.
\qquad

LVPECL

Low-Voltage Positive Emitter-Coupled Logic (LVPECL) is another differential I/O standard. It requires that one data bit is carried through two signal lines. Like LVDS, two pins are needed. It also requires external resistor termination.

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 3-12. The building blocks of the LVPECL transmitter-receiver are one transmitter macro, one receiver macro, three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three driver resistors are different from those used in the LVDS implementation, because the output standard specifications are different.

Bourns Part Number: CAT16-PC4F12

Figure 3-12 • LVPECL Circuit Diagram and Board-Level Implementation
Table 3-46 • Minimum and Maximum DC Input and Output Levels

| DC Parameter | Description | Min. | Max. | Min. | Max. | Min. | Max. | Units |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {CCI }}$ | Supply Voltage | 3.0 | | 3.3 | | 3.6 | | V |
| $\mathrm{~V}_{\text {OL }}$ | Output Low Voltage | 0.96 | 1.27 | 1.06 | 1.43 | 1.30 | 1.57 | V |
| $\mathrm{~V}_{\text {OH }}$ | Output High Voltage | 1.8 | 2.11 | 1.92 | 2.28 | 2.13 | 2.41 | V |
| $\mathrm{~V}_{\text {IL, }} \mathrm{V}_{\text {IH }}$ | Input Low, Input High voltages | 0 | 3.3 | 0 | 3.6 | 0 | 3.9 | V |
| $\mathrm{~V}_{\text {ODIFF }}$ | Differential Output Voltage | 0.625 | 0.97 | 0.625 | 0.97 | 0.625 | 0.97 | V |
| $\mathrm{~V}_{\text {OCM }}$ | Output Common Mode Voltage | 1.762 | 1.98 | 1.762 | 1.98 | 1.762 | 1.98 | V |
| $\mathrm{~V}_{\text {ICM }}$ | Input Common Mode Voltage | 1.01 | 2.57 | 1.01 | 2.57 | 1.01 | 2.57 | V |
| $\mathrm{~V}_{\text {IDIFF }}$ | Input Differential Voltage | 300 | | 300 | | 300 | | mV |

Table 3-47 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)
1.64	1.94	Cross point

Note: *Measuring point $=V_{\text {trip. }}$. See Table 3-15 on page 3-14 for a complete table of trip points.

Timing Characteristics

Table 3-48 • LVPECL
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$, Worst Case $\mathrm{V}_{\mathrm{CCI}}=3.0 \mathrm{~V}$

Speed Grade	$\mathbf{t}_{\text {DOUT }}$	$\mathbf{t}_{\mathbf{D P}}$	$\mathbf{t}_{\mathbf{D I N}}$	$\mathbf{t}_{\mathbf{P Y}}$	Units
-F	0.79	2.16	0.05	1.69	ns
Std.	0.66	1.80	0.04	1.40	ns
-1	0.56	1.53	0.04	1.19	ns
-2	0.49	1.34	0.03	1.05	ns

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.

ProASIC3 Flash Family FPGAs

I/O Register Specifications

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Figure 3-13 • Timing Model of Registered I/O Buffers with Synchronous Enable and Asynchronous Preset

Table 3-49 • Parameter Definition and Measuring Nodes

Parameter Name	Parameter Definition	Measuring Nodes (From, To)*
toclke	Clock-to-Q of the Output Data Register	H, DOUT
tosud	Data Setup time for the Output Data Register	F, H
$\mathrm{t}_{\text {OHD }}$	Data Hold time for the Output Data Register	F, H
tosue	Enable Setup time for the Output Data Register	G, H
$\mathrm{t}_{\text {OHE }}$	Enable Hold time for the Output Data Register	G, H
topre2Q	Asynchronous Preset-to-Q of the Output Data Register	L, DOUT
$\mathrm{t}_{\text {OREMPRE }}$	Asynchronous Preset removal time for the Output Data Register	L, H
$\mathrm{t}_{\text {ORECPRE }}$	Asynchronous Preset Recovery time for the Output Data Register	L, H
toeclka	Clock-to-Q of the Output Enable Register	H, EOUT
$\mathrm{t}_{\text {OESUD }}$	Data Setup time for the Output Enable Register	J, H
$\mathrm{t}_{\text {OEHD }}$	Data Hold time for the Output Enable Register	J, H
toesue	Enable Setup time for the Output Enable Register	K, H
toehe	Enable Hold time for the Output Enable Register	K, H
$\mathrm{t}_{\text {OEPRE2Q }}$	Asynchronous Preset-to-Q of the Output Enable Register	I, EOUT
toerempre	Asynchronous Preset Removal time for the Output Enable Register	I, H
toerecpre	Asynchronous Preset Recovery time for the Output Enable Register	I, H
$\mathrm{t}_{\text {ICLKQ }}$	Clock-to-Q of the Input Data Register	A, E
tisud	Data Setup time for the Input Data Register	C, A
$\mathrm{t}_{\text {IHD }}$	Data Hold time for the Input Data Register	C, A
$\mathrm{t}_{\text {ISUE }}$	Enable Setup time for the Input Data Register	B, A
$\mathrm{t}_{\text {HE }}$	Enable Hold time for the Input Data Register	B, A
tIPRE2Q	Asynchronous Preset-to-Q of the Input Data Register	D, E
$\mathrm{t}_{\text {IREMPRE }}$	Asynchronous Preset Removal time for the Input Data Register	D, A
tiRECPRE	Asynchronous Preset Recovery time for the Input Data Register	D, A

Note: *See Figure 3-13 on page 3-30 for more information.

Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Figure 3-14 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

ProASIC3 Flash Family FPGAs

Table 3-50 • Parameter Definition and Measuring Nodes

Parameter Name	Parameter Definition	Measuring Nodes (From, To)*
toclke	Clock-to-Q of the Output Data Register	HH, DOUT
tosud	Data Setup time for the Output Data Register	FF, HH
$\mathrm{t}_{\mathrm{OHD}}$	Data Hold time for the Output Data Register	FF, HH
tosue	Enable Setup time for the Output Data Register	GG, HH
$\mathrm{t}_{\text {OHE }}$	Enable Hold time for the Output Data Register	GG, HH
toclR2Q	Asynchronous Clear-to-Q of the Output Data Register	LL, DOUT
toremcli	Asynchronous Clear Removal time for the Output Data Register	LL, HH
$\mathrm{t}_{\text {ORECCLR }}$	Asynchronous Clear Recovery time for the Output Data Register	LL, HH
toeclka	Clock-to-Q of the Output Enable Register	HH, EOUT
toesud	Data Setup time for the Output Enable Register	JJ, HH
$\mathrm{t}_{\text {OEHD }}$	Data Hold time for the Output Enable Register	JJ, HH
toesue	Enable Setup time for the Output Enable Register	KK, HH
$\mathrm{t}_{\text {OEHE }}$	Enable Hold time for the Output Enable Register	KK, HH
$\mathrm{t}_{\text {OECLR2Q }}$	Asynchronous Clear-to-Q of the Output Enable Register	II, EOUT
toeremclr	Asynchronous Clear Removal time for the Output Enable Register	II, HH
$t_{\text {OERECCLR }}$	Asynchronous Clear Recovery time for the Output Enable Register	II, HH
tICLKQ	Clock-to-Q of the Input Data Register	AA, EE
tisud	Data Setup time for the Input Data Register	CC, AA
tIHD	Data Hold time for the Input Data Register	CC, AA
tISUE	Enable Setup time for the Input Data Register	$B B, A A$
$\mathrm{t}_{\text {IHE }}$	Enable Hold time for the Input Data Register	BB, AA
$\mathrm{t}_{\text {ICLR2Q }}$	Asynchronous Clear-to-Q of the Input Data Register	DD, EE
tiREMCLR	Asynchronous Clear Removal time for the Input Data Register	DD, AA
$\mathrm{t}_{\text {IRECCLR }}$	Asynchronous Clear Recovery time for the Input Data Register	DD, AA

Note: *See Figure 3-14 on page 3-32 for more information.

Input Register

Figure 3-15 • Input Register Timing Diagram

Timing Characteristics

Table 3-51 • Input Data Register Propagation Delays Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

Parameter	Description	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{S t d}$.	$\mathbf{- F}$	Units
$\mathrm{t}_{\text {ICLKQ }}$	Clock-to-Q of the Input Data Register	0.63	0.71	0.84	1.01	ns
$\mathrm{t}_{\text {ISUD }}$	Data Setup time for the Input Data Register	0.43	0.49	0.57	0.69	ns
$\mathrm{t}_{\text {IHD }}$	Data Hold time for the Input Data Register	0.00	0.00	0.00	0.00	ns
$\mathrm{t}_{\text {ISUE }}$	Enable Setup time for the Input Data Register	0.43	0.49	0.57	0.69	ns
$\mathrm{t}_{\text {IHE }}$	Enable Hold time for the Input Data Register	0.00	0.00	0.00	0.00	ns
$\mathrm{t}_{\text {ICLR2Q }}$	Asynchronous Clear-to-Q of the Input Data Register	0.57	0.65	0.76	1.01	ns
$\mathrm{t}_{\text {IPRE2Q }}$	Asynchronous Preset-to-Q of the Input Data Register	0.45	0.51	0.60	0.72	ns
$\mathrm{t}_{\text {IREMCLR }}$	Asynchronous Clear Removal time for the Input Data Register	0.00	0.00	0.00	0.00	ns
$\mathrm{t}_{\text {IRECCLR }}$	Asynchronous Clear Recovery time for the Input Data Register	0.10	0.10	0.10	0.10	ns
$\mathrm{t}_{\text {IREMPRE }}$	Asynchronous Preset Removal time for the Input Data Register	0.00	0.00	0.00	0.00	ns
$\mathrm{t}_{\text {IRECPRE }}$	Asynchronous Preset Recovery time for the Input Data Register	0.10	0.10	0.10	0.10	ns
$\mathrm{t}_{\text {IWCLR }}$	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.25	0.28	0.33	0.40	ns
$\mathrm{t}_{\text {IWPRE }}$	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.25	0.28	0.33	0.40	ns
$\mathrm{t}_{\text {ICKMPWH }}$	Clock Minimum Pulse Width High for the Input Data Register	0.36	0.41	0.48	0.58	ns
$\mathrm{t}_{\text {ICKMPWL }}$	Clock Minimum Pulse Width Low for the Input Data Register	0.41	0.46	0.54	0.65	ns

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.
\qquad

Output Register

Figure 3-16 • Output Register Timing Diagram

Timing Characteristics

Table 3-52 • Output Data Register Propagation Delays Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

Parameter	Description	-2	-1	Std.	-F	Units
toclkQ	Clock-to-Q of the Output Data Register	0.63	0.71	0.84	1.01	ns
tosud	Data Setup time for the Output Data Register	0.43	0.49	0.57	0.69	ns
$\mathrm{t}_{\text {OHD }}$	Data Hold time for the Output Data Register	0.00	0.00	0.00	0.00	ns
tosue	Enable Setup time for the Output Data Register	0.43	0.49	0.57	0.69	ns
$\mathrm{t}_{\text {OHE }}$	Enable Hold time for the Output Data Register	0.00	0.00	0.00	0.00	ns
toclR2Q	Asynchronous Clear-to-Q of the Output Data Register	0.57	0.65	0.76	1.01	ns
topre2Q	Asynchronous Preset-to-Q of the Output Data Register	0.45	0.51	0.60	0.72	ns
toremclr	Asynchronous Clear Removal time for the Output Data Register	0.00	0.00	0.00	0.00	ns
torecclr	Asynchronous Clear Recovery time for the Output Data Register	0.24	0.27	0.32	0.38	ns
torempre	Asynchronous Preset Removal time for the Output Data Register	0.00	0.00	0.00	0.00	ns
torecpre	Asynchronous Preset Recovery time for the Output Data Register	0.24	0.27	0.32	0.38	ns
towCLR	Asynchronous Clear Minimum Pulse Width for the Output Data Register	0.26	0.29	0.34	0.41	ns
towpre	Asynchronous Preset Minimum Pulse Width for the Output Data Register	0.26	0.29	0.34	0.41	ns
tockMPWH	Clock Minimum Pulse Width High for the Output Data Register	0.38	0.43	0.51	0.61	ns
tockMpWL	Clock Minimum Pulse Width Low for the Output Data Register	0.43	0.49	0.57	0.69	ns

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.

ProASIC3 Flash Family FPGAs

Output Enable Register

Figure 3-17 • Output Enable Register Timing Diagram

Timing Characteristics

Table 3-53 • Output Enable Register Propagation Delays Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

Parameter	Description	-2	-1	Std.	-F	Units
toectio	Clock-to-Q of the Output Enable Register	0.63	0.71	0.84	1.01	ns
toesud	Data Setup time for the Output Enable Register	0.43	0.49	0.57	0.69	ns
$\mathrm{t}_{\text {OEHD }}$	Data Hold time for the Output Enable Register	0.00	0.00	0.00	0.00	ns
$\mathrm{t}_{\text {OESUE }}$	Enable Setup time for the Output Enable Register	0.43	0.49	0.57	0.69	ns
toehe	Enable Hold time for the Output Enable Register	0.00	0.00	0.00	0.00	ns
toeclR2Q	Asynchronous Clear-to-Q of the Output Enable Register	0.63	0.71	0.84	1.01	ns
toepre2Q	Asynchronous Preset-to-Q of the Output Enable Register	0.45	0.51	0.60	0.72	ns
toeremCLR	Asynchronous Clear Removal time for the Output Enable Register	0.00	0.00	0.00	0.00	ns
toerecclr	Asynchronous Clear Recovery time for the Output Enable Register	0.22	0.25	0.30	0.36	ns
toerempre	Asynchronous Preset Removal time for the Output Enable Register	0.00	0.00	0.00	0.00	ns
toerecpre	Asynchronous Preset Recovery time for the Output Enable Register	0.22	0.25	0.30	0.36	ns
$t_{\text {OEWCLR }}$	Asynchronous Clear Minimum Pulse Width for the Output Enable Register	0.26	0.29	0.34	0.41	ns
toewpre	Asynchronous Preset Minimum Pulse Width for the Output Enable Register	0.26	0.29	0.34	0.41	ns
toECKMPWH	Clock Minimum Pulse Width High for the Output Enable Register	0.38	0.43	0.51	0.61	ns
toeckmphl	Clock Minimum Pulse Width Low for the Output Enable Register	0.43	0.49	0.57	0.69	ns

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.

DDR Module Specifications

Input DDR Module

Figure 3-18 • Input DDR Timing Model

Table 3-54 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (From, To)
$t_{\text {DDRICLKQ1 }}$	Clock-to-Out Out_QR	B, D
$t_{\text {DDRICLKQ2 }}$	Clock-to-Out Out_QF	B, E
$t_{\text {DDRISUD }}$	Data Setup time of DDR input	A, B
$t_{\text {DDRIHD }}$	Data Hold time of DDR input	A, B
$t_{\text {DDRICLR2Q1 }}$	Clear-to-Out Out_QR	C, D
$t_{\text {DDRICLR2Q2 }}$	Clear-to-Out Out_QF	C, E
$\mathrm{t}_{\text {DDRIREMCLR }}$	Clear Removal	C, B
$t_{\text {DDRIRECCLR }}$	Clear Recovery	C, B

ProASIC3 Flash Family FPGAs

Table 3-55 • Input DDR Timing Diagram
Timing Characteristics
Table 3-56 • Input DDR Propagation Delays Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

Parameter	Description	-2	-1	Std.	-F	Units
${ }^{\text {t D }}$ RICLKQ1	Clock-to-Out Out_QR for Input DDR	0.63	0.71	0.84	1.01	ns
$t_{\text {DDRICLKQ2 }}$	Clock-to-Out Out_QF for Input DDR	0.63	0.71	0.84	1.01	ns
$t_{\text {DDRISUD }}$	Data Setup for Input DDR	0.53	0.61	0.71	0.86	ns
$\mathrm{t}_{\text {DDRIHD }}$	Data Hold for Input DDR	0.00	0.00	0.00	0.00	ns
$\mathrm{t}_{\text {DDRICLR2Q1 }}$	Asynchronous Clear-to-Out Out_QR for Input DDR	0.57	0.65	0.76	0.91	ns
$\mathrm{t}_{\text {DDRICLR2Q2 }}$	Asynchronous Clear-to-Out Out_QF for Input DDR	0.57	0.65	0.76	0.91	ns
$t_{\text {DDRIREMCLR }}$	Asynchronous Clear Removal time for Input DDR	0.00	0.00	0.00	0.00	ns
$\mathrm{t}_{\text {DDRIRECCLR }}$	Asynchronous Clear Recovery time for Input DDR	0.22	0.25	0.30	0.36	ns
$\mathrm{t}_{\text {DDRIWCLR }}$	Asynchronous Clear Minimum Pulse Width for Input DDR					ns
$\mathrm{t}_{\text {DDRICKMPWH }}$	Clock Minimum Pulse Width High for Input DDR					ns
t $_{\text {DRRICKMPWL }}$	Clock Minimum Pulse Width Low for Input DDR					ns
F DDRIMAX	Maximum Frequency for Input DDR					MHz

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.

Output DDR Module

Figure 3-19 • Output DDR Timing Model
Table 3-57 • Parameter Definitions

Parameter Name	Parameter Definition	Measuring Nodes (From, To)
$t_{\text {DDROCLKQ }}$	Clock-to-Out	B, E
$t_{\text {DDROCLR2Q }}$	Asynchronous Clear-to-Out	C, E
$t_{\text {DDROREMCLR }}$	Clear Removal	C, B
$t_{\text {DDRORECCLR }}$	Clear Recovery	C, B
$t_{\text {DDROSUD1 }}$	Data Setup Data_F	A, B
$t_{\text {DDROSUD2 }}$	Data Setup Data_R	D, B
$t_{\text {DDROHD1 }}$	Data Hold Data_F	A, B
$t_{\text {DDROHD2 }}$	Data Hold Data_R	D, B

Figure 3-20 • Output DDR Timing Diagram

Timing Characteristics

Table 3-58 • Output DDR Propagation Delays
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

Parameter	Description	-2	-1	Std.	-F	Units
$t_{\text {DDROCLKQ }}$	Clock-to-Out of DDR for Output DDR	0.63	0.71	0.84	1.01	ns
$t_{\text {DDROSUD1 }}$	Data_F Data Setup for Output DDR	0.43	0.49	0.57	0.69	ns
$t_{\text {DDROSUD2 }}$	Data_R Data Setup for Output DDR	0.43	0.49	0.57	0.69	ns
$t_{\text {DDROHD1 }}$	Data_F Data Hold for Output DDR	0.00	0.00	0.00	0.00	ns
t ${ }^{\text {d }}$ (${ }^{\text {a }}$	Data_R Data Hold for Output DDR	0.00	0.00	0.00	0.00	ns
$\mathrm{t}_{\text {DDROCLR2Q }}$	Asynchronous Clear-to-Out for Output DDR	0.57	0.65	0.76	0.91	ns
$\mathrm{t}_{\text {DDROREMCLR }}$	Asynchronous Clear Removal time for Output DDR	0.00	0.00	0.00	0.00	ns
t ${ }^{\text {dDRORECCLR }}$	Asynchronous Clear Recovery time for Output DDR	0.22	0.25	0.30	0.36	ns
$t_{\text {DDROWCLR1 }}$	Asynchronous Clear Minimum Pulse Width for Output DDR					ns
$\mathrm{t}_{\text {DDROCKMPWH }}$	Clock Minimum Pulse Width High for the Output DDR					ns
$\mathrm{t}_{\text {DDROCKMPWL }}$	Clock Minimum Pulse Width Low for the Output DDR					ns
F ${ }_{\text {DDOMAX }}$	Maximum Frequency for the Output DDR					MHz

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.

VersaTile Characteristics

VersaTile Specifications as a Combinatorial Module

The ProASIC3 library offers all combinations of LUT-3 combinatorial functions. In this section, timing characteristics are presented for a sample of the library. For more details, refer to the ProASIC3/E Macro Library Guide.

ProASIC3 Flash Family FPGAs

Figure 3-22 • Timing Model and Waveforms
\qquad

Timing Characteristics

Table 3-59 • Combinatorial Cell Propagation Delays Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

Combinatorial Cell	Equation	Parameter	-2	-1	Std.	-F	Units
INV	$Y=!A$	$t_{\text {PD }}$	0.40	0.46	0.54	0.65	ns
AND2	$Y=A \cdot B$	$t_{\text {PD }}$	0.47	0.54	0.63	0.76	ns
NAND2	$Y=!(A \cdot B)$	$t_{\text {PD }}$	0.47	0.54	0.63	0.76	ns
OR2	$Y=A+B$	$t_{\text {PD }}$	0.49	0.55	0.65	0.78	ns
NOR2	$Y=!(A+B)$	$t_{\text {PD }}$	0.49	0.55	0.65	0.78	ns
XOR2	$Y=A \oplus B$	$t_{\text {PD }}$	0.74	0.84	0.99	1.19	ns
MAJ3	$Y=\operatorname{MAJ}(A, B, C)$	$t_{\text {PD }}$	0.70	0.79	0.93	1.12	ns
XOR3	$Y=A \oplus B \oplus C$	$t_{\text {PD }}$	0.87	1.00	1.17	1.41	ns
MUX2	$Y=A!S+B S$	$t_{\text {PD }}$	0.51	0.58	0.68	0.81	ns
AND3	$Y=A \cdot B \cdot C$	$t_{\text {PD }}$	0.56	0.64	0.75	0.90	ns

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.

VersaTile Specifications as a Sequential Module

The ProASIC3 library offers a wide variety of sequential cells including flip-flops and latches. Each have a data input and optional Enable, Clear, or Preset. In this section, timing characteristics are presented for a representative sample from the library. For more details, refer to the ProASIC3/E Macro Library Guide.

Figure 3-24 • Timing Model and Waveforms

Timing Characteristics

Table 3-60 • Register Delays
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

Parameter		$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{S t d}$.	$\mathbf{- F}$	Units
$\mathrm{t}_{\text {CLKQ }}$	Clock-to-Q of the Core Register	0.55	0.63	0.74	0.89	ns
$\mathrm{t}_{\text {SUD }}$	Data Setup time for the Core Register	0.43	0.49	0.57	0.69	ns
$\mathrm{t}_{\text {HD }}$	Data Hold time for the Core Register	0.00	0.00	0.00	0.00	ns
$\mathrm{t}_{\text {SUE }}$	Enable Setup time for the Core Register	0.45	0.52	0.61	0.73	ns
$\mathrm{t}_{\text {HE }}$	Enable Hold time for the Core Register	0.00	0.00	0.00	0.00	ns
$\mathrm{t}_{\text {CLR2Q }}$	Asynchronous Clear-to-Q of the Core Register	0.40	0.45	0.53	0.64	ns
$\mathrm{t}_{\text {PRE2Q }}$	Asynchronous Preset-to-Q of the Core Register	0.40	0.45	0.53	0.64	ns
$\mathrm{t}_{\text {REMCLR }}$	Asynchronous Clear Removal time for the Core Register	0.00	0.00	0.00	0.00	ns
$\mathrm{t}_{\text {RECCLR }}$	Asynchronous Clear Recovery time for the Core Register	0.22	0.25	0.30	0.36	ns
$\mathrm{t}_{\text {REMPRE }}$	Asynchronous Preset Removal time for the Core Register	0.00	0.00	0.00	0.00	ns
$\mathrm{t}_{\text {RECPRE }}$	Asynchronous Preset Recovery time for the Core Register	0.22	0.25	0.30	0.36	ns
$\mathrm{t}_{\text {WCLR }}$	Asynchronous Clear Minimum Pulse Width for the Core Register					
$\mathrm{t}_{\text {WPRE }}$	Asynchronous Preset Minimum Pulse Width for the Core Register	0.26	0.26	0.29	0.34	0.41
$\mathrm{t}_{\text {CKMPWH }}$	Clock Minimum Pulse Width High for the Core Register	0.34	0.41	ns		
$\mathrm{t}_{\text {CKMPWL }}$	Clock Minimum Pulse Width Low for the Core Register	0.38	0.43	0.51	0.61	ns

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.

Global Resource Characteristics

A3P250 Clock Tree Topology

Clock delays are device-specific. Figure 3-25 is an example of a global tree used for clock routing. The global tree presented in Figure 3-25 is driven by a CCC located on the west side of the A3P250 device. It is used to drive all D-flipflops in the device.

Figure 3-25 • Example of Global Tree Use in an A3P250 Device for Clock Routing

ProASIC3 Flash Family FPGAs

Global Tree Timing Characteristics

Global clock delays include the central rib delay, the spine delay, and the row delay. Delays do not include I/O input buffer clock delays, as these are I/O standard dependent and the clock may be driven and conditioned internally by the CCC module. For more details on clock conditioning capabilities, refer to the "Clock Conditioning Circuits" section on page 2-15. Table 3-61 to Table 3-66 on page 3-48 present minimum and maximum global clock delays within each device. Minimum and maximum delays are measured with minimum and maximum loading.

Timing Characteristics

Table 3-61 • A3P060 Global Resource
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

Parameter	Description	-2		-1		Std.		-F		Units
		Min. ${ }^{1}$	Max. ${ }^{2}$							
$t_{\text {RCKL }}$	Input Low Delay for Global Clock	1.05	1.18	1.02	1.34	1.20	1.58	1.44	1.91	ns
$t_{\text {RCKH }}$	Input High Delay for Global Clock	1.07	1.19	1.02	1.36	1.21	1.60	1.45	1.91	ns
$\mathrm{t}_{\text {RCKMPWH }}$	Minimum Pulse Width High for Global Clock									ns
$t_{\text {RCKMPWL }}$	Minimum Pulse Width Low for Global Clock									ns
$t_{\text {RCKSW }}$	Maximum Skew for Global Clock		0.14		0.34		0.40		0.47	ns
$\mathrm{F}_{\text {RMAX }}$	Maximum Frequency for Global Clock									MHz

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.

Table 3-62 • A3P125 Global Resource Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

	Description	-2		-1		Std.		-F		Units
Parameter		Min. ${ }^{1}$	Max. ${ }^{\text {2 }}$	Min. ${ }^{1}$	Max. ${ }^{2}$	Min. ${ }^{1}$	Max. ${ }^{\text {2 }}$	Min. ${ }^{1}$	Max. ${ }^{2}$	
$t_{\text {RCKL }}$	Input Low Delay for Global Clock	1.10	1.23	1.08	1.40	1.26	1.64	1.52	1.99	ns
$t_{\text {RCKH }}$	Input High Delay for Global Clock	1.12	1.24	1.07	1.41	1.26	1.66	1.52	1.98	ns
trckMPWH	Minimum Pulse Width High for Global Clock									ns
$\mathrm{t}_{\text {RCKMPWL }}$	Minimum Pulse Width Low for Global Clock									ns
$t_{\text {RCKSW }}$	Maximum Skew for Global Clock		0.14		0.34		0.40		0.47	ns
$\mathrm{F}_{\text {RMAX }}$	Maximum Frequency for Global Clock									MHz

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.
\qquad

Table 3-63 • A3P250 Global Resource
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

Parameter	Description	-2		-1		Std.		-F		Units
		Min. ${ }^{1}$	Max. ${ }^{\text {2 }}$	Min. ${ }^{1}$	Max. ${ }^{2}$	Min. ${ }^{1}$	Max. ${ }^{2}$	Min. ${ }^{1}$	Max. ${ }^{\text {2 }}$	
$\mathrm{t}_{\text {RCKL }}$	Input Low Delay for Global Clock	1.10	1.22	1.07	1.40	1.26	1.64	1.52	1.99	ns
trCKH	Input High Delay for Global Clock	1.11	1.24	1.07	1.41	1.26	1.65	1.52	1.98	ns
$t_{\text {RCKMPWH }}$	Minimum Pulse Width High for Global Clock									ns
trCKMPWL	Minimum Pulse Width Low for Global Clock									ns
$t_{\text {t } C K S W ~}$	Maximum Skew for Global Clock		0.14		0.34		0.39		0.47	ns
Frmax	Maximum Frequency for Global Clock									MHz

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.

Table 3-64 • A3P400 Global Resource
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

Parameter	Description	-2		-1		Std.		-F		Units
		Min. ${ }^{1}$	Max. ${ }^{\text {2 }}$	Min. ${ }^{1}$	Max. ${ }^{\text {2 }}$	Min. ${ }^{1}$	Max. ${ }^{\mathbf{2}}$	Min. ${ }^{1}$	Max. ${ }^{\text {2 }}$	
$t_{\text {RCKL }}$	Input Low Delay for Global Clock	1.15	1.27	1.13	1.45	1.33	1.70	1.59	2.06	ns
$t_{\text {RCKH }}$	Input High Delay for Global Clock	1.16	1.28	1.12	1.46	1.32	1.72	1.59	2.05	ns
trCKMPWH	Minimum Pulse Width High for Global Clock									ns
$t_{\text {RCKMPWL }}$	Minimum Pulse Width Low for Global Clock									ns
$t_{\text {RCKSW }}$	Maximum Skew for Global Clock		0.13		0.34		0.40		0.47	ns
$\mathrm{F}_{\text {RMAX }}$	Maximum Frequency for Global Clock									Mhz

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.

ProASIC3 Flash Family FPGAs

Table 3-65 • A3P600 Global Resource
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

Parameter	Description	-2		-1		Std.		-F		Units
		Min. ${ }^{1}$	Max. ${ }^{2}$							
$t_{\text {RCKL }}$	Input Low Delay for Global Clock	1.15	1.27	1.13	1.45	1.33	1.70	1.59	2.06	ns
$t_{\text {RCKH }}$	Input High Delay for Global Clock	1.16	1.28	1.12	1.46	1.32	1.72	1.59	2.05	ns
$t_{\text {RCKMPWH }}$	Minimum Pulse Width High for Global Clock									ns
$\mathrm{t}_{\text {RCKMPWL }}$	Minimum Pulse Width Low for Global Clock									ns
$t_{\text {RCKSW }}$	Maximum Skew for Global Clock		0.13		0.34		0.40		0.47	ns
Frmax	Maximum Frequency for Global Clock									MHz

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.

Table 3-66 • A3P1000 Global Resource
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

Parameter	Description	-2		-1		Std.		-F		Units
		Min. ${ }^{1}$	Max. ${ }^{2}$							
$t_{\text {RCKL }}$	Input Low Delay for Global Clock	1.19	1.32	1.18	1.50	1.39	1.76	1.67	2.13	ns
$t_{\text {RCKH }}$	Input High Delay for Global Clock	1.20	1.32	1.18	1.51	1.38	1.77	1.66	2.12	ns
$t_{\text {RCKMPWH }}$	Minimum Pulse Width High for Global Clock									ns
$t_{\text {RCKMPWL }}$	Minimum Pulse Width Low for Global Clock									ns
$t_{\text {RCKSW }}$	Maximum Skew for Global Clock		0.13		0.33		0.39		0.47	ns
$\mathrm{F}_{\text {RMAX }}$	Maximum Frequency for Global Clock									MHz

Notes:

1. Value reflects minimum load. The delay is measured from the CCC output to the clock pin of a sequential element, located in a lightly loaded row (single element is connected to the global net).
2. Value reflects maximum load. The delay is measured on the clock pin of the farthest sequential element, located in a fully loaded row (all available flip-flops are connected to the global net in the row).
3. For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.

Embedded SRAM and FIFO Characteristics

SRAM

[^5]
Timing Waveforms

Figure 3-27 • RAM Read for Flow-Through Output

Figure 3-28 • RAM Read for Pipelined Output

Figure 3-29 • RAM Write, Output Retained (WMODE = 0)

ProASIC3 Flash Family FPGAs

Figure 3-30 • RAM Write, Output as Write Data (WMODE = 1)

Figure 3-31 • One Port Write/Other Port Read Same

Figure 3-32 • RAM Reset

ProASIC3 Flash Family FPGAs

Timing Characteristics

Table 3-67 • RAM4K9
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

Parameter		\mathbf{y}	Description	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{S t d}$.

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.

Table 3-68 • RAM512X18

Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, Worst Case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

Parameter	Description	-2	-1	Std.	-F	Units
$\mathrm{t}_{\text {AS }}$	Address Setup time	0.25	0.28	0.33	0.40	ns
$\mathrm{t}_{\text {AH }}$	Address Hold time	0.00	0.00	0.00	0.00	ns
$\mathrm{t}_{\text {ENS }}$	REN_B,WEN_B Setup time	0.18	0.20	0.24	0.28	ns
$\mathrm{t}_{\text {ENH }}$	REB_B, WEN_B Hold time	0.06	0.07	0.08	0.09	ns
t_{DS}	Input data (DI) Setup time	0.18	0.21	0.25	0.29	ns
tDH	Input data (DI) Hold time	0.00	0.00	0.00	0.00	ns
$\mathrm{t}_{\mathrm{CKQ}} 1$	Clock High to New Data Valid on DO (output retained, WMODE = 0)	2.16	2.46	2.89	3.47	ns
$\mathrm{t}_{\text {CKQ2 }}$	Clock High to New Data Valid on DO (pipelined)	0.90	1.02	1.20	1.44	ns
$\mathrm{t}_{\text {RSTBQ }}$	RESET_B Low to Data Out Low on DO (flow through)	0.92	1.05	1.23	1.48	ns
	RESET_B Low to Data Out Low on DO (pipelined)	0.92	1.05	1.23	1.48	ns
$\mathrm{t}_{\text {REMRSTB }}$	RESET_B Removal	0.00	0.00	0.00	0.00	ns
$\mathrm{t}_{\text {RECRSTB }}$	RESET_B Recovery	0.00	0.00	0.00	0.00	ns
$\mathrm{t}_{\text {MPWRSTB }}$	RESET_B Minimum Pulse Width	0.22	0.25	0.29	0.35	ns
$\mathrm{t}_{\mathrm{CYC}}$	Clock Cycle time	2.10	2.38	2.80	3.36	ns

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.

FIFO

ProASIC3 Flash Family FPGAs

Timing Waveforms

Figure 3-34 • FIFO Reset

Figure 3-35 • FIFO Reset, Empty Flag, and Almost-Empty Flag

Figure 3-36 • FIFO FULL and AFULL Flag

Figure 3-37 • EMPTY Flag and AEMPTY Flag Deassertion

ProASIC3 Flash Family FPGAs

Timing Characteristics

Table 3-69 • FIFO
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

Parameter	Description	$\mathbf{- 2}$	$\mathbf{- 1}$	$\mathbf{S t d} \mathbf{~}$	$\mathbf{- F}$	Units
$\mathrm{t}_{\text {ENS }}$	REN_B,WEN_B Setup time	0.21	0.24	0.29	0.35	ns
$\mathrm{t}_{\text {ENH }}$	REN_B, WEN_B Hold time	0.02	0.02	0.02	0.03	ns
$\mathrm{t}_{\text {BKS }}$	BLK_B Setup time	0.25	0.29	0.34	0.40	ns
$\mathrm{t}_{\text {BKH }}$	BLK_B Hold time	0.00	0.00	0.00	0.00	ns
$\mathrm{t}_{\text {DS }}$	Input data (DI) Setup time	0.18	0.21	0.25	0.29	ns
$\mathrm{t}_{\text {DH }}$	Input data (DI) Hold time	0.00	0.00	0.00	0.00	ns
$\mathrm{t}_{\text {CKQ1 }}$	Clock High to New Data Valid on DO (flow-through)	2.36	2.68	3.15	3.79	ns
$\mathrm{t}_{\text {CKQ2 }}$	Clock High to New Data Valid on DO (pipelined)	0.89	1.02	1.20	1.44	ns
$\mathrm{t}_{\text {RCKEF }}$	RCLK High to Empty Flag Valid	1.72	1.96	2.30	2.76	ns
$\mathrm{t}_{\text {WCKFF }}$	WCLK High to Full Flag Valid	1.63	1.86	2.18	2.62	ns
$\mathrm{t}_{\text {CKAF }}$	Clock High to Almost Empty/Full Flag Valid	3.72	4.24	4.99	5.99	ns
$\mathrm{t}_{\text {RSTFG }}$	RESET_B Low to Empty/Full Flag valid	1.69	1.93	2.27	2.72	ns
$\mathrm{t}_{\text {RSTAF }}$	RESET_B Low to Almost-Empty/Full Flag Valid	3.66	4.17	4.90	5.89	ns
$\mathrm{t}_{\text {RSTBQ }}$	RESET_B Low to Data out Low on DO (flow through)	0.92	1.05	1.23	1.48	ns
	RESET_B Low to Data out Low on DO (pipelined)	0.92	1.05	1.23	1.48	ns
$\mathrm{t}_{\text {REMRSTB }}$	RESET_B Removal	0.00	0.00	0.00	0.00	ns
$\mathrm{t}_{\text {RECRSTB }}$	RESET_B Recovery	0.00	0.00	0.00	0.00	ns
$\mathrm{t}_{\text {MPWRSTB }}$	RESET_B Minimum Pulse Width	0.21	0.24	0.29	0.34	ns
$\mathrm{t}_{\text {CYC }}$	Clock Cycle time	2.06	2.33	2.75	3.29	ns

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.

Embedded FROM Characteristics

ProASIC3 Flash Family FPGAs

Timing Characteristics

Table 3-70 • Embedded FROM Access Time

Parameter	Description	$\mathbf{- 2}$	$\mathbf{- 1}$	Std.	Units
t_{A}	Data Access Time	10	10	10	ns

JTAG 1532 Characteristics

JTAG timing delays do not include JTAG I/Os. To obtain complete JTAG timing, add I/O buffer delays to the corresponding standard selected, refer to the I/O Timing characteristics for more details.

Timing Characteristics

Table 3-71 • JTAG 1532
Commercial-Case Conditions: $\mathrm{T}_{\mathrm{J}}=70^{\circ} \mathrm{C}$, worst-case $\mathrm{V}_{\mathrm{CC}}=1.425 \mathrm{~V}$

Parameter	Description	-2	-1	Std.	Units
$t_{\text {DISU }}$	Test Data Input Setup Time				ns
$\mathrm{t}_{\text {DIHD }}$	Test Data Input Hold Time				ns
$\mathrm{t}_{\text {TMSSU }}$	Test Mode Select Setup Time				ns
$\mathrm{t}_{\text {TMDHD }}$	Test Mode Select Hold Time				ns
$\mathrm{t}_{\text {TCK2Q }}$	Clock to Q (Data Out)				ns
$\mathrm{t}_{\text {RSTB2Q }}$	Reset to Q (Data Out)				ns
$\mathrm{F}_{\text {TCKMAX }}$	TCK maximum frequency	20	20	20	MHz
$\mathrm{t}_{\text {TRSTREM }}$	ResetB Removal time				ns
$t_{\text {TRSTREC }}$	ResetB Recovery time				ns
t ${ }_{\text {TRSTMPW }}$	ResetB minimum pulse				ns

Note: For specific junction temperature and voltage-supply levels, refer to Table 3-6 on page 3-4 for derating values.

Package Pin Assignments

132-Pin QFN

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

100-Pin VQFP

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

ProASIC3 Flash Family FPGAs

100-Pin VQFP*		100-Pin VQFP*	
Pin Number	A3P060 Function	Pin Number	A3P060 Function
1	GND	37	$\mathrm{V}_{\text {CC }}$
2	GAA2/IO51RSB1	38	GND
3	IO52RSB1	39	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$
4	GAB2/IO53RSB1	40	IO60RSB1
5	IO95RSB1	41	IO59RSB1
6	GAC2/IO94RSB1	42	IO58RSB1
7	IO93RSB1	43	GDC2/IO57RSB1
8	IO92RSB1	44	GDB2/IO56RSB1
9	GND	45	GDA2/IO55RSB1
10	GFB1/IO87RSB1	46	IO54RSB1
11	GFB0/IO86RSB1	47	TCK
12	$\mathrm{V}_{\text {COMPLF }}$	48	TDI
13	GFA0/IO85RSB1	49	TMS
14	$\mathrm{V}_{\text {CCPLF }}$	50	NC
15	GFA1/IO84RSB1	51	GND
16	GFA2/IO83RSB1	52	$V_{\text {PUMP }}$
17	V_{CC}	53	NC
18	$\mathrm{V}_{\mathrm{CCI}} 1$	54	TDO
19	GEC 1/IO77RSB1	55	TRST
20	GEB1/IO75RSB1	56	$\mathrm{V}_{\text {JTAG }}$
21	GEB0/IO74RSB1	57	GDA1/IO49RSB0
22	GEA1/IO73RSB1	58	GDC0/IO46RSB0
23	GEA0/IO72RSB1	59	GDC 1/IO45RSB0
24	VMV1	60	IO44RSB0
25	GNDQ	61	GCB2/IO42RSB0
26	GEA2/IO71RSB1	62	GCA0/IO40RSB0
27	GEB2/IO70RSB1	63	GCA1/IO39RSB0
28	GEC2/IO69RSB1	64	GCC0/IO36RSB0
29	IO68RSB1	65	GCC 1/IO35RSB0
30	IO67RSB1	66	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$
31	IO66RSB1	67	GND
32	IO65RSB1	68	$\mathrm{V}_{\text {CC }}$
33	IO64RSB1	69	IO31RSB0
34	IO63RSB1	70	GBC2/IO29RSB0
35	IO62RSB1	71	GBB2/IO27RSB0
36	IO61RSB1	72	IO26RSB0

100-Pin VQFP*	
Pin Number	A3P060 Function
73	GBA2/IO25RSB0
74	VMV0
75	GNDQ
76	GBA1/IO24RSB0
77	GBA0/IO23RSB0
78	GBB1/IO22RSB0
79	GBB0/IO21RSB0
80	GBC 1/IO20RSB0
81	GBC0/IO19RSB0
82	IO18RSB0
83	IO17RSB0
84	IO15RSB0
85	IO13RSB0
86	IO11RSB0
87	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$
88	GND
89	$\mathrm{V}_{\text {CC }}$
90	IO10RSB0
91	IO09RSB0
92	IO08RSB0
93	GAC 1/IO07RSB0
94	GAC0/IO06RSB0
95	GAB1/IO05RSB0
96	GAB0/IO04RSB0
97	GAA1/IO03RSB0
98	GAA0/IO02RSB0
99	IO01RSB0
100	IOOORSB0

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

100-Pin VQFP*		100-Pin VQFP*		100-Pin VQFP*	
Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function
1	GND	39	$\mathrm{V}_{\text {Cl }} \mathrm{B} 1$	77	GBA0/IO39RSB0
2	GAA2/IO67RSB1	40	IO87RSB1	78	GBB1/IO38RSB0
3	IO68RSB1	41	IO84RSB1	79	GBB0/IO37RSB0
4	GAB2/IO69RSB1	42	IO81RSB1	80	GBC 1/IO36RSB0
5	IO132RSB1	43	IO75RSB1	81	GBC0/IO35RSB0
6	GAC2/IO131RSB1	44	GDC2/IO72RSB1	82	IO32RSB0
7	IO130RSB1	45	GDB2/IO71RSB1	83	IO28RSB0
8	IO129RSB1	46	GDA2/IO70RSB1	84	IO25RSB0
9	GND	47	TCK	85	IO22RSB0
10	GFB1/IO124RSB1	48	TDI	86	IO19RSB0
11	GFB0/IO123RSB1	49	TMS	87	$\mathrm{V}_{\text {CII }} \mathrm{BO}$
12	$\mathrm{V}_{\text {COMPLF }}$	50	VMV1	88	GND
13	GFA0/IO122RSB1	51	GND	89	$\mathrm{V}_{\text {CC }}$
14	$\mathrm{V}_{\text {CCPLF }}$	52	$V_{\text {PUMP }}$	90	IO15RSB0
15	GFA1/IO121RSB1	53	NC	91	IO13RSB0
16	GFA2/IO120RSB1	54	TDO	92	IO11RSB0
17	V_{CC}	55	TRST	93	IO09RSB0
18	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$	56	$\mathrm{V}_{\text {JTAG }}$	94	IO07RSB0
19	GEC0/IO111RSB1	57	GDA1/IO65RSB0	95	GAC1/IO05RSB0
20	GEB1/IO110RSB1	58	GDC0/IO62RSB0	96	GAC0/IO04RSB0
21	GEB0/IO109RSB1	59	GDC 1/IO61RSB0	97	GAB1/IO03RSB0
22	GEA1/IO108RSB1	60	GCC2/IO59RSB0	98	GAB0/IO02RSB0
23	GEA0/IO107RSB1	61	GCB2/IO58RSB0	99	GAA1/IO01RSB0
24	VMV1	62	GCA0/IO56RSB0	100	GAA0/IO00RSB0
25	GNDQ	63	GCA1/IO55RSB0		
26	GEA2/IO106RSB1	64	GCC0/IO52RSB0		
27	GEB2/IO105RSB1	65	GCC1/IO51RSB0		
28	GEC2/IO104RSB1	66	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$		
29	IO102RSB1	67	GND		
30	IO100RSB1	68	$\mathrm{V}_{\text {CC }}$		
31	IO99RSB1	69	IO47RSB0		
32	IO97RSB1	70	GBC2/IO45RSB0		
33	IO96RSB1	71	GBB2/IO43RSB0		
34	IO95RSB1	72	IO42RSB0		
35	IO94RSB1	73	GBA2/IO41RSB0		
36	IO93RSB1	74	VMV0		
37	$\mathrm{V}_{\text {CC }}$	75	GNDQ		
38	GND	76	GBA1/IO40RSB0		

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

100-Pin VQFP*		100-Pin VQFP*	
Pin Number	A3P250 Function	Pin Number	A3P250 Function
1	GND	37	V_{CC}
2	GAA2/IO118UDB3	38	GND
3	IO118VDB3	39	$\mathrm{V}_{\text {CCI }} \mathrm{B2}$
4	GAB2/IO117UDB3	40	IO77RSB2
5	IO117VDB3	41	IO74RSB2
6	GAC2/IO116UDB3	42	IO71RSB2
7	IO116VDB3	43	GDC2/IO63RSB2
8	IO112PSB3	44	GDB2/IO62RSB2
9	GND	45	GDA2/IO61RSB2
10	GFB1/IO109PDB3	46	GNDQ
11	GFB0/IO109NDB3	47	TCK
12	$\mathrm{V}_{\text {COMPLF }}$	48	TDI
13	GFA0/IO108NPB3	49	TMS
14	$\mathrm{V}_{\text {CCPLF }}$	50	VMV2
15	GFA1/IO108PPB3	51	GND
16	GFA2/IO107PSB3	52	$V_{\text {PUMP }}$
17	V_{CC}	53	NC
18	$\mathrm{V}_{\text {Cli }} \mathrm{B} 3$	54	TDO
19	GFC2/IO105PSB3	55	TRST
20	GEC 1/IO100PDB3	56	$\mathrm{V}_{\text {JTAG }}$
21	GEC0/IO100NDB3	57	GDA1/IO60USB1
22	GEA1/IO98PDB3	58	GDC0/IO58VDB1
23	GEA0/IO98NDB3	59	GDC 1/IO58UDB1
24	VMV3	60	IO52NDB1
25	GNDQ	61	GCB2/IO52PDB1
26	GEA2/IO97RSB2	62	GCA1/IO50PDB1
27	GEB2/IO96RSB2	63	GCA0/IO50NDB1
28	GEC2/IO95RSB2	64	GCC0/IO48NDB1
29	IO93RSB2	65	GCC 1/IO48PDB1
30	IO92RSB2	66	$\mathrm{V}_{\text {CCI }} \mathrm{B1}$
31	IO91RSB2	67	GND
32	IO90RSB2	68	$V_{\text {CC }}$
33	IO88RSB2	69	IO43NDB1
34	IO86RSB2	70	GBC2/IO43PDB1
35	IO85RSB2	71	GBB2/IO42PSB1
36	IO84RSB2	72	IO41NDB1

100-Pin VQFP*	
Pin Number	A3P250 Function
73	GBA2/IO41PDB1
74	VMV1
75	GNDQ
76	GBA1/IO40RSB0
77	GBA0/IO39RSB0
78	GBB1/IO38RSB0
79	GBB0/IO37RSB0
80	GBC 1/IO36RSB0
81	GBC0/IO35RSB0
82	IO29RSB0
83	IO27RSB0
84	IO25RSB0
85	IO23RSB0
86	IO21RSB0
87	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$
88	GND
89	$\mathrm{V}_{\text {CC }}$
90	IO15RSB0
91	IO13RSB0
92	IO11RSB0
93	GAC 1/IO05RSB0
94	GAC0/IO04RSB0
95	GAB1/IO03RSB0
96	GAB0/IO02RSB0
97	GAA1/IO01RSB0
98	GAA0/IOOORSB0
99	GNDQ
100	VMV0

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

144-Pin TQFP

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

144-Pin TQFP*		144-Pin TQFP*		144-Pin TQFP*	
Pin Number	A3P060 Function	Pin Number	A3P060 Function	Pin Number	A3P060 Function
1	GAA2/IO51RSB1	37	NC	73	$V_{\text {PUMP }}$
2	IO52RSB1	38	GEA2/IO71RSB1	74	NC
3	GAB2/IO53RSB1	39	GEB2/IO70RSB1	75	TDO
4	IO95RSB1	40	GEC2/IO69RSB1	76	TRST
5	GAC2/IO94RSB1	41	IO68RSB1	77	$\mathrm{V}_{\text {JTAG }}$
6	IO93RSB1	42	IO67RSB1	78	GDA0/IO50RSB0
7	IO92RSB1	43	IO66RSB1	79	GDB0/IO48RSB0
8	IO91RSB1	44	IO65RSB1	80	GDB1/IO47RSB0
9	$\mathrm{V}_{\text {CC }}$	45	$\mathrm{V}_{\text {CC }}$	81	$\mathrm{V}_{\text {Cl }} \mathrm{BO}$
10	GND	46	GND	82	GND
11	$\mathrm{V}_{\text {CCI }} 1$	47	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$	83	IO44RSB0
12	IO90RSB1	48	NC	84	GCC2/IO43RSB0
13	GFC 1/IO89RSB1	49	IO64RSB1	85	GCB2/IO42RSB0
14	GFC0/IO88RSB1	50	NC	86	GCA2/IO41RSB0
15	GFB1/IO87RSB1	51	IO63RSB1	87	GCA0/IO40RSB0
16	GFB0/IO86RSB1	52	NC	88	GCA1/IO39RSB0
17	$\mathrm{V}_{\text {COMPLF }}$	53	IO62RSB1	89	GCB0/IO38RSB0
18	GFA0/IO85RSB1	54	NC	90	GCB1/IO37RSB0
19	$\mathrm{V}_{\text {CCPLF }}$	55	IO61RSB1	91	GCC0/IO36RSB0
20	GFA1/IO84RSB1	56	NC	92	GCC1/IO35RSB0
21	GFA2/IO83RSB1	57	NC	93	IO34RSB0
22	GFB2/IO82RSB1	58	IO60RSB1	94	IO33RSB0
23	GFC2/IO81RSB1	59	IO59RSB1	95	NC
24	IO80RSB1	60	IO58RSB1	96	NC
25	IO79RSB1	61	GDC2/IO57RSB1	97	NC
26	IO78RSB1	62	NC	98	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$
27	GND	63	GND	99	GND
28	$\mathrm{V}_{\text {CCI }} \mathrm{B1}$	64	NC	100	$\mathrm{V}_{\text {CC }}$
29	GEC 1/IO77RSB1	65	GDB2/IO56RSB1	101	IO30RSB0
30	GEC0/IO76RSB1	66	GDA2/IO55RSB1	102	GBC2/IO29RSB0
31	GEB1/IO75RSB1	67	IO54RSB1	103	IO28RSB0
32	GEB0/IO74RSB1	68	GNDQ	104	GBB2/IO27RSB0
33	GEA1/IO73RSB1	69	TCK	105	IO26RSB0
34	GEA0/IO72RSB1	70	TDI	106	GBA2/IO25RSB0
35	VMV1	71	TMS	107	VMV0
36	GNDQ	72	VMV1	108	GNDQ

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

ProASIC3 Flash Family FPGAs

144-Pin TQFP*	
Pin Number	A3P060 Function
109	NC
110	NC
111	GBA1/IO24RSB0
112	GBA0/IO23RSB0
113	GBB1/IO22RSB0
114	GBB0/IO21RSB0
115	GBC 1/IO20RSB0
116	GBC0/IO19RSB0
117	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$
118	GND
119	$\mathrm{V}_{\text {CC }}$
120	IO18RSB0
121	IO17RSB0
122	IO16RSB0
123	IO15RSB0
124	IO14RSB0
125	IO13RSB0
126	IO12RSB0
127	IO11RSB0
128	NC
129	IO10RSB0
130	IO09RSB0
131	IO08RSB0
132	GAC 1/IO07RSB0
133	GAC0/IO06RSB0
134	NC
135	GND
136	NC
137	GAB1/IO05RSB0
138	GAB0/IO04RSB0
139	GAA1/IO03RSB0
140	GAA0/IO02RSB0
141	IO01RSB0
142	IOOORSB0
143	GNDQ
144	VMV0

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

144_Pin TQFP*		144_Pin TQFP*		144_Pin TQFP*	
Pin Number	A3P125 Function	Pin Number	A3P125 Function	Pin Number	A3P125 Function
1	GAA2/IO67RSB1	37	NC	73	$V_{\text {PUMP }}$
2	IO68RSB1	38	GEA2/IO106RSB1	74	NC
3	GAB2/IO69RSB1	39	GEB2/IO105RSB1	75	TDO
4	IO132RSB1	40	GEC2/IO104RSB1	76	TRST
5	GAC2/IO131RSB1	41	IO103RSB1	77	$\mathrm{V}_{\text {JTAG }}$
6	IO130RSB1	42	IO102RSB1	78	GDA0/IO66RSB0
7	IO129RSB1	43	IO101RSB1	79	GDB0/IO64RSB0
8	IO128RSB1	44	IO100RSB1	80	GDB1/IO63RSB0
9	$\mathrm{V}_{\text {CC }}$	45	$\mathrm{V}_{\text {CC }}$	81	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$
10	GND	46	GND	82	GND
11	$\mathrm{V}_{\text {CCI }}{ }^{\text {B1 }}$	47	$\mathrm{V}_{\text {Cli }}{ }^{1}$	83	IO60RSB0
12	IO127RSB1	48	IO99RSB1	84	GCC2/IO59RSB0
13	GFC 1/IO126RSB1	49	IO97RSB1	85	GCB2/IO58RSB0
14	GFC0/IO125RSB1	50	IO95RSB1	86	GCA2/IO57RSB0
15	GFB1/IO124RSB1	51	IO93RSB1	87	GCA0/IO56RSB0
16	GFB0/IO123RSB1	52	IO92RSB1	88	GCA1/IO55RSB0
17	$\mathrm{V}_{\text {COMPLF }}$	53	IO90RSB1	89	GCB0/IO54RSB0
18	GFA0/IO122RSB1	54	IO88RSB1	90	GCB1/IO53RSB0
19	$\mathrm{V}_{\text {CCPLF }}$	55	IO86RSB1	91	GCC0/IO52RSB0
20	GFA1/IO121RSB1	56	IO84RSB1	92	GCC 1/IO51RSB0
21	GFA2/IO120RSB1	57	IO83RSB1	93	IO50RSB0
22	GFB2/IO119RSB1	58	IO82RSB1	94	IO49RSB0
23	GFC2/IO118RSB1	59	IO81RSB1	95	NC
24	IO117RSB1	60	IO80RSB1	96	NC
25	IO116RSB1	61	IO79RSB1	97	NC
26	IO115RSB1	62	$\mathrm{V}_{\text {CC }}$	98	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$
27	GND	63	GND	99	GND
28	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$	64	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$	100	$\mathrm{V}_{\text {CC }}$
29	GEC 1/IO112RSB1	65	GDC2/IO72RSB1	101	IO47RSB0
30	GEC0/IO111RSB1	66	GDB2/IO71RSB1	102	GBC2/IO45RSB0
31	GEB1/IO110RSB1	67	GDA2/IO70RSB1	103	IO44RSB0
32	GEB0/IO109RSB1	68	GNDQ	104	GBB2/IO43RSB0
33	GEA1/IO108RSB1	69	TCK	105	IO42RSB0
34	GEA0/IO107RSB1	70	TDI	106	GBA2/IO41RSB0
35	VMV1	71	TMS	107	VMV0
36	GNDQ	72	VMV1	108	GNDQ

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

ProASIC3 Flash Family FPGAs

144_Pin TQFP*	
Pin Number	A3P125 Function
109	GBA1/IO40RSB0
110	GBA0/IO39RSB0
111	GBB1/IO38RSB0
112	GBB0/IO37RSB0
113	GBC 1/IO36RSB0
114	GBC0/IO35RSB0
115	IO34RSB0
116	IO33RSB0
117	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$
118	GND
119	V_{CC}
120	IO29RSB0
121	IO28RSB0
122	IO27RSB0
123	IO25RSB0
124	IO23RSB0
125	IO21RSB0
126	IO19RSB0
127	IO17RSB0
128	IO16RSB0
129	IO14RSB0
130	IO12RSB0
131	IO10RSB0
132	IO08RSB0
133	IO06RSB0
134	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$
135	GND
136	$\mathrm{V}_{\text {CC }}$
137	GAC 1/IO05RSB0
138	GAC0/IO04RSB0
139	GAB1/IO03RSB0
140	GAB0/IO02RSB0
141	GAA1/IO01RSB0
142	GAA0/IOOORSB0
143	GNDQ
144	VMV0

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

208-Pin PQFP

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

208-Pin PQFP*	
Pin Number	A3P125 Function
1	GND
2	GAA2/IO67RSB1
3	IO68RSB1
4	GAB2/IO69RSB1
5	IO132RSB1
6	GAC2/IO131RSB1
7	NC
8	NC
9	IO130RSB1
10	IO129RSB1
11	NC
12	IO128RSB1
13	NC
14	NC
15	NC
16	V_{CC}
17	GND
18	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$
19	IO127RSB1
20	NC
21	GFC 1/IO126RSB1
22	GFC0/IO125RSB1
23	GFB1/IO124RSB1
24	GFB0/IO123RSB1
25	$\mathrm{V}_{\text {COMPLF }}$
26	GFA0/IO122RSB1
27	$\mathrm{V}_{\text {CCPLF }}$
28	GFA1/IO121RSB1
29	GND
30	GFA2/IO120RSB1
31	NC
32	GFB2/IO119RSB1
33	NC
34	GFC2/IO118RSB1
35	IO117RSB1
36	NC
37	IO116RSB1
38	IO115RSB1

208-Pin PQFP*	
Pin Number	A3P125 Function
39	NC
40	$\mathrm{V}_{\text {Cli }} \mathrm{B1}$
41	GND
42	IO114RSB1
43	IO113RSB1
44	GEC 1/IO112RSB1
45	GEC0/IO111RSB1
46	GEB1/IO110RSB1
47	GEB0/IO109RSB1
48	GEA1/IO108RSB1
49	GEA0/IO107RSB1
50	VMV1
51	GNDQ
52	GND
53	NC
54	NC
55	GEA2/IO106RSB1
56	GEB2/IO105RSB1
57	GEC2/IO104RSB1
58	IO103RSB1
59	IO102RSB1
60	IO101RSB1
61	IO100RSB1
62	$\mathrm{V}_{\text {Clı }} \mathrm{B} 1$
63	IO99RSB1
64	IO98RSB1
65	GND
66	IO97RSB1
67	IO96RSB1
68	IO95RSB1
69	IO94RSB1
70	IO93RSB1
71	V_{CC}
72	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$
73	IO92RSB1
74	IO91RSB1
75	IO90RSB1
76	IO89RSB1

208-Pin PQFP*	
Pin Number	A3P125 Function
77	IO88RSB1
78	IO87RSB1
79	IO86RSB1
80	IO85RSB1
81	GND
82	IO84RSB1
83	IO83RSB1
84	IO82RSB1
85	IO81RSB1
86	IO80RSB1
87	IO79RSB1
88	V_{CC}
89	$\mathrm{V}_{\text {CCI }} 1$
90	IO78RSB1
91	IO77RSB1
92	IO76RSB1
93	IO75RSB1
94	IO74RSB1
95	IO73RSB1
96	GDC2/IO72RSB1
97	GND
98	GDB2/IO71RSB1
99	GDA2/IO70RSB1
100	GNDQ
101	TCK
102	TDI
103	TMS
104	VMV1
105	GND
106	$V_{\text {PUMP }}$
107	NC
108	TDO
109	TRST
110	$\mathrm{V}_{\text {JTAG }}$
111	GDA0/IO66RSB0
112	GDA1/IO65RSB0
113	GDB0/IO64RSB0
114	GDB1/IO63RSB0

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

ProASIC3 Flash Family FPGAs

208-Pin PQFP*		208-Pin PQFP*	
Pin Number	A3P125 Function	Pin Number	A3P125 Function
115	GDC0/IO62RSB0	153	GBA2/IO41RSB0
116	GDC1/IO61RSB0	154	VMV0
117	NC	155	GNDQ
118	NC	156	GND
119	NC	157	NC
120	NC	158	GBA1/IO40RSB0
121	NC	159	GBA0/IO39RSB0
122	GND	160	GBB1/IO38RSB0
123	$\mathrm{V}_{\text {CII }} \mathrm{BO}$	161	GBB0/IO37RSB0
124	NC	162	GND
125	NC	163	GBC 1/IO36RSB0
126	$\mathrm{V}_{\text {CC }}$	164	GBC0/IO35RSB0
127	IO60RSB0	165	IO34RSB0
128	GCC2/IO59RSB0	166	IO33RSB0
129	GCB2/IO58RSB0	167	IO32RSB0
130	GND	168	IO31RSB0
131	GCA2/IO57RSB0	169	IO30RSB0
132	GCA0/IO56RSB0	170	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$
133	GCA1/IO55RSB0	171	$\mathrm{V}_{\text {CC }}$
134	GCB0/IO54RSB0	172	IO29RSB0
135	GCB1/IO53RSB0	173	IO28RSB0
136	GCC0/IO52RSB0	174	IO27RSB0
137	GCC1/IO51RSB0	175	IO26RSB0
138	IO50RSB0	176	IO25RSB0
139	IO49RSB0	177	IO24RSB0
140	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$	178	GND
141	GND	179	IO23RSB0
142	$\mathrm{V}_{\text {CC }}$	180	IO22RSB0
143	IO48RSB0	181	IO21RSB0
144	IO47RSB0	182	IO20RSB0
145	IO46RSB0	183	IO19RSB0
146	NC	184	IO18RSB0
147	NC	185	IO17RSB0
148	NC	186	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$
149	GBC2/IO45RSB0	187	$\mathrm{V}_{\text {CC }}$
150	IO44RSB0	188	IO16RSB0
151	GBB2/IO43RSB0	189	IO15RSB0
152	IO42RSB0	190	IO14RSB0

208-Pin PQFP*	
Pin Number	A3P125 Function
191	IO13RSB0
192	IO12RSB0
193	IO11RSB0
194	IO10RSB0
195	GND
196	IO09RSB0
197	IO08RSB0
198	IO07RSB0
199	IO06RSB0
200	$V_{\text {CCIB0 }}$
201	GAC1/IO05RSB0
202	GAC0/IO04RSB0
203	GAB1/IO03RSB0
204	GAB0/IO02RSB0
205	GAA1/IO01RSB0
206	GAA0/IO00RSB0
207	GNDQ
208	VMV0

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

208-Pin PQFP*		208-Pin PQFP*		208-Pin PQFP*	
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
1	GND	37	IO104PDB3	73	IO83RSB2
2	GAA2/IO118UDB3	38	IO104NDB3	74	IO82RSB2
3	IO118VDB3	39	IO103PSB3	75	IO81RSB2
4	GAB2/IO117UDB3	40	$\mathrm{V}_{\text {Cli }} \mathrm{B} 3$	76	IO80RSB2
5	IO117VDB3	41	GND	77	IO79RSB2
6	GAC2/IO116UDB3	42	IO101PDB3	78	IO78RSB2
7	IO116VDB3	43	IO101NDB3	79	IO77RSB2
8	IO115UDB3	44	GEC 1/IO100PDB3	80	IO76RSB2
9	IO115VDB3	45	GEC0/IO100NDB3	81	GND
10	IO114UDB3	46	GEB1/IO99PDB3	82	IO75RSB2
11	IO114VDB3	47	GEB0/IO99NDB3	83	IO74RSB2
12	IO113PDB3	48	GEA1/IO98PDB3	84	IO73RSB2
13	IO113NDB3	49	GEA0/IO98NDB3	85	IO72RSB2
14	IO112PDB3	50	VMV3	86	IO71RSB2
15	IO112NDB3	51	GNDQ	87	IO70RSB2
16	$\mathrm{V}_{\text {CC }}$	52	GND	88	V_{CC}
17	GND	53	NC	89	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B2}$
18	$\mathrm{V}_{\text {CCI }} \mathrm{B3}$	54	NC	90	IO69RSB2
19	IO111PDB3	55	GEA2/IO97RSB2	91	IO68RSB2
20	IO111NDB3	56	GEB2/IO96RSB2	92	IO67RSB2
21	GFC 1/IO110PDB3	57	GEC2/IO95RSB2	93	IO66RSB2
22	GFC0/IO110NDB3	58	IO94RSB2	94	IO65RSB2
23	GFB1/IO109PDB3	59	IO93RSB2	95	IO64RSB2
24	GFB0/IO109NDB3	60	IO92RSB2	96	GDC2/IO63RSB2
25	$\mathrm{V}_{\text {COMPLF }}$	61	IO91RSB2	97	GND
26	GFA0/IO108NPB3	62	$\mathrm{V}_{\text {Cli }} \mathrm{B}$	98	GDB2/IO62RSB2
27	$\mathrm{V}_{\text {CCPLF }}$	63	IO90RSB2	99	GDA2/IO61RSB2
28	GFA1/IO108PPB3	64	IO89RSB2	100	GNDQ
29	GND	65	GND	101	TCK
30	GFA2/IO107PDB3	66	IO88RSB2	102	TDI
31	IO107NDB3	67	IO87RSB2	103	TMS
32	GFB2/IO106PDB3	68	IO86RSB2	104	VMV2
33	IO106NDB3	69	IO85RSB2	105	GND
34	GFC2/IO105PDB3	70	IO84RSB2	106	$\mathrm{V}_{\text {PUMP }}$
35	IO105NDB3	71	V_{CC}	107	NC
36	NC	72	$\mathrm{V}_{\mathrm{CCI}} \mathrm{V}^{2}$	108	TDO

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

208-Pin PQFP*		208-Pin PQFP*	
Pin Number	A3P250 Function	Pin Number	A3P250 Function
109	TRST	145	IO45PDB1
110	$V_{\text {JTAG }}$	146	$1044 \mathrm{NDB1}$
111	GDA0/IO60VDB1	147	IO44PDB1
112	GDA1/IO60UDB1	148	IO43NDB1
113	GDB0/IO59VDB1	149	GBC2/IO43PDB1
114	GDB1/IO59UDB1	150	IO42NDB1
115	GDC0/IO58VDB1	151	GBB2/IO42PDB1
116	GDC1/IO58UDB1	152	IO41NDB1
117	IO57VDB1	153	GBA2/IO41PDB1
118	IO57UDB1	154	VMV1
119	IO56NDB1	155	GNDQ
120	IO56PDB1	156	GND
121	IO55RSB1	157	NC
122	GND	158	GBA1/IO4ORSB0
123	$\mathrm{V}_{\text {Cl }}{ }^{\text {P1 }}$	159	GBA0/IO39RSB0
124	NC	160	GBB1/IO38RSB0
125	NC	161	GBB0/IO37RSB0
126	$\mathrm{V}_{\text {cc }}$	162	GND
127	IO53NDB1	163	GBC 1/IO36RSB0
128	GCC2/O53PDB1	164	GBC0/IO35RSB0
129	GCB2/IO52PSB1	165	IO34RSB0
130	GND	166	IO33RSB0
131	GCA2/IO51PSB1	167	IO32RSB0
132	GCA1/IO50PDB1	168	1031 RSB0
133	GCA0/IO50NDB1	169	IO30RSB0
134	GCB0/IO49NDB1	170	$\mathrm{V}_{\text {CI }} \mathrm{BO}$
135	GCB1/IO49PDB1	171	$\mathrm{V}_{\text {CC }}$
136	GCC0/IO48NDB1	172	IO29RSB0
137	GCC 1/IO48PDB1	173	IO28RSB0
138	IO47NDB1	174	1027 RSBO
139	1047 PDB1	175	IO26RSBO
140	$\mathrm{V}_{\text {CI }}{ }^{\text {B1 }}$	176	IO25RSBO
141	GND	177	IO24RSBO
142	$\mathrm{V}_{\text {cc }}$	178	GND
143	IO46RSB1	179	IO23RSB0
144	IO45NDB1	180	IO22RSB0

208-Pin PQFP*	
Pin Number	A3P250 Function
181	IO21RSB0
182	IO20RSB0
183	IO19RSB0
184	IO18RSB0
185	IO17RSB0
186	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$
187	$V_{\text {CC }}$
188	IO16RSB0
189	IO15RSB0
190	IO14RSB0
191	IO13RSB0
192	IO12RSB0
193	IO11RSB0
194	IO10RSB0
195	GND
196	IO09RSB0
197	IO08RSB0
198	IO07RSB0
199	IO06RSB0
200	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$
201	GAC1/IO05RSB0
202	GAC0/IO04RSB0
203	GAB1/IO03RSB0
204	GAB0/IO02RSB0
205	GAA1/IO01RSB0
206	GAA0/IOOORSB0
207	GNDQ
208	VMV0

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

ProASIC3 Flash Family FPGAs

208-Pin PQFP*	
Pin Number	A3P400 Function
1	GND
2	GAA2/IO155PDB3
3	IO155NDB3
4	GAB2/IO154PDB3
5	IO154NDB3
6	GAC2/IO153PDB3
7	IO153NDB3
8	IO152PDB3
9	IO152NDB3
10	IO151PDB3
11	IO151NDB3
12	IO150PDB3
13	IO150NDB3
14	IO149PDB3
15	IO149NDB3
16	$\mathrm{V}_{\text {CC }}$
17	GND
18	$\mathrm{V}_{\text {CCI }} \mathrm{B} 3$
19	IO148PDB3
20	IO148NDB3
21	GFC 1/IO147PDB3
22	GFC0/IO147NDB3
23	GFB1/IO146PDB3
24	GFB0/IO146NDB3
25	$\mathrm{V}_{\text {COMPLF }}$
26	GFA0/IO145NPB3
27	$\mathrm{V}_{\text {CCPLF }}$
28	GFA1/IO145PPB3
29	GND
30	GFA2/IO144PDB3
31	IO144NDB3
32	GFB2/IO143PDB3
33	IO143NDB3
34	GFC2/IO142PDB3
35	IO142NDB3
36	NC
37	IO141PDB3
38	IO141NDB3

208-Pin PQFP*	
Pin Number	A3P400 Function
39	IO140PSB3
40	$\mathrm{V}_{\text {CCI }} \mathrm{B} 3$
41	GND
42	IO138PDB3
43	IO138NDB3
44	GEC 1/IO137PDB3
45	GEC0/IO137NDB3
46	GEB1/IO136PDB3
47	GEB0/IO136NDB3
48	GEA1/IO135PDB3
49	GEA0/IO135NDB3
50	VMV3
51	GNDQ
52	GND
53	NC
54	NC
55	GEA2/IO134RSB2
56	GEB2/IO133RSB2
57	GEC2/IO132RSB2
58	IO131RSB2
59	IO130RSB2
60	IO129RSB2
61	IO128RSB2
62	$\mathrm{V}_{\text {CCI }} \mathrm{B} 2$
63	IO126RSB2
64	IO124RSB2
65	GND
66	IO122RSB2
67	IO120RSB2
68	IO118RSB2
69	IO116RSB2
70	IO114RSB2
71	V_{CC}
72	$\mathrm{V}_{\text {CCI }} \mathrm{B}$
73	IO112RSB2
74	IO111RSB2
75	IO110RSB2
76	IO109RSB2

208-Pin PQFP*	
Pin Number	A3P400 Function
77	IO108RSB2
78	IO107RSB2
79	IO106RSB2
80	IO103RSB2
81	GND
82	IO102RSB2
83	IO101RSB2
84	IO100RSB2
85	IO99RSB2
86	IO98RSB2
87	IO97RSB2
88	V_{CC}
89	$\mathrm{V}_{\text {CCI }} \mathrm{B2}$
90	IO94RSB2
91	IO92RSB2
92	IO90RSB2
93	IO88RSB2
94	IO86RSB2
95	IO84RSB2
96	GDC2/IO82RSB2
97	GND
98	GDB2/IO81RSB2
99	GDA2/IO80RSB2
100	GNDQ
101	TCK
102	TDI
103	TMS
104	VMV2
105	GND
106	$\mathrm{V}_{\text {PUMP }}$
107	NC
108	TDO
109	TRST
110	$\mathrm{V}_{\text {JTAG }}$
111	GDA0/IO79NDB1
112	GDA1/IO79PDB1
113	GDB0/IO78NDB1
114	GDB1/IO78PDB1

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

208-Pin PQFP*	
Pin Number	A3P400 Function
115	GDC0/IO77NDB1
116	GDC 1/IO77PDB1
117	IO76NDB1
118	IO76PDB1
119	IO75NDB1
120	IO75PDB1
121	IO74RSB1
122	GND
123	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$
124	NC
125	NC
126	$\mathrm{V}_{\text {CC }}$
127	1073 PSB1
128	GCC2/IO72PSB1
129	GCB2/IO71PSB1
130	GND
131	GCA2/IO70PSB1
132	GCA1/IO69PDB1
133	GCA0/IO69NDB1
134	GCB0/IO68NDB1
135	GCB1/IO68PDB1
136	GCC0/IO67NDB1
137	GCC1/IO67PDB1
138	IO66NDB1
139	IO66PDB1
140	$\mathrm{V}_{\text {CCI }} \mathrm{B1}$
141	GND
142	$\mathrm{V}_{\text {CC }}$
143	IO65RSB1
144	IO64NDB1
145	IO64PDB1
146	IO63NDB1
147	IO63PDB1
148	IO62NDB1
149	GBC2/IO62PDB1
150	IO61NDB1
151	GBB2/IO61PDB1
152	IO60NDB1

208-Pin PQFP*	
Pin Number	A3P400 Function
153	GBA2/IO60PDB1
154	VMV1
155	GNDQ
156	GND
157	NC
158	GBA1/IO59RSB0
159	GBA0/IO58RSB0
160	GBB1/IO57RSB0
161	GBB0/IO56RSB0
162	GND
163	GBC 1/IO55RSB0
164	GBC0/IO54RSB0
165	IO52RSB0
166	IO50RSB0
167	IO48RSB0
168	IO46RSB0
169	IO44RSB0
170	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$
171	$\mathrm{V}_{\text {CC }}$
172	IO37RSB0
173	IO36RSB0
174	IO35RSB0
175	IO34RSB0
176	IO33RSB0
177	IO32RSB0
178	GND
179	IO31RSB0
180	IO30RSB0
181	IO29RSB0
182	IO28RSB0
183	IO27RSB0
184	IO25RSB0
185	IO23RSB0
186	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$
187	$\mathrm{V}_{\text {CC }}$
188	IO19RSB0
189	IO17RSB0
190	IO15RSB0

208-Pin PQFP*	
Pin Number	A3P400 Function
191	IO13RSB0
192	IO12RSB0
193	IO11RSB0
194	IO10RSB0
195	GND
196	IO09RSB0
197	IO08RSB0
198	IO07RSB0
199	IO06RSB0
200	$V_{\text {CCI B0 }}$
201	GAC1/IO05RSB0
202	GAC0/IO04RSB0
203	GAB1/IO03RSB0
204	GAB0/IO02RSB0
205	GAA1/IO01RSB0
206	GAAO/IO00RSB0
207	GNDQ
208	VMV0

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

ProASIC3 Flash Family FPGAs

208-Pin PQFP*	
Pin Number	A3P600 Function
1	GND
2	GAA2/IO170PDB3
3	IO170NDB3
4	GAB2/IO169PDB3
5	IO169NDB3
6	GAC2/IO168PDB3
7	IO168NDB3
8	IO167PDB3
9	IO167NDB3
10	IO166PDB3
11	IO166NDB3
12	IO165PDB3
13	IO165NDB3
14	IO164PDB3
15	IO164NDB3
16	$V_{\text {CC }}$
17	GND
18	$\mathrm{V}_{\text {CCI }} \mathrm{B3}$
19	IO163PDB3
20	IO163NDB3
21	GFC 1/IO161PDB3
22	GFC0/IO161NDB3
23	GFB1/IO160PDB3
24	GFB0/IO160NDB3
25	$\mathrm{V}_{\text {COMPLF }}$
26	GFA0/IO159NPB3
27	$\mathrm{V}_{\text {CCPLF }}$
28	GFA1/IO159PPB3
29	GND
30	GFA2/IO158PDB3
31	IO158NDB3
32	GFB2/IO157PDB3
33	IO157NDB3
34	GFC2/IO156PDB3
35	IO156NDB3
36	$V_{\text {CC }}$
37	IO147PDB3
38	IO147NDB3

208-Pin PQFP*	
Pin Number	A3P600 Function
39	IO146PSB3
40	$V_{\text {CCI }}{ }^{\text {B3 }}$
41	GND
42	IO145PDB3
43	IO145NDB3
44	GEC 1/IO144PDB3
45	GEC0/IO144NDB3
46	GEB1/IO143PDB3
47	GEB0/IO143NDB3
48	GEA1/IO142PDB3
49	GEA0/IO142NDB3
50	VMV3
51	GNDQ
52	GND
53	NC
54	GEA2/IO141RSB2
55	GEB2/IO140RSB2
56	GEC2/IO139RSB2
57	IO138RSB2
58	IO137RSB2
59	IO136RSB2
60	IO135RSB2
61	IO134RSB2
62	$V_{\text {CCI }}{ }^{\text {2 }}$
63	IO133RSB2
64	IO131RSB2
65	GND
66	IO129RSB2
67	IO127RSB2
68	IO125RSB2
69	IO123RSB2
70	IO121RSB2
71	V_{CC}
72	$\mathrm{V}_{\text {CCI }} \mathrm{B} 2$
73	IO118RSB2
74	IO117RSB2
75	IO116RSB2
76	IO115RSB2

208-Pin PQFP*	
Pin Number	A3P600 Function
77	IO114RSB2
78	IO113RSB2
79	IO112RSB2
80	IO110RSB2
81	GND
82	IO109RSB2
83	IO108RSB2
84	IO107RSB2
85	IO106RSB2
86	IO105RSB2
87	IO104RSB2
88	V_{CC}
89	$\mathrm{V}_{\text {CCI }} \mathrm{B2}$
90	IO102RSB2
91	IO100RSB2
92	IO98RSB2
93	IO96RSB2
94	IO94RSB2
95	IO90RSB2
96	GDC2/IO89RSB2
97	GND
98	GDB2/IO88RSB2
99	GDA2/IO87RSB2
100	GNDQ
101	TCK
102	TDI
103	TMS
104	VMV2
105	GND
106	$V_{\text {PUMP }}$
107	GNDQ
108	TDO
109	TRST
110	$\mathrm{V}_{\text {JTAG }}$
111	GDA0/IO86NDB1
112	GDA1/IO86PDB1
113	GDB0/IO85NDB1
114	GDB1/IO85PDB1

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

208-Pin PQFP*		208-Pin PQFP*	
Pin Number	A3P600 Function	Pin Number	A3P600 Function
115	GDC0/IO84NDB1	153	GBA2/IO60PDB1
116	GDC1/IO84PDB1	154	VMV1
117	IO82NDB1	155	GNDQ
118	IO82PDB1	156	GND
119	IO80NDB1	157	NC
120	IO80PDB1	158	GBA1/IO59RSB0
121	IO79PSB1	159	GBA0/IO58RSB0
122	GND	160	GBB1/IO57RSB0
123	$\mathrm{V}_{\text {CII }} 1$	161	GBB0/IO56RSB0
124	IO75NDB1	162	GND
125	IO75PDB1	163	GBC 1/IO55RSB0
126	NC	164	GBC0/IO54RSB0
127	IO73NDB1	165	IO52RSB0
128	GCC2/IO73PDB1	166	IO50RSB0
129	GCB2/IO72PSB1	167	IO48RSB0
130	GND	168	IO46RSB0
131	GCA2/IO71PSB1	169	IO44RSB0
132	GCA1/IO70PDB1	170	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$
133	GCA0/IO70NDB1	171	$\mathrm{V}_{\text {CC }}$
134	GCB0/IO69NDB1	172	IO36RSB0
135	GCB1/IO69PDB1	173	IO35RSB0
136	GCC0/IO68NDB1	174	IO34RSB0
137	GCC1/IO68PDB1	175	IO33RSB0
138	IO66NDB1	176	IO32RSB0
139	IO66PDB1	177	IO31RSB0
140	$\mathrm{V}_{\text {CII }} 1$	178	GND
141	GND	179	IO29RSB0
142	$\mathrm{V}_{\text {CC }}$	180	IO28RSB0
143	IO65PSB1	181	IO27RSB0
144	IO64NDB1	182	IO26RSB0
145	IO64PDB1	183	IO25RSB0
146	IO63NDB1	184	IO24RSB0
147	IO63PDB1	185	IO23RSB0
148	IO62NDB1	186	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$
149	GBC2/IO62PDB1	187	$\mathrm{V}_{\text {CC }}$
150	IO61NDB1	188	IO20RSB0
151	GBB2/IO61PDB1	189	IO19RSB0
152	IO60NDB1	190	IO18RSB0

208-Pin PQFP*	
Pin Number	A3P600 Function
191	IO17RSB0
192	IO16RSB0
193	IO14RSB0
194	IO12RSB0
195	GND
196	IO10RSB0
197	IO09RSB0
198	IO08RSB0
199	IO07RSB0
200	V CCIB0 $^{\text {B/ }}$
201	GAC1/IO05RSB0
202	GAC0/IO04RSB0
203	GAB1/IO03RSB0
204	GAB0/IO02RSB0
205	GAA1/IO01RSB0
206	GAA0/IO00RSB0
207	GNDQ
208	VMVO

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

208-Pin PQFP*		208-Pin PQFP*		208-Pin PQFP*	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
1	GND	36	V_{CC}	71	V_{CC}
2	GAA2/IO225PDB3	37	IO199PDB3	72	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 2$
3	IO225NDB3	38	IO199NDB3	73	IO162RSB2
4	GAB2/IO224PDB3	39	IO197PSB3	74	IO160RSB2
5	IO224NDB3	40	$\mathrm{V}_{\text {CII }} 33$	75	IO158RSB2
6	GAC2/IO223PDB3	41	GND	76	IO156RSB2
7	IO223NDB3	42	IO191PDB3	77	IO154RSB2
8	IO222PDB3	43	IO191NDB3	78	IO152RSB2
9	IO222NDB3	44	GEC 1/IO190PDB3	79	IO150RSB2
10	IO220PDB3	45	GEC0/IO190NDB3	80	IO148RSB2
11	IO220NDB3	46	GEB1/IO189PDB3	81	GND
12	IO218PDB3	47	GEB0/IO189NDB3	82	IO143RSB2
13	IO218NDB3	48	GEA1/IO188PDB3	83	IO141RSB2
14	IO216PDB3	49	GEA0/IO188NDB3	84	IO139RSB2
15	IO216NDB3	50	VMV3	85	IO137RSB2
16	$\mathrm{V}_{\text {CC }}$	51	GNDQ	86	IO135RSB2
17	GND	52	GND	87	IO133RSB2
18	$\mathrm{V}_{\text {CCI }} 3$	53	VMV2	88	V_{CC}
19	IO212PDB3	54	GEA2/IO187RSB2	89	$\mathrm{V}_{\text {CCI }} \mathrm{B}$
20	IO212NDB3	55	GEB2/IO186RSB2	90	IO128RSB2
21	GFC 1/IO209PDB3	56	GEC2/IO185RSB2	91	IO126RSB2
22	GFC0/IO209NDB3	57	IO184RSB2	92	IO124RSB2
23	GFB1/IO208PDB3	58	IO183RSB2	93	IO122RSB2
24	GFB0/IO208NDB3	59	IO182RSB2	94	IO120RSB2
25	$\mathrm{V}_{\text {COMPLF }}$	60	IO181RSB2	95	IO118RSB2
26	GFA0/IO207NPB3	61	IO180RSB2	96	GDC2/IO116RSB2
27	$\mathrm{V}_{\text {CCPLF }}$	62	$\mathrm{V}_{\text {CCI }} \mathrm{B} 2$	97	GND
28	GFA1/IO207PPB3	63	IO178RSB2	98	GDB2/IO115RSB2
29	GND	64	IO176RSB2	99	GDA2/IO114RSB2
30	GFA2/IO206PDB3	65	GND	100	GNDQ
31	IO206NDB3	66	IO174RSB2	101	TCK
32	GFB2/IO205PDB3	67	IO172RSB2	102	TDI
33	IO205NDB3	68	IO170RSB2	103	TMS
34	GFC2/IO204PDB3	69	IO168RSB2	104	VMV2
35	IO204NDB3	70	IO166RSB2	105	GND

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

208-Pin PQFP*		208-Pin PQFP*	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
106	$V_{\text {PUMP }}$	141	GND
107	GNDQ	142	$\mathrm{V}_{\text {CC }}$
108	TDO	143	IO86PSB1
109	TRST	144	IO84NDB1
110	$\mathrm{V}_{\text {JTAG }}$	145	IO84PDB1
111	GDA0/IO113NDB1	146	IO82NDB1
112	GDA1/IO113PDB1	147	IO82PDB1
113	GDB0/IO112NDB1	148	IO80NDB1
114	GDB1/IO112PDB1	149	GBC2/IO80PDB1
115	GDC0/IO111NDB1	150	IO79NDB1
116	GDC 1/IO111PDB1	151	GBB2/IO79PDB1
117	IO109NDB1	152	IO78NDB1
118	IO109PDB1	153	GBA2/IO78PDB1
119	IO106NDB1	154	VMV1
120	IO106PDB1	155	GNDQ
121	IO104PSB1	156	GND
122	GND	157	VMV0
123	$V_{\text {CCI }} 1$	158	GBA1/IO77RSB0
124	IO99NDB1	159	GBA0/IO76RSB0
125	IO99PDB1	160	GBB1/IO75RSB0
126	NC	161	GBB0/IO74RSB0
127	IO96NDB1	162	GND
128	GCC2/IO96PDB1	163	GBC 1/IO73RSB0
129	GCB2/IO95PSB1	164	GBC0/IO72RSB0
130	GND	165	IO70RSB0
131	GCA2/IO94PSB1	166	IO67RSB0
132	GCA1/IO93PDB1	167	IO63RSB0
133	GCA0/IO93NDB1	168	IO60RSB0
134	GCB0/IO92NDB1	169	IO57RSB0
135	GCB1/IO92PDB1	170	$\mathrm{V}_{\text {CII }} \mathrm{BO}$
136	GCC0/IO91NDB1	171	$V_{\text {CC }}$
137	GCC1/IO91PDB1	172	IO54RSB0
138	IO88NDB1	173	IO51RSB0
139	IO88PDB1	174	IO48RSB0
140	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$	175	IO45RSB0

208-Pin PQFP*	
Pin Number	A3P1000 Function
176	IO42RSB0
177	IO40RSB0
178	GND
179	IO38RSB0
180	IO35RSB0
181	IO33RSB0
182	IO31RSB0
183	IO29RSB0
184	IO27RSB0
185	IO25RSB0
186	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$
187	$\mathrm{V}_{\text {CC }}$
188	IO22RSB0
189	IO20RSB0
190	IO18RSB0
191	IO16RSB0
192	IO15RSB0
193	IO14RSB0
194	IO13RSB0
195	GND
196	IO12RSB0
197	IO11RSB0
198	IO10RSB0
199	IO09RSB0
200	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$
201	GAC 1/IO05RSB0
202	GAC0/IO04RSB0
203	GAB1/IO03RSB0
204	GAB0/IO02RSB0
205	GAA1/IO01RSB0
206	GAA0/IO00RSB0
207	GNDQ
208	VMV0

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

144-Pin FBGA

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

144-Pin FBGA*		144-Pin FBGA*		144-Pin FBGA*	
Pin Number	A3P060 Function	Pin Number	A3P060 Function	Pin Number	A3P060 Function
A1	GNDQ	D1	IO91RSB1	G1	GFA1/IO84RSB1
A2	VMV0	D2	IO92RSB1	G2	GND
A3	GAB0/IO04RSB0	D3	IO93RSB1	G3	$\mathrm{V}_{\text {CCPLF }}$
A4	GAB1/IO05RSB0	D4	GAA2/IO51RSB1	G4	GFA0/IO85RSB1
A5	IO08RSB0	D5	GAC0/IO06RSB0	G5	GND
A6	GND	D6	GAC1/IO07RSB0	G6	GND
A7	IO11RSB0	D7	GBC0/IO19RSB0	G7	GND
A8	$\mathrm{V}_{\text {CC }}$	D8	GBC 1/IO20RSB0	G8	GDC 1/IO45RSB0
A9	IO16RSB0	D9	GBB2/IO27RSB0	G9	IO32RSB0
A10	GBA0/IO23RSB0	D10	IO18RSB0	G10	GCC2/IO43RSB0
A11	GBA1/IO24RSB0	D11	IO28RSB0	G11	IO31RSB0
A12	GNDQ	D12	GCB1/IO37RSB0	G12	GCB2/IO42RSB0
B1	GAB2/IO53RSB1	E1	$\mathrm{V}_{\text {CC }}$	H1	V_{CC}
B2	GND	E2	GFC0/IO88RSB1	H2	GFB2/IO82RSB1
B3	GAA0/IO02RSB0	E3	GFC 1/IO89RSB1	H3	GFC2/IO81RSB1
B4	GAA1/IO03RSB0	E4	$\mathrm{V}_{\text {Cli }} \mathrm{B1}$	H4	GEC 1/IO77RSB1
B5	IO00RSB0	E5	IO52RSB1	H5	$\mathrm{V}_{\text {CC }}$
B6	IO10RSB0	E6	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$	H6	IO34RSB0
B7	IO12RSB0	E7	$\mathrm{V}_{\mathrm{CcI}} \mathrm{BO}$	H7	IO44RSB0
B8	IO14RSB0	E8	GCC 1/IO35RSB0	H8	GDB2/IO56RSB1
B9	GBB0/IO21RSB0	E9	$\mathrm{V}_{\text {Cli }} \mathrm{BO}$	H9	GDC0/IO46RSB0
B10	GBB1/IO22RSB0	E10	$\mathrm{V}_{\text {CC }}$	H10	$\mathrm{V}_{\text {Cli }} \mathrm{BO}$
B11	GND	E11	GCA0/IO40RSB0	H11	IO33RSB0
B12	VMV0	E12	IO30RSB0	H12	$\mathrm{V}_{\text {CC }}$
C1	IO95RSB1	F1	GFB0/IO86RSB1	J1	GEB1/IO75RSB1
C2	GFA2/IO83RSB1	F2	$\mathrm{V}_{\text {COMPLF }}$	J2	IO78RSB1
C3	GAC2/IO94RSB1	F3	GFB1/IO87RSB1	J3	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$
C4	$\mathrm{V}_{\text {CC }}$	F4	IO90RSB1	$J 4$	GEC0/IO76RSB1
C5	IO01RSB0	F5	GND	J5	IO79RSB1
C6	IO09RSB0	F6	GND	J6	IO80RSB1
C7	IO13RSB0	F7	GND	J7	V_{CC}
C8	IO15RSB0	F8	GCC0/IO36RSB0	J8	TCK
C9	IO17RSB0	F9	GCB0/IO38RSB0	J9	GDA2/IO55RSB1
C10	GBA2/IO25RSB0	F10	GND	J10	TDO
C11	IO26RSB0	F11	GCA1/IO39RSB0	J11	GDA1/IO49RSB0
C12	GBC2/IO29RSB0	F12	GCA2/IO41RSB0	J12	GDB1/IO47RSB0

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

ProASIC3 Flash Family FPGAs

144-Pin FBGA*	
Pin Number	A3P060 Function
K1	GEB0/IO74RSB1
K2	GEA1/IO73RSB1
K3	GEA0/IO72RSB1
K4	GEA2/IO71RSB1
K5	IO65RSB1
K6	IO64RSB1
K7	GND
K8	IO54RSB1
K9	GDC2/IO57RSB1
K10	GND
K11	GDA0/IO50RSB0
K12	GDB0/IO48RSB0
L1	GND
L2	VMV1
L3	GEB2/IO70RSB1
L4	IO67RSB1
L5	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$
L6	IO62RSB1
L7	IO59RSB1
L8	IO58RSB1
L9	TMS
L10	$V_{\text {JTAG }}$
L11	VMV1
L12	TRST
M1	GNDQ
M2	GEC2/IO69RSB1
M3	IO68RSB1
M4	IO66RSB1
M5	IO63RSB1
M6	IO61RSB1
M7	IO60RSB1
M8	NC
M9	TDI
M10	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$
M11	$V_{\text {PUMP }}$
M12	GNDQ

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

144-Pin FBGA		144-Pin FBGA		144-Pin FBGA	
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
A1	GNDQ	D1	IO112NDB3	G1	GFA1/IO108PPB3
A2	VMV0	D2	IO112PDB3	G2	GND
A3	GAB0/IO02RSB0	D3	IO116VDB3	G3	$\mathrm{V}_{\text {CCPLF }}$
A4	GAB1/IO03RSB0	D4	GAA2/IO118UPB3	G4	GFA0/IO108NPB3
A5	IO16RSB0	D5	GAC0/IO04RSB0	G5	GND
A6	GND	D6	GAC 1/IO05RSB0	G6	GND
A7	IO29RSB0	D7	GBC0/IO35RSB0	G7	GND
A8	$\mathrm{V}_{\text {CC }}$	D8	GBC 1/IO36RSB0	G8	GDC 1/IO58UPB1
A9	IO33RSB0	D9	GBB2/IO42PDB1	G9	IO53NDB1
A10	GBA0/IO39RSB0	D10	IO42NDB1	G10	GCC2/IO53PDB1
A11	GBA1/IO40RSB0	D11	IO43NPB1	G11	IO52NDB1
A12	GNDQ	D12	GCB1/IO49PPB1	G12	GCB2/IO52PDB1
B1	GAB2/IO117UDB3	E1	V_{CC}	H1	V_{CC}
B2	GND	E2	GFC0/IO110NDB3	H2	GFB2/IO106PDB3
B3	GAA0/IO00RSB0	E3	GFC 1/IO110PDB3	H3	GFC2/IO105PSB3
B4	GAA1/IO01RSB0	E4	$\mathrm{V}_{\text {CCI }} 3$	H4	GEC1/IO100PDB3
B5	IO14RSB0	E5	IO118VPB3	H5	$\mathrm{V}_{\text {CC }}$
B6	IO19RSB0	E6	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$	H6	IO79RSB2
B7	IO22RSB0	E7	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$	H7	IO65RSB2
B8	IO30RSB0	E8	GCC1/IO48PDB1	H8	GDB2/IO62RSB2
B9	GBB0/IO37RSB0	E9	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$	H9	GDC0/IO58VPB1
B10	GBB1/IO38RSB0	E10	V_{CC}	H10	$\mathrm{V}_{\text {CCI }} 1$
B11	GND	E11	GCA0/IO50NDB1	H11	IO54PSB1
B12	VMV1	E12	IO51NDB1	H12	V_{CC}
C1	IO117VDB3	F1	GFB0/IO109NPB3	J1	GEB1/IO99PDB3
C2	GFA2/IO107PPB3	F2	$\mathrm{V}_{\text {COMPLF }}$	J2	IO106NDB3
C3	GAC2/IO116UDB3	F3	GFB1/IO109PPB3	J3	$\mathrm{V}_{\text {CcI }} \mathrm{B} 3$
C4	$\mathrm{V}_{\text {CC }}$	F4	IO107NPB3	J4	GEC0/IO100NDB3
C5	IO12RSB0	F5	GND	J5	IO88RSB2
C6	IO17RSB0	F6	GND	J6	IO81RSB2
C7	IO24RSB0	F7	GND	J7	$\mathrm{V}_{\text {CC }}$
C8	IO31RSB0	F8	GCC0/IO48NDB1	J8	TCK
C9	IO34RSB0	F9	GCB0/IO49NPB1	J9	GDA2/IO61RSB2
C10	GBA2/IO41PDB1	F10	GND	J10	TDO
C11	IO41NDB1	F11	GCA1/IO50PDB1	J11	GDA1/IO60UDB1
C12	GBC2/IO43PPB1	F12	GCA2/IO51PDB1	J12	GDB1/IO59UDB1

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

ProASIC3 Flash Family FPGAs

144-Pin FBGA	
Pin Number	A3P250 Function
K1	GEB0/IO99NDB3
K2	GEA1/IO98PDB3
K3	GEA0/IO98NDB3
K4	GEA2/IO97RSB2
K5	IO90RSB2
K6	IO84RSB2
K7	GND
K8	IO66RSB2
K9	GDC2/IO63RSB2
K10	GND
K11	GDA0/IO60VDB1
K12	GDB0/IO59VDB1
L1	GND
L2	VMV3
L3	GEB2/IO96RSB2
L4	IO91RSB2
L5	$\mathrm{V}_{\text {CII }} \mathrm{B}$
L6	IO82RSB2
L7	IO80RSB2
L8	IO72RSB2
L9	TMS
L10	$V_{\text {JTAG }}$
L11	VMV2
L12	TRST
M1	GNDQ
M2	GEC2/IO95RSB2
M3	IO92RSB2
M4	IO89RSB2
M5	IO87RSB2
M6	IO85RSB2
M7	IO78RSB2
M8	IO76RSB2
M9	TDI
M10	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B2}$
M11	$V_{\text {PUMP }}$
M12	GNDQ

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

144-Pin FBGA*		144-Pin FBGA*		144-Pin FBGA*	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
A1	GNDQ	D1	IO213PDB3	G1	GFA1/IO207PPB3
A2	VMV0	D2	IO213NDB3	G2	GND
A3	GAB0/IO02RSB0	D3	IO223NDB3	G3	$\mathrm{V}_{\text {CCPLF }}$
A4	GAB1/IO03RSB0	D4	GAA2/IO225PPB3	G4	GFA0/IO207NPB3
A5	IO10RSB0	D5	GAC0/IO04RSB0	G5	GND
A6	GND	D6	GAC1/IO05RSB0	G6	GND
A7	IO44RSB0	D7	GBC0/IO72RSB0	G7	GND
A8	$\mathrm{V}_{\text {CC }}$	D8	GBC 1/IO73RSB0	G8	GDC1/IO111PPB1
A9	IO69RSB0	D9	GBB2/IO79PDB1	G9	IO96NDB1
A10	GBA0/IO76RSB0	D10	IO79NDB1	G10	GCC2/IO96PDB1
A11	GBA1/IO77RSB0	D11	IO80NPB1	G11	IO95NDB1
A12	GNDQ	D12	GCB1/IO92PPB1	G12	GCB2/IO95PDB1
B1	GAB2/IO224PDB3	E1	V_{CC}	H1	V_{CC}
B2	GND	E2	GFC0/IO209NDB3	H2	GFB2/IO205PDB3
B3	GAA0/IOOORSB0	E3	GFC 1/IO209PDB3	H3	GFC2/IO204PSB3
B4	GAA1/IO01RSB0	E4	$\mathrm{V}_{\text {CCI }} 33$	H4	GEC 1/IO190PDB3
B5	IO13RSB0	E5	IO225NPB3	H5	$\mathrm{V}_{\text {CC }}$
B6	IO26RSB0	E6	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$	H6	IO105PDB1
B7	IO35RSB0	E7	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$	H7	IO105NDB1
B8	IO60RSB0	E8	GCC1/IO91PDB1	H8	GDB2/IO115RSB2
B9	GBB0/IO74RSB0	E9	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$	H9	GDC0/IO111NPB1
B10	GBB1/IO75RSB0	E10	V_{CC}	H10	$\mathrm{V}_{\text {CCI }} \mathrm{B1}$
B11	GND	E11	GCA0/IO93NDB1	H11	IO101PSB1
B12	VMV1	E12	IO94NDB1	H12	$\mathrm{V}_{\text {CC }}$
C1	IO224NDB3	F1	GFB0/IO208NPB3	J1	GEB1/IO189PDB3
C2	GFA2/IO206PPB3	F2	$\mathrm{V}_{\text {COMPLF }}$	J2	IO205NDB3
C3	GAC2/IO223PDB3	F3	GFB1/IO208PPB3	J3	$\mathrm{V}_{\text {CLI }} 3$
C4	$\mathrm{V}_{\text {CC }}$	F4	IO206NPB3	J4	GEC0/IO190NDB3
C5	IO16RSB0	F5	GND	J5	IO160RSB2
C6	IO29RSB0	F6	GND	J6	IO157RSB2
C7	IO32RSB0	F7	GND	J7	$\mathrm{V}_{\text {CC }}$
C8	IO63RSB0	F8	GCC0/IO91NDB1	J8	TCK
C9	IO66RSB0	F9	GCB0/IO92NPB1	J9	GDA2/IO114RSB2
C10	GBA2/IO78PDB1	F10	GND	J10	TDO
C11	IO78NDB1	F11	GCA1/IO93PDB1	J11	GDA1/IO113PDB1
C12	GBC2/IO80PPB1	F12	GCA2/IO94PDB1	$J 12$	GDB1/IO112PDB1

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

ProASIC3 Flash Family FPGAs

144-Pin FBGA*	
Pin Number	A3P1000 Function
K1	GEB0/IO189NDB3
K2	GEA1/IO188PDB3
K3	GEA0/IO188NDB3
K4	GEA2/IO187RSB2
K5	IO169RSB2
K6	IO152RSB2
K7	GND
K8	IO117RSB2
K9	GDC2/IO116RSB2
K10	GND
K11	GDA0/IO113NDB1
K12	GDB0/IO112NDB1
L1	GND
L2	VMV3
L3	GEB2/IO186RSB2
L4	IO172RSB2
L5	$\mathrm{V}_{\text {CCI }} \mathrm{B} 2$
L6	IO153RSB2
L7	IO144RSB2
L8	IO140RSB2
L9	TMS
L10	$\mathrm{V}_{\text {JTAG }}$
L11	VMV2
L12	TRST
M1	GNDQ
M2	GEC2/IO185RSB2
M3	IO173RSB2
M4	IO168RSB2
M5	IO161RSB2
M6	IO156RSB2
M7	IO145RSB2
M8	IO141RSB2
M9	TDI
M10	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 2$
M11	$V_{\text {PUMP }}$
M12	GNDQ

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.
\qquad

256-Pin FBGA

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

256-Pin FBGA		256-Pin FBGA		256-Pin FBGA	
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
A1	GND	C4	NC	E7	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$
A2	GAA0/IO00RSB0	C5	GAC0/IO04RSB0	E8	IO19RSB0
A3	GAA1/IO01RSB0	C6	GAC 1/IO05RSB0	E9	IO24RSB0
A4	GAB0/IO02RSB0	C7	IO13RSB0	E10	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$
A5	IO07RSB0	C8	IO17RSB0	E11	$\mathrm{V}_{\text {Cli }} \mathrm{BO}$
A6	IO10RSB0	C9	IO22RSB0	E12	VMV1
A7	IO11RSB0	C10	IO27RSB0	E13	GBC2/IO43PDB1
A8	IO15RSB0	C11	IO31RSB0	E14	IO46RSB1
A9	IO20RSB0	C12	GBC0/IO35RSB0	E15	NC
A10	IO25RSB0	C13	IO34RSB0	E16	IO45PDB1
A11	IO29RSB0	C14	NC	F1	IO113NDB3
A12	IO33RSB0	C15	IO42NPB1	F2	IO112PPB3
A13	GBB1/IO38RSB0	C16	IO44PDB1	F3	NC
A14	GBA0/IO39RSB0	D1	IO114VDB3	F4	IO115VDB3
A15	GBA1/IO40RSB0	D2	IO114UDB3	F5	$\mathrm{V}_{\text {CCI }} 33$
A16	GND	D3	GAC2/IO116UDB3	F6	GND
B1	GAB2/IO117UDB3	D4	NC	F7	V_{CC}
B2	GAA2/IO118UDB3	D5	GNDQ	F8	V_{CC}
B3	NC	D6	IO08RSB0	F9	V_{CC}
B4	GAB1/IO03RSB0	D7	IO14RSB0	F10	$\mathrm{V}_{\text {CC }}$
B5	IO06RSB0	D8	IO18RSB0	F11	GND
B6	IO09RSB0	D9	IO23RSB0	F12	$\mathrm{V}_{\text {CCI }}{ }^{\text {B1 }}$
B7	IO12RSB0	D10	IO28RSB0	F13	IO43NDB1
B8	IO16RSB0	D11	IO32RSB0	F14	NC
B9	IO21RSB0	D12	GNDQ	F15	IO47PPB1
B10	IO26RSB0	D13	NC	F16	IO45NDB1
B11	IO30RSB0	D14	GBB2/IO42PPB1	G1	IO111NDB3
B12	GBC 1/IO36RSB0	D15	NC	G2	IO111PDB3
B13	GBB0/IO37RSB0	D16	IO44NDB1	G3	IO112NPB3
B14	NC	E1	IO113PDB3	G4	GFC 1/IO110PPB3
B15	GBA2/IO41PDB1	E2	NC	G5	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 3$
B16	IO41NDB1	E3	IO116VDB3	G6	$\mathrm{V}_{\text {CC }}$
C1	IO117VDB3	E4	IO115UDB3	G7	GND
C2	IO118VDB3	E5	VMV0	G8	GND
C3	NC	E6	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$	G9	GND

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

ProASIC3 Flash Family FPGAs

256-Pin FBGA		256-Pin FBGA		256-Pin FBGA	
Pin Number	A3P250 Function	Pin Number	A3P250 Function	Pin Number	A3P250 Function
G10	GND	$J 13$	GCA1/IO50PPB1	L16	IO56PDB1
G11	V_{CC}	J14	GCC2/IO53PPB1	M1	IO103PDB3
G12	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$	J15	NC	M2	NC
G13	GCC1/IO48PPB1	$J 16$	GCA2/IO51PDB1	M3	IO101NPB3
G14	IO47NPB1	K1	GFC2/IO105PDB3	M4	GEC0/IO100NPB3
G15	IO54PDB1	K2	IO107NPB3	M5	VMV3
G16	IO54NDB1	K3	IO104PPB3	M6	$\mathrm{V}_{\text {CCI }} \mathrm{B}$
H1	GFB0/IO109NPB3	K4	NC	M7	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 2$
H2	GFA0/IO108NDB3	K5	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 3$	M8	NC
H3	GFB1/IO109PPB3	K6	V_{CC}	M9	IO74RSB2
H4	$\mathrm{V}_{\text {COMPLF }}$	K7	GND	M10	$\mathrm{V}_{\text {Cl }} \mathrm{B} 2$
H5	GFC0/IO110NPB3	K8	GND	M11	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B2}$
H6	$\mathrm{V}_{\text {CC }}$	K9	GND	M12	VMV2
H7	GND	K10	GND	M13	NC
H8	GND	K11	V_{CC}	M14	GDB1/IO59UPB1
H9	GND	K12	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$	M15	GDC 1/IO58UDB1
H10	GND	K13	IO52NPB1	M16	IO56NDB1
H11	V_{CC}	K14	IO55RSB1	N1	IO103NDB3
H12	GCC0/IO48NPB1	K15	IO53NPB1	N2	IO101PPB3
H13	GCB1/IO49PPB1	K16	IO51NDB1	N3	GEC 1/IO100PPB3
H14	GCA0/IO50NPB1	L1	IO105NDB3	N4	NC
H15	NC	L2	IO104NPB3	N5	GNDQ
H16	GCB0/IO49NPB1	L3	NC	N6	GEA2/IO97RSB2
J1	GFA2/IO107PPB3	L4	IO102RSB3	N7	IO86RSB2
J2	GFA1/IO108PDB3	L5	$\mathrm{V}_{\text {CCI }} \mathrm{B}$	N8	IO82RSB2
J3	$\mathrm{V}_{\text {CCPLF }}$	L6	GND	N9	IO75RSB2
J4	IO106NDB3	L7	V_{CC}	N10	IO69RSB2
J5	GFB2/IO106PDB3	L8	V_{CC}	N11	IO64RSB2
J6	V_{CC}	L9	V_{CC}	N12	GNDQ
J7	GND	L10	V_{CC}	N13	NC
J8	GND	L11	GND	N14	$\mathrm{V}_{\text {JTAG }}$
J9	GND	L12	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$	N15	GDC0/IO58VDB1
J10	GND	L13	GDB0/IO59VPB1	N16	GDA1/IO60UDB1
J11	V_{CC}	L14	IO57VDB1	P1	GEB1/IO99PDB3
J 12	GCB2/IO52PPB1	L15	IO57UDB1	P2	GEB0/IO99NDB3

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

ProASIC3 Flash Family FPGAs

256-Pin FBGA		256-Pin FBGA	
Pin Number	A3P250 Function	Pin Number	A3P250 Function
P3	NC	T6	IO87RSB2
P4	NC	T7	IO83RSB2
P5	IO92RSB2	T8	IO79RSB2
P6	IO89RSB2	T9	IO78RSB2
P7	IO85RSB2	T10	IO73RSB2
P8	IO81RSB2	T11	IO70RSB2
P9	IO76RSB2	T12	GDC2/IO63RSB2
P10	IO71RSB2	T13	IO67RSB2
P11	IO66RSB2	T14	GDA2/IO61RSB2
P12	NC	T15	TMS
P13	TCK	T16	GND
P14	$V_{\text {PUMP }}$		
P15	TRST		
P16	GDA0/IO60VDB1		
R1	GEA1/IO98PDB3		
R2	GEA0/IO98NDB3		
R3	NC		
R4	GEC2/IO95RSB2		
R5	IO91RSB2		
R6	IO88RSB2		
R7	IO84RSB2		
R8	IO80RSB2		
R9	IO77RSB2		
R10	IO72RSB2		
R11	IO68RSB2		
R12	IO65RSB2		
R13	GDB2/IO62RSB2		
R14	TDI		
R15	NC		
R16	TDO		
T1	GND		
T2	IO94RSB2		
T3	GEB2/IO96RSB2		
T4	IO93RSB2		
T5	IO90RSB2		

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

256-Pin FBGA*		256-Pin FBGA*		256-Pin FBGA*	
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
A1	GND	C6	GAC 1/IO05RSB0	E11	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$
A2	GAA0/IO00RSB0	C7	IO20RSB0	E12	VMV1
A3	GAA1/IO01RSB0	C8	IO25RSB0	E13	GBC2/IO62PDB1
A4	GAB0/IO02RSB0	C9	IO32RSB0	E14	IO61NDB1
A5	IO14RSB0	C10	IO38RSB0	E15	IO63PDB1
A6	IO18RSB0	C11	IO44RSB0	E16	IO64PDB1
A7	IO22RSB0	C12	GBC0/IO54RSB0	F1	IO151NDB3
A8	IO27RSB0	C13	IO51RSB0	F2	IO150PPB3
A9	IO30RSB0	C14	IO52RSB0	F3	NC
A10	IO39RSB0	C15	IO53RSB0	F4	10148 PPB3
A11	IO41RSB0	C16	IO60NPB1	F5	$\mathrm{V}_{\text {CCI }} 33$
A12	IO46RSB0	D1	IO152NPB3	F6	GND
A13	GBB1/IO57RSB0	D2	IO155NPB3	F7	$\mathrm{V}_{\text {CC }}$
A14	GBA0/IO58RSB0	D3	GAC2/IO153PDB3	F8	V_{Cc}
A15	GBA1/IO59RSB0	D4	IO09RSB0	F9	$V_{C C}$
A16	GND	D5	GNDQ	F10	V_{CC}
B1	GAB2/IO154PDB3	D6	IO15RSB0	F11	GND
B2	GAA2/IO155PPB3	D7	IO19RSB0	F12	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$
B3	IO10RSB0	D8	IO24RSB0	F13	IO62NDB1
B4	GAB1/IO03RSB0	D9	IO33RSB0	F14	NC
B5	IO12RSB0	D10	IO40RSB0	F15	IO65RSB1
B6	IO16RSB0	D11	IO43RSB0	F16	IO73NDB1
B7	IO21RSB0	D12	GNDQ	G1	IO150NPB3
B8	IO26RSB0	D13	IO49RSB0	G2	IO149PDB3
B9	IO31RSB0	D14	GBB2/IO61PDB1	G3	IO149NDB3
B10	IO37RSB0	D15	IO63NDB1	G4	GFC 1/IO147PPB3
B11	IO42RSB0	D16	IO64NDB1	G5	$\mathrm{V}_{\text {CCI }} \mathrm{B} 3$
B12	GBC 1/IO55RSB0	E1	IO151PDB3	G6	$\mathrm{V}_{\text {CC }}$
B13	GBB0/IO56RSB0	E2	IO152PPB3	G7	GND
B14	IO48RSB0	E3	IO153NDB3	G8	GND
B15	GBA2/IO60PPB1	E4	IO11RSB0	G9	GND
B16	IO50RSB0	E5	VMV0	G10	GND
C1	IO154NDB3	E6	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$	G11	V_{CC}
C2	IO08RSB0	E7	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$	G12	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$
C3	IO07RSB0	E8	IO28RSB0	G13	GCC1/IO67PPB1
C4	IO06RSB0	E9	IO35RSB0	G14	IO66NDB1
C5	GAC0/IO04RSB0	E10	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$	G15	IO66PDB1

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

256-Pin FBGA*		256-Pin FBGA*	
Pin Number	A3P400 Function	Pin Number	A3P400 Function
G16	IO73PDB1	K5	$\mathrm{V}_{\text {Clı }} \mathrm{B} 3$
H1	GFB0/IO146NPB3	K6	V_{CC}
H2	GFA0/IO145NDB3	K7	GND
H3	GFB1/IO146PPB3	K8	GND
H4	$\mathrm{V}_{\text {COMPLF }}$	K9	GND
H5	GFC0/IO147NPB3	K10	GND
H6	$\mathrm{V}_{\text {CC }}$	K11	V_{CC}
H7	GND	K12	$\mathrm{V}_{\text {CCI }} 1$
H8	GND	K13	IO71NPB1
H9	GND	K14	IO72NDB1
H10	GND	K15	IO74RSB1
H11	$\mathrm{V}_{\text {CC }}$	K16	IO70NDB1
H12	GCC0/IO67NPB1	L1	IO142NDB3
H13	GCB1/IO68PPB1	L2	IO140NDB3
H14	GCA0/IO69NPB1	L3	IO139RSB3
H15	NC	L4	IO138NDB3
H16	GCB0/IO68NPB1	L5	$\mathrm{V}_{\text {CCI }} 3$
J1	GFA2/IO144PPB3	L6	GND
J2	GFA1/IO145PDB3	L7	$\mathrm{V}_{\text {CC }}$
$J 3$	$\mathrm{V}_{\text {CCPLF }}$	L8	V_{CC}
J4	IO148NPB3	L9	V_{CC}
J5	GFB2/IO143PPB3	L10	$V_{\text {cC }}$
J6	V_{CC}	L11	GND
J7	GND	L12	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$
J8	GND	L13	GDB0/IO78NPB1
J9	GND	L14	IO75NDB1
J10	GND	L15	IO75PDB1
J11	$\mathrm{V}_{\text {CC }}$	L16	IO76PDB1
J12	GCB2/IO71PPB1	M1	IO141NDB3
J13	GCA1/IO69PPB1	M2	IO140PDB3
J14	GCC2/IO72PDB1	M3	IO127RSB2
J15	NC	M4	GEC0/IO137NPB3
J16	GCA2/IO70PDB1	M5	VMV3
K1	GFC2/IO142PDB3	M6	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 2$
K2	IO144NPB3	M7	$\mathrm{V}_{\text {CCI }} \mathrm{B} 2$
K3	IO143NPB3	M8	IO106RSB2
K4	IO138PDB3	M9	IO99RSB2

256-Pin FBGA*	
Pin Number	A3P400 Function
M10	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 2$
M11	$V_{\text {CcI }}{ }^{3}$
M12	VMV2
M13	IO85RSB2
M14	GDB1/IO78PPB1
M15	GDC1/IO77PDB1
M16	IO76NDB1
N1	IO141PDB3
N2	IO131RSB2
N3	GEC 1/IO137PPB3
N4	IO128RSB2
N5	GNDQ
N6	GEA2/IO134RSB2
N7	IO113RSB2
N8	IO109RSB2
N9	IO100RSB2
N10	IO95RSB2
N11	IO90RSB2
N12	GNDQ
N13	IO83RSB2
N14	$\mathrm{V}_{\text {JTAG }}$
N15	GDC0/IO77NDB1
N16	GDA1/IO79PDB1
P1	GEB1/IO136PDB3
P2	GEB0/IO136NDB3
P3	IO130RSB2
P4	IO129RSB2
P5	IO126RSB2
P6	IO121RSB2
P7	IO115RSB2
P8	IO108RSB2
P9	IO101RSB2
P10	IO94RSB2
P11	IO88RSB2
P12	IO84RSB2
P13	TCK
P14	$V_{\text {PUMP }}$

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

256-Pin FBGA*	
Pin Number	A3P400 Function
P15	TRST
P16	GDA0/IO79NDB1
R1	GEA1/IO135PDB3
R2	GEA0/IO135NDB3
R3	IO125RSB2
R4	GEC2/IO132RSB2
R5	IO122RSB2
R6	IO118RSB2
R7	IO112RSB2
R8	IO107RSB2
R9	IO102RSB2
R10	IO96RSB2
R11	IO91RSB2
R12	IO87RSB2
R13	GDB2/IO81RSB2
R14	TDI
R15	NC
R16	TDO
T1	GND
T2	IO124RSB2
T3	GEB2/IO133RSB2
T4	IO123RSB2
T5	IO120RSB2
T6	IO116RSB2
T7	IO111RSB2
T8	IO105RSB2
T9	IO103RSB2
T10	IO97RSB2
T11	IO93RSB2
T12	GDC2/IO82RSB2
T13	IO86RSB2
T14	GDA2/IO80RSB2
T15	TMS
T16	GND

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

256-Pin FBGA*		256-Pin FBGA*	
Pin Number	A3P600 Function	Pin Number	A3P600 Function
A1	GND	C6	GAC1/IO05RSB0
A2	GAA0/IO00RSB0	C7	IO17RSB0
A3	GAA1/IO01RSB0	C8	IO25RSB0
A4	GAB0/IO02RSB0	C9	IO33RSB0
A5	IO12RSB0	C10	IO38RSB0
A6	IO14RSB0	C11	IO42RSB0
A7	IO19RSB0	C12	GBC0/IO54RSB0
A8	IO26RSB0	C13	IO52RSB0
A9	IO31RSB0	C14	IO51RSB0
A10	IO37RSB0	C15	IO50RSB0
A11	IO41RSB0	C16	IO61NPB1
A12	IO47RSB0	D1	IO166NDB3
A13	GBB1/IO57RSB0	D2	IO166PDB3
A14	GBA0/IO58RSB0	D3	GAC2/IO168PDB3
A15	GBA1/IO59RSB0	D4	IO168NDB3
A16	GND	D5	GNDQ
B1	GAB2/IO169PDB3	D6	IO13RSB0
B2	GAA2/IO170PDB3	D7	IO16RSB0
B3	GNDQ	D8	IO22RSB0
B4	GAB1/IO03RSB0	D9	IO36RSB0
B5	IO10RSB0	D10	IO39RSB0
B6	IO15RSB0	D11	IO46RSB0
B7	IO18RSB0	D12	GNDQ
B8	IO24RSB0	D13	IO53RSB0
B9	IO32RSB0	D14	GBB2/IO61PPB1
B10	IO40RSB0	D15	IO63PPB1
B11	IO43RSB0	D16	IO65PDB1
B12	GBC 1/IO55RSB0	E1	IO165NDB3
B13	GBB0/IO56RSB0	E2	IO165PDB3
B14	IO49RSB0	E3	IO167PDB3
B15	GBA2/IO60PDB1	E4	IO167NDB3
B16	IO60NDB1	E5	VMV0
C1	IO169NDB3	E6	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$
C2	IO170NDB3	E7	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$
C3	VMV3	E8	IO29RSB0
C4	IO06RSB0	E9	IO30RSB0
C5	GAC0/IO04RSB0	E10	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$

256-Pin FBGA*	
Pin Number	A3P600 Function
E11	$\mathrm{V}_{\mathrm{Cl}} \mathrm{BO}$
E12	VMV1
E13	GBC2/IO62PDB1
E14	IO63NPB1
E15	IO64PPB1
E16	IO65NDB1
F1	IO154PSB3
F2	IO162PPB3
F3	IO164PDB3
F4	IO164NDB3
F5	$\mathrm{V}_{\text {CII }} \mathrm{B}$
F6	GND
F7	$\mathrm{V}_{\text {CC }}$
F8	V_{CC}
F9	$\mathrm{V}_{\text {CC }}$
F10	$V_{\text {CC }}$
F11	GND
F12	$\mathrm{V}_{\text {CII }} 1$
F13	IO62NDB1
F14	IO64NPB1
F15	IO66PPB1
F16	IO67PPB1
G1	IO155NDB3
G2	IO155PDB3
G3	IO162NPB3
G4	GFC 1/IO161PPB3
G5	$\mathrm{V}_{\text {CI }} \mathrm{B} 3$
G6	$\mathrm{V}_{\text {CC }}$
G7	GND
G8	GND
G9	GND
G10	GND
G11	$\mathrm{V}_{\text {CC }}$
G12	$\mathrm{V}_{\mathrm{ClI}} \mathrm{Bl}^{\text {c }}$
G13	GCC1/IO68PPB1
G14	IO66NPB1
G15	IO67NPB1

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

256-Pin FBGA*		256-Pin FBGA*		256-Pin FBGA*	
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function
G16	IO71NPB1	K5	$\mathrm{V}_{\text {CCI }} \mathrm{B} 3$	M10	$\mathrm{V}_{\mathrm{Cl}} \mathrm{B} 2$
H1	GFB0/IO160NPB3	K6	V_{CC}	M11	$\mathrm{V}_{\mathrm{Cl}} \mathrm{B} 2$
H2	GFA0/IO159NDB3	K7	GND	M12	VMV2
H3	GFB1/IO160PPB3	K8	GND	M13	IO81NDB1
H4	$\mathrm{V}_{\text {COMPLF }}$	K9	GND	M14	GDB1/IO85PPB1
H5	GFC0/IO161NPB3	K10	GND	M15	GDC 1/IO84PDB1
H6	$\mathrm{V}_{\text {CC }}$	K11	V_{CC}	M16	IO80NDB1
H7	GND	K12	$\mathrm{V}_{\mathrm{CCI}} \mathrm{Bl}^{\text {l }}$	N1	IO145PDB3
H8	GND	K13	IO72NPB1	N2	IO145NDB3
H9	GND	K14	IO82PDB1	N3	GEC 1/IO144PPB3
H10	GND	K15	IO79PDB1	N4	IO137RSB2
H11	V_{CC}	K16	IO77NPB1	N5	GNDQ
H12	GCC0/IO68NPB1	L1	IO149PDB3	N6	GEA2/IO141RSB2
H13	GCB1/IO69PPB1	L2	IO156NPB3	N7	IO120RSB2
H14	GCA0/IO70NPB1	L3	IO147PDB3	N8	IO113RSB2
H15	IO73NPB1	L4	IO147NDB3	N9	IO106RSB2
H16	GCB0/IO69NPB1	L5	$\mathrm{V}_{\text {CCI }} \mathrm{B} 3$	N10	IO99RSB2
J1	GFA2/IO158PPB3	L6	GND	N11	IO94RSB2
J2	GFA1/IO159PDB3	L7	V_{CC}	N12	GNDQ
J3	$\mathrm{V}_{\text {CCPLF }}$	L8	V_{CC}	N13	IO81PDB1
J4	IO157NDB3	L9	V_{Cc}	N14	$\mathrm{V}_{\text {JTAG }}$
J5	GFB2/IO157PDB3	L10	$\mathrm{V}_{\text {CC }}$	N15	GDC0/IO84NDB1
J6	V_{CC}	L11	GND	N16	GDA1/IO86PDB1
J7	GND	L12	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B}^{1}$	P1	GEB1/IO143PDB3
J8	GND	L13	GDB0/IO85NPB1	P2	GEB0/IO143NDB3
J9	GND	L14	IO82NDB1	P3	IO138RSB2
J10	GND	L15	IO79NDB1	P4	IO135RSB2
J11	V_{CC}	L16	IO80PDB1	P5	IO134RSB2
J12	GCB2/IO72PPB1	M1	IO149NDB3	P6	IO128RSB2
$J 13$	GCA1/IO70PPB1	M2	IO146PDB3	P7	IO121RSB2
J14	GCC2/IO73PPB1	M3	IO146NDB3	P8	IO115RSB2
$J 15$	1077 PPB1	M4	GEC0/IO144NPB3	P9	IO108RSB2
$J 16$	GCA2/IO71PPB1	M5	VMV3	P10	IO100RSB2
K1	GFC2/IO156PPB3	M6	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B}^{2}$	P11	IO95RSB2
K2	IO158NPB3	M7	$\mathrm{V}_{\text {CCI }} 2$	P12	VMV1
K3	IO151PDB3	M8	IO111RSB2	P13	TCK
K4	IO151NDB3	M9	IO110RSB2	P14	$\mathrm{V}_{\text {PUMP }}$

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

ProASIC3 Flash Family FPGAs

256-Pin FBGA*	
Pin Number	A3P600 Function
P15	TRST
P16	GDA0/IO86NDB1
R1	GEA1/IO142PDB3
R2	GEA0/IO142NDB3
R3	IO136RSB2
R4	GEC2/IO139RSB2
R5	IO130RSB2
R6	IO125RSB2
R7	IO119RSB2
R8	IO114RSB2
R9	IO107RSB2
R10	IO101RSB2
R11	IO96RSB2
R12	IO90RSB2
R13	GDB2/IO88RSB2
R14	TDI
R15	GNDQ
R16	TDO
T1	GND
T2	IO133RSB2
T3	GEB2/IO140RSB2
T4	IO132RSB2
T5	IO127RSB2
T6	IO123RSB2
T7	IO117RSB2
T8	IO112RSB2
T9	IO109RSB2
T10	IO102RSB2
T11	IO97RSB2
T12	GDC2/IO89RSB2
T13	IO91RSB2
T14	GDA2/IO87RSB2
T15	TMS
T16	GND

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

256-Pin FBGA*		256-Pin FBGA*		256-Pin FBGA*	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
A1	GND	C7	IO25RSB0	E13	GBC2/IO80PDB1
A2	GAA0/IOOORSB0	C8	IO36RSB0	E14	IO83PPB1
A3	GAA1/IO01RSB0	C9	IO42RSB0	E15	IO86PPB1
A4	GABO/IO02RSB0	C10	IO49RSB0	E16	IO87PDB1
A5	IO16RSB0	C11	IO56RSB0	F1	IO217NDB3
A6	IO22RSB0	C12	GBC0/IO72RSB0	F2	IO218NDB3
A7	IO28RSB0	C13	IO62RSB0	F3	IO216PDB3
A8	IO35RSB0	C14	VMV0	F4	IO216NDB3
A9	IO45RSB0	C15	IO78NDB1	F5	$\mathrm{V}_{\text {CCI }} \mathrm{B} 3$
A10	IO50RSB0	C16	IO81NDB1	F6	GND
A11	IO55RSB0	D1	IO222NDB3	F7	$\mathrm{V}_{\text {CC }}$
A12	IO61RSB0	D2	IO222PDB3	F8	V_{CC}
A13	GBB1/IO75RSB0	D3	GAC2/IO223PDB3	F9	$\mathrm{V}_{\text {cc }}$
A14	GBA0/IO76RSB0	D4	IO223NDB3	F10	$\mathrm{V}_{\text {CC }}$
A15	GBA1/IO77RSB0	D5	GNDQ	F11	GND
A16	GND	D6	IO23RSB0	F12	$\mathrm{V}_{\text {Clı }} \mathrm{B} 1$
B1	GAB2/IO224PDB3	D7	IO29RSB0	F13	IO83NPB1
B2	GAA2/IO225PDB3	D8	IO33RSB0	F14	IO86NPB1
B3	GNDQ	D9	IO46RSB0	F15	IO90PPB1
B4	GAB1/IO03RSB0	D10	IO52RSB0	F16	IO87NDB1
B5	IO17RSB0	D11	IO60RSB0	G1	IO210PSB3
B6	IO21RSB0	D12	GNDQ	G2	IO213NDB3
B7	IO27RSB0	D13	IO80NDB1	G3	IO213PDB3
B8	IO34RSB0	D14	GBB2/IO79PDB1	G4	GFC 1/IO209PPB3
B9	IO44RSB0	D15	IO79NDB1	G5	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 3$
B10	IO51RSB0	D16	IO82NSB1	G6	$\mathrm{V}_{\text {CC }}$
B11	IO57RSB0	E1	IO217PDB3	G7	GND
B12	GBC 1/IO73RSB0	E2	IO218PDB3	G8	GND
B13	GBB0/IO74RSB0	E3	IO221NDB3	G9	GND
B14	IO71RSB0	E4	IO221PDB3	G10	GND
B15	GBA2/IO78PDB1	E5	VMV0	G11	$\mathrm{V}_{\text {CC }}$
B16	IO81PDB1	E6	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$	G12	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$
C1	IO224NDB3	E7	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$	G13	GCC1/IO91PPB1
C2	IO225NDB3	E8	IO38RSB0	G14	IO90NPB1
C3	VMV3	E9	IO47RSB0	G15	IO88PDB1
C4	IO11RSB0	E10	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$	G16	IO88NDB1
C5	GAC0/IO04RSB0	E11	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$	H1	GFB0/IO208NPB3
C6	GAC 1/IO05RSB0	E12	VMV1	H2	GFA0/IO207NDB3

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

256-Pin FBGA*		256-Pin FBGA*		256-Pin FBGA*	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
H3	GFB1/IO208PPB3	K9	GND	M15	GDC 1/IO111PDB1
H4	$\mathrm{V}_{\text {COMPLF }}$	K10	GND	M16	IO107NDB1
H5	GFC0/IO209NPB3	K11	V_{CC}	N1	IO194PSB3
H6	V_{CC}	K12	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$	N2	IO192PPB3
H7	GND	K13	IO95NPB1	N3	GEC 1/IO190PPB3
H8	GND	K14	IO100NPB1	N4	IO192NPB3
H9	GND	K15	IO102NDB1	N5	GNDQ
H10	GND	K16	IO102PDB1	N6	GEA2/IO187RSB2
H11	V_{CC}	L1	IO202NDB3	N7	IO161RSB2
H12	GCC0/IO91NPB1	L2	IO202PDB3	N8	IO155RSB2
H13	GCB1/IO92PPB1	L3	IO196PPB3	N9	IO141RSB2
H14	GCA0/IO93NPB1	L4	IO193PPB3	N10	IO129RSB2
H15	IO96NPB1	L5	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 3$	N11	IO124RSB2
H16	GCB0/IO92NPB1	L6	GND	N12	GNDQ
J1	GFA2/IO206PSB3	L7	$\mathrm{V}_{\text {CC }}$	N13	IO110PDB1
J2	GFA1/IO207PDB3	L8	V_{CC}	N14	$\mathrm{V}_{\text {JTAG }}$
J3	$\mathrm{V}_{\text {CCPLF }}$	L9	$V_{\text {cc }}$	N15	GDC0/IO111NDB1
$J 4$	IO205NDB3	L10	$\mathrm{V}_{\text {CC }}$	N16	GDA1/IO113PDB1
J5	GFB2/IO205PDB3	L11	GND	P1	GEB1/IO189PDB3
J6	$\mathrm{V}_{\text {CC }}$	L12	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$	P2	GEB0/IO189NDB3
J7	GND	L13	GDB0/IO112NPB1	P3	VMV2
J8	GND	L14	IO106NDB1	P4	IO179RSB2
J9	GND	L15	IO106PDB1	P5	IO171RSB2
J10	GND	L16	IO107PDB1	P6	IO165RSB2
J11	V_{CC}	M1	IO197NSB3	P7	IO159RSB2
J12	GCB2/IO95PPB1	M2	IO196NPB3	P8	IO151RSB2
J13	GCA1/IO93PPB1	M3	IO193NPB3	P9	IO137RSB2
J14	GCC2/IO96PPB1	M4	GEC0/IO190NPB3	P10	IO134RSB2
J15	IO100PPB1	M5	VMV3	P11	IO128RSB2
J16	GCA2/IO94PSB1	M6	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 2$	P12	VMV1
K1	GFC2/IO204PDB3	M7	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 2$	P13	TCK
K2	IO204NDB3	M8	IO147RSB2	P14	$V_{\text {PUMP }}$
K3	IO203NDB3	M9	IO136RSB2	P15	TRST
K4	IO203PDB3	M10	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 2$	P16	GDA0/IO113NDB1
K5	$\mathrm{V}_{\text {CCI }} \mathrm{B} 3$	M11	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 2$	R1	GEA1/IO188PDB3
K6	$\mathrm{V}_{\text {CC }}$	M12	VMV2	R2	GEA0/IO188NDB3
K7	GND	M13	IO110NDB1	R3	IO184RSB2
K8	GND	M14	GDB1/IO112PPB1	R4	GEC2/IO185RSB2

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

256-Pin FBGA*	
Pin Number	A3P1000 Function
R5	IO168RSB2
R6	IO163RSB2
R7	IO157RSB2
R8	IO149RSB2
R9	IO143RSB2
R10	IO138RSB2
R11	IO131RSB2
R12	IO125RSB2
R13	GDB2/IO115RSB2
R14	TDI
R15	GNDQ
R16	TDO
T1	GND
T2	IO183RSB2
T3	GEB2/IO186RSB2
T4	IO172RSB2
T5	IO170RSB2
T6	IO164RSB2
T7	IO158RSB2
T8	IO153RSB2
T9	IO142RSB2
T10	IO135RSB2
T11	IO130RSB2
T12	GDC2/IO116RSB2
T13	IO120RSB2
T14	GDA2/IO114RSB2
T15	TMS
T16	GND

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

484-Pin FBGA

Note

For Package Manufacturing and Environmental information, visit Resource center at http://www.actel.com/products/rescenter/package/index.html.

484-Pin FBGA*		484-Pin FBGA*		484-Pin FBGA*	
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
A1	GND	B15	NC	D7	GAB0/IO02RSB0
A2	GND	B16	NC	D8	IO14RSB0
A3	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$	B17	NC	D9	IO18RSB0
A4	NC	B18	NC	D10	IO22RSB0
A5	NC	B19	NC	D11	IO27RSB0
A6	IO13RSB0	B20	NC	D12	IO30RSB0
A7	IO17RSB0	B21	$\mathrm{V}_{\text {CCI }} 1$	D13	IO39RSB0
A8	NC	B22	GND	D14	IO41RSB0
A9	NC	C1	$\mathrm{V}_{\text {CCI }}{ }^{\text {B }}$	D15	IO46RSB0
A10	IO23RSB0	C2	NC	D16	GBB1/IO57RSB0
A11	IO29RSB0	C3	NC	D17	GBA0/IO58RSB0
A12	IO34RSB0	C4	NC	D18	GBA1/IO59RSB0
A13	IO36RSB0	C5	GND	D19	GND
A14	NC	C6	NC	D20	NC
A15	NC	C7	NC	D21	NC
A16	IO45RSB0	C8	V_{CC}	D22	NC
A17	IO47RSB0	C9	V_{CC}	E1	NC
A18	NC	C10	NC	E2	NC
A19	NC	C11	NC	E3	GND
A20	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$	C12	NC	E4	GAB2/IO154PDB3
A21	GND	C13	NC	E5	GAA2/IO155PPB3
A22	GND	C14	V_{CC}	E6	IO10RSB0
B1	GND	C15	V_{CC}	E7	GAB1/IO03RSB0
B2	$\mathrm{V}_{\text {CCI }} \mathrm{B} 3$	C16	NC	E8	IO12RSB0
B3	NC	C17	NC	E9	IO16RSB0
B4	NC	C18	GND	E10	IO21RSB0
B5	NC	C19	NC	E11	IO26RSB0
B6	NC	C20	NC	E12	IO31RSB0
B7	NC	C21	NC	E13	IO37RSB0
B8	NC	C22	$\mathrm{V}_{\mathrm{CCI}} \mathrm{Bl}$	E14	IO42RSB0
B9	NC	D1	NC	E15	GBC 1/IO55RSB0
B10	NC	D2	NC	E16	GBB0/IO56RSB0
B11	NC	D3	NC	E17	IO48RSB0
B12	NC	D4	GND	E18	GBA2/IO60PPB1
B13	NC	D5	GAA0/IOOORSB0	E19	IO50RSB0
B14	NC	D6	GAA1/IO01RSB0	E20	GND

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

484-Pin FBGA*		484-Pin FBGA*	
Pin Number	A3P400 Function	Pin Number	A3P400 Function
E21	NC	G13	IO40RSB0
E22	NC	G14	IO43RSB0
F1	NC	G15	GNDQ
F2	NC	G16	IO49RSB0
F3	NC	G17	GBB2/IO61PDB1
F4	IO154NDB3	G18	IO63NDB1
F5	IO08RSB0	G19	IO64NDB1
F6	IO07RSB0	G20	NC
F7	IO06RSB0	G21	NC
F8	GAC0/IO04RSB0	G22	NC
F9	GAC 1/IO05RSB0	H1	NC
F10	IO20RSB0	H2	NC
F11	IO25RSB0	H3	$\mathrm{V}_{\text {CC }}$
F12	IO32RSB0	H4	IO151PDB3
F13	IO38RSB0	H5	IO152PPB3
F14	IO44RSB0	H6	IO153NDB3
F15	GBC0/IO54RSB0	H7	IO11RSB0
F16	IO51RSB0	H8	VMV0
F17	IO52RSB0	H9	$\mathrm{V}_{C \mathrm{CI}} \mathrm{BO}$
F18	IO53RSB0	H10	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$
F19	IO60NPB1	H11	IO28RSB0
F20	NC	H12	IO35RSB0
F21	NC	H13	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$
F22	NC	H14	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$
G1	NC	H15	VMV1
G2	NC	H16	GBC2/IO62PDB1
G3	NC	H17	IO61NDB1
G4	IO152NPB3	H18	IO63PDB1
G5	IO155NPB3	H19	IO64PDB1
G6	GAC2/IO153PDB3	H2O	$\mathrm{V}_{\text {CC }}$
G7	IO09RSB0	H21	NC
G8	GNDQ	H22	NC
G9	IO15RSB0	J1	NC
G10	IO19RSB0	J2	NC
G11	IO24RSB0	J3	NC
G12	IO33RSB0	J4	IO151NDB3

484-Pin FBGA*	
Pin Number	A3P400 Function
J5	IO150PPB3
J6	NC
J7	IO148PPB3
J8	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 3$
J9	GND
J10	$\mathrm{V}_{\text {Cc }}$
J11	V_{CC}
$J 12$	V_{CC}
$J 13$	V_{CC}
J14	GND
$J 15$	$\mathrm{V}_{\text {CCI }} 1$
J16	IO62NDB1
$J 17$	NC
$J 18$	IO65RSB1
J19	IO73NDB1
J20	NC
J21	NC
J22	NC
K1	NC
K2	NC
K3	NC
K4	IO150NPB3
K5	IO149PDB3
K6	IO149NDB3
K7	GFC 1/IO147PPB3
K8	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 3$
K9	V_{CC}
K10	GND
K11	GND
K12	GND
K13	GND
K14	V_{CC}
K15	$\mathrm{V}_{\text {Clı }} \mathrm{B1}$
K16	GCC1/IO67PPB1
K17	IO66NDB1
K18	IO66PDB1

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

484-Pin FBGA*		484-Pin FBGA*		484-Pin FBGA*	
Pin Number	A3P400 Function	Pin Number	A3P400 Function	Pin Number	A3P400 Function
K19	IO73PDB1	M11	GND	P3	NC
K20	NC	M12	GND	P4	IO142NDB3
K21	NC	M13	GND	P5	IO140NDB3
K22	NC	M14	V_{CC}	P6	IO139RSB3
L1	NC	M15	GCB2/IO71PPB1	P7	IO138NDB3
L2	NC	M16	GCA1/IO69PPB1	P8	$\mathrm{V}_{\text {CCI }} 33$
L3	NC	M17	GCC2/IO72PDB1	P9	GND
L4	GFB0/IO146NPB3	M18	NC	P10	V_{CC}
L5	GFA0/IO145NDB3	M19	GCA2/IO70PDB1	P11	$\mathrm{V}_{\text {CC }}$
L6	GFB1/IO146PPB3	M20	NC	P12	V_{CC}
L7	$\mathrm{V}_{\text {COMPLF }}$	M21	NC	P13	V_{CC}
L8	GFC0/IO147NPB3	M22	NC	P14	GND
L9	V_{CC}	N1	NC	P15	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$
L10	GND	N2	NC	P16	GDB0/IO78NPB1
L11	GND	N3	NC	P17	IO75NDB1
L12	GND	N4	GFC2/IO142PDB3	P18	IO75PDB1
L13	GND	N5	IO144NPB3	P19	IO76PDB1
L14	V_{Cc}	N6	$10143 \mathrm{NPB3}$	P20	NC
L15	GCC0/IO67NPB1	N7	IO138PDB3	P21	NC
L16	GCB1/IO68PPB1	N8	$\mathrm{V}_{\text {Cli }} 33$	P22	NC
L17	GCA0/IO69NPB1	N9	$\mathrm{V}_{\text {CC }}$	R1	NC
L18	NC	N10	GND	R2	NC
L19	GCB0/IO68NPB1	N11	GND	R3	$\mathrm{V}_{\text {CC }}$
L20	NC	N12	GND	R4	IO141NDB3
L21	NC	N13	GND	R5	IO140PDB3
L22	NC	N14	V_{CC}	R6	IO127RSB2
M1	NC	N15	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$	R7	GEC0/IO137NPB3
M2	NC	N16	IO71NPB1	R8	VMV3
M3	NC	N17	IO72NDB1	R9	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B2}$
M4	GFA2/IO144PPB3	N18	IO74RSB1	R10	$\mathrm{V}_{\text {CCI }} \mathrm{B} 2$
M5	GFA1/IO145PDB3	N19	IO70NDB1	R11	IO106RSB2
M6	$\mathrm{V}_{\text {CCPLF }}$	N20	NC	R12	IO99RSB2
M7	IO148NPB3	N21	NC	R13	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 2$
M8	GFB2/IO143PPB3	N22	NC	R14	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 2$
M9	$\mathrm{V}_{\text {CC }}$	P1	NC	R15	VMV2
M10	GND	P2	NC	R16	IO85RSB2

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

484-Pin FBGA*		484-Pin FBGA*	
Pin Number	A3P400 Function	Pin Number	A3P400 Function
R17	GDB1/IO78PPB1	U9	IO121RSB2
R18	GDC 1/IO77PDB1	U10	IO115RSB2
R19	IO76NDB1	U11	IO108RSB2
R20	V_{CC}	U12	IO101RSB2
R21	NC	U13	IO94RSB2
R22	NC	U14	IO88RSB2
T1	NC	U15	IO84RSB2
T2	NC	U16	TCK
T3	NC	U17	$V_{\text {PUMP }}$
T4	IO141PDB3	U18	TRST
T5	IO131RSB2	U19	GDA0/IO79NDB1
T6	GEC 1/IO137PPB3	U20	NC
T7	IO128RSB2	U21	NC
T8	GNDQ	U22	NC
T9	GEA2/IO134RSB2	V1	NC
T10	IO113RSB2	V2	NC
T11	IO109RSB2	V3	GND
T12	IO100RSB2	V4	GEA1/IO135PDB3
T13	IO95RSB2	V5	GEA0/IO135NDB3
T14	IO90RSB2	V6	IO125RSB2
T15	GNDQ	V7	GEC2/IO132RSB2
T16	IO83RSB2	V8	IO122RSB2
T17	$\mathrm{V}_{\text {JTAG }}$	V9	IO118RSB2
T18	GDC0/IO77NDB1	V10	IO112RSB2
T19	GDA1/IO79PDB1	V11	IO107RSB2
T20	NC	V12	IO102RSB2
T21	NC	V13	IO96RSB2
T22	NC	V14	IO91RSB2
U1	NC	V15	IO87RSB2
U2	NC	V16	GDB2/IO81RSB2
U3	NC	V17	TDI
U4	GEB1/IO136PDB3	V18	NC
U5	GEB0/IO136NDB3	V19	TDO
U6	IO130RSB2	V20	GND
U7	IO129RSB2	V21	NC
U8	IO126RSB2	V22	NC

484-Pin FBGA*	
Pin Number	A3P400 Function
W1	NC
W2	NC
W3	NC
W4	GND
W5	IO124RSB2
W6	GEB2/IO133RSB2
W7	IO123RSB2
W8	IO120RSB2
W9	IO116RSB2
W10	IO111RSB2
W11	IO105RSB2
W12	IO103RSB2
W13	IO97RSB2
W14	IO93RSB2
W15	GDC2/IO82RSB2
W16	IO86RSB2
W17	GDA2/IO80RSB2
W18	TMS
W19	GND
W20	NC
W21	NC
W22	NC
Y1	$\mathrm{V}_{\text {CCI }} 33$
Y2	NC
Y3	NC
Y4	NC
Y5	GND
Y6	NC
Y7	NC
Y8	V_{CC}
Y9	$\mathrm{V}_{\text {CC }}$
Y10	NC
Y11	NC
Y12	NC
Y13	NC
Y14	$\mathrm{V}_{\text {CC }}$

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

484-Pin FBGA*	
Pin Number	A3P400 Function
Y15	V_{CC}
Y16	NC
Y17	NC
Y18	GND
Y19	NC
Y20	NC
Y21	NC
Y22	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$
AA1	GND
AA2	$\mathrm{V}_{\text {CcI }} \mathrm{B} 3$
AA3	NC
AA4	NC
AA5	NC
AA6	NC
AA7	NC
AA8	NC
AA9	NC
AA10	NC
AA11	NC
AA12	NC
AA13	NC
AA14	NC
AA15	NC
AA16	NC
AA17	NC
AA18	NC
AA19	NC
AA20	NC
AA21	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$
AA22	GND
AB1	GND
AB2	GND
AB3	$\mathrm{V}_{\mathrm{CcI}} \mathrm{B2}$
AB4	NC
AB5	NC
AB6	IO119RSB2

484-Pin FBGA*	
Pin Number	A3P400 Function
$A B 7$	IO117RSB2
$A B 8$	IO114RSB2
$A B 9$	IO110RSB2
$A B 10$	$N C$
$A B 11$	$N C$
$A B 12$	$I O 104 R S B 2$
$A B 13$	$I O 98 R S B 2$
$A B 14$	$N C$
$A B 15$	$N C$
$A B 16$	$I O 92 R S B 2$
$A B 17$	$I O 89 R S B 2$
$A B 18$	$N C$
$A B 19$	$N C$
$A B 20$	$V_{C C I} B 2$
$A B 21$	$G N D$
$A B 22$	$G N D$

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

484-Pin FBGA*		484-Pin FBGA*	
Pin Number	A3P600 Function	Pin Number	A3P600 Function
A1	GND	B15	NC
A2	GND	B16	IO44RSB0
A3	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$	B17	IO48RSB0
A4	NC	B18	NC
A5	NC	B19	NC
A6	IO08RSB0	B20	NC
A7	IO09RSB0	B21	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$
A8	NC	B22	GND
A9	NC	C1	$\mathrm{V}_{\text {CCI }} \mathrm{B} 3$
A10	IO21RSB0	C2	NC
A11	IO23RSB0	C3	NC
A12	IO27RSB0	C4	NC
A13	IO28RSB0	C5	GND
A14	NC	C6	NC
A15	NC	C7	NC
A16	IO35RSB0	C8	V_{CC}
A17	IO45RSB0	C9	V_{CC}
A18	NC	C10	NC
A19	NC	C11	NC
A20	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$	C12	NC
A21	GND	C13	NC
A22	GND	C14	$\mathrm{V}_{\text {CC }}$
B1	GND	C15	V_{CC}
B2	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 3$	C16	NC
B3	NC	C17	NC
B4	NC	C18	GND
B5	NC	C19	NC
B6	IO07RSB0	C20	NC
B7	IO11RSB0	C21	NC
B8	NC	C22	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$
B9	NC	D1	NC
B10	IO20RSB0	D2	NC
B11	NC	D3	NC
B12	NC	D4	GND
B13	IO34RSB0	D5	GAA0/IOOORSB0
B14	NC	D6	GAA1/IO01RSB0

484-Pin FBGA*	
Pin Number	A3P600 Function
D7	GABO/IO02RSB0
D8	IO12RSB0
D9	IO14RSB0
D10	IO19RSB0
D11	IO26RSB0
D12	IO31RSB0
D13	IO37RSB0
D14	IO41RSB0
D15	IO47RSB0
D16	GBB1/IO57RSB0
D17	GBA0/IO58RSB0
D18	GBA1/IO59RSB0
D19	GND
D20	NC
D21	NC
D22	NC
E1	NC
E2	NC
E3	GND
E4	GAB2/IO169PDB3
E5	GAA2/IO170PDB3
E6	GNDQ
E7	GAB1/IO03RSB0
E8	IO10RSB0
E9	IO15RSB0
E10	IO18RSB0
E11	IO24RSB0
E12	IO32RSB0
E13	IO40RSB0
E14	IO43RSB0
E15	GBC 1/IO55RSB0
E16	GBB0/IO56RSB0
E17	IO49RSB0
E18	GBA2/IO60PDB1
E19	IO60NDB1
E20	GND

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

484-Pin FBGA*		484-Pin FBGA*		484-Pin FBGA*	
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function
E21	NC	G13	IO39RSB0	J5	IO162PPB3
E22	NC	G14	IO46RSB0	J6	IO164PDB3
F1	NC	G15	GNDQ	J7	IO164NDB3
F2	NC	G16	IO53RSB0	J8	$\mathrm{V}_{\text {CCI }} \mathrm{B} 3$
F3	NC	G17	GBB2/IO61PPB1	J9	GND
F4	IO169NDB3	G18	IO63PPB1	J10	$\mathrm{V}_{\text {CC }}$
F5	IO170NDB3	G19	IO65PDB1	J11	V_{CC}
F6	VMV3	G20	NC	$J 12$	V_{CC}
F7	IO06RSB0	G21	NC	$J 13$	V_{CC}
F8	GAC0/IO04RSB0	G22	NC	J14	GND
F9	GAC 1/IO05RSB0	H1	NC	J15	$\mathrm{V}_{\text {CCI }} \mathrm{B} 1$
F10	IO17RSB0	H2	NC	J16	IO62NDB1
F11	IO25RSB0	H3	V_{CC}	J17	IO64NPB1
F12	IO33RSB0	H4	IO165NDB3	$J 18$	IO66PPB1
F13	IO38RSB0	H5	IO165PDB3	J19	IO67PPB1
F14	IO42RSB0	H6	IO167PDB3	J20	NC
F15	GBC0/IO54RSB0	H7	IO167NDB3	J21	IO74PDB1
F16	IO52RSB0	H8	VMV0	J22	IO74NDB1
F17	IO51RSB0	H9	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$	K1	IO153NDB3
F18	IO50RSB0	H10	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$	K2	NC
F19	IO61NPB1	H11	IO29RSB0	K3	NC
F20	NC	H12	IO30RSB0	K4	IO155NDB3
F21	NC	H13	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$	K5	IO155PDB3
F22	NC	H14	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$	K6	IO162NPB3
G1	IO163NDB3	H15	VMV1	K7	GFC 1/IO161PPB3
G2	IO163PDB3	H16	GBC2/IO62PDB1	K8	$\mathrm{V}_{\text {CCI }} \mathrm{B} 3$
G3	NC	H17	IO63NPB1	K9	V_{CC}
G4	IO166NDB3	H18	IO64PPB1	K10	GND
G5	IO166PDB3	H19	IO65NDB1	K11	GND
G6	GAC2/IO168PDB3	H2O	$\mathrm{V}_{\text {CC }}$	K12	GND
G7	IO168NDB3	H21	NC	K13	GND
G8	GNDQ	H22	NC	K14	V_{CC}
G9	IO13RSB0	J1	IO153PDB3	K15	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$
G10	IO16RSB0	J2	IO154NDB3	K16	GCC1/IO68PPB1
G11	IO22RSB0	J3	NC	K17	IO66NPB1
G12	IO36RSB0	J4	IO154PDB3	K18	IO67NPB1

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

484-Pin FBGA*		484-Pin FBGA*	
Pin Number	A3P600 Function	Pin Number	A3P600 Function
K19	IO71NPB1	M11	GND
K20	NC	M12	GND
K21	NC	M13	GND
K22	IO75PDB1	M14	V_{CC}
L1	NC	M15	GCB2/IO72PPB1
L2	IO152PDB3	M16	GCA1/IO70PPB1
L3	NC	M17	GCC2/IO73PPB1
L4	GFB0/IO160NPB3	M18	IO77PPB1
L5	GFA0/IO159NDB3	M19	GCA2/IO71PPB1
L6	GFB1/IO160PPB3	M20	NC
L7	$\mathrm{V}_{\text {COMPLF }}$	M21	IO76PDB1
L8	GFC0/IO161NPB3	M22	NC
L9	V_{CC}	N1	IO150PPB3
L10	GND	N2	NC
L11	GND	N3	NC
L12	GND	N4	GFC2/IO156PPB3
L13	GND	N5	IO158NPB3
L14	V_{CC}	N6	IO151PDB3
L15	GCC0/IO68NPB1	N7	IO151NDB3
L16	GCB1/IO69PPB1	N8	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 3$
L17	GCA0/IO70NPB1	N9	V_{CC}
L18	IO73NPB1	N10	GND
L19	GCB0/IO69NPB1	N11	GND
L20	NC	N12	GND
L21	NC	N13	GND
L22	IO75NDB1	N14	$\mathrm{V}_{\text {CC }}$
M1	NC	N15	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$
M2	IO152NDB3	N16	IO72NPB1
M3	NC	N17	IO82PDB1
M4	GFA2/IO158PPB3	N18	IO79PDB1
M5	GFA1/IO159PDB3	N19	IO77NPB1
M6	$V_{\text {CCPLF }}$	N20	NC
M7	IO157NDB3	N21	IO76NDB1
M8	GFB2/IO157PDB3	N22	NC
M9	V_{CC}	P1	NC
M10	GND	P2	IO150NPB3

484-Pin FBGA*	
Pin Number	A3P600 Function
P3	NC
P4	IO149PDB3
P5	IO156NPB3
P6	IO147PDB3
P7	IO147NDB3
P8	$\mathrm{V}_{\text {CCI }} \mathrm{B} 3$
P9	GND
P10	V_{CC}
P11	V_{CC}
P12	V_{CC}
P13	V_{CC}
P14	GND
P15	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$
P16	GDB0/IO85NPB1
P17	IO82NDB1
P18	IO79NDB1
P19	IO80PDB1
P20	NC
P21	NC
P22	IO78PDB1
R1	NC
R2	IO148PDB3
R3	V_{CC}
R4	IO149NDB3
R5	IO146PDB3
R6	IO146NDB3
R7	GEC0/IO144NPB3
R8	VMV3
R9	$\mathrm{V}_{\text {CCI }} \mathrm{B} 2$
R10	$\mathrm{V}_{\text {CII }} \mathrm{B2}$
R11	IO111RSB2
R12	IO110RSB2
R13	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 2$
R14	$\mathrm{V}_{\text {Clı }} \mathrm{B} 2$
R15	VMV2
R16	IO81NDB1

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

ProASIC3 Flash Family FPGAs

484-Pin FBGA*		484-Pin FBGA*		484-Pin FBGA*	
Pin Number	A3P600 Function	Pin Number	A3P600 Function	Pin Number	A3P600 Function
R17	GDB1/IO85PPB1	U9	IO128RSB2	W1	NC
R18	GDC 1/IO84PDB1	U10	IO121RSB2	W2	NC
R19	IO80NDB1	U11	IO115RSB2	W3	NC
R20	V_{CC}	U12	IO108RSB2	W4	GND
R21	IO83PDB1	U13	IO100RSB2	W5	IO133RSB2
R22	IO78NDB1	U14	IO95RSB2	W6	GEB2/IO140RSB2
T1	NC	U15	VMV1	W7	IO132RSB2
T2	IO148NDB3	U16	TCK	W8	IO127RSB2
T3	NC	U17	$V_{\text {PUMP }}$	W9	IO123RSB2
T4	IO145PDB3	U18	TRST	W10	IO117RSB2
T5	IO145NDB3	U19	GDA0/IO86NDB1	W11	IO112RSB2
T6	GEC 1/IO144PPB3	U20	NC	W12	IO109RSB2
T7	IO137RSB2	U21	NC	W13	IO102RSB2
T8	GNDQ	U22	NC	W14	IO97RSB2
T9	GEA2/IO141RSB2	V1	NC	W15	GDC2/IO89RSB2
T10	IO120RSB2	V2	NC	W16	IO91RSB2
T11	IO113RSB2	V3	GND	W17	GDA2/IO87RSB2
T12	IO106RSB2	V4	GEA1/IO142PDB3	W18	TMS
T13	IO99RSB2	V5	GEA0/IO142NDB3	W19	GND
T14	IO94RSB2	V6	IO136RSB2	W20	NC
T15	GNDQ	V7	GEC2/IO139RSB2	W21	NC
T16	IO81PDB1	V8	IO130RSB2	W22	NC
T17	$\mathrm{V}_{\text {JTAG }}$	V9	IO125RSB2	Y1	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 3$
T18	GDC0/IO84NDB1	V10	IO119RSB2	Y2	NC
T19	GDA1/IO86PDB1	V11	IO114RSB2	Y3	NC
T20	NC	V12	IO107RSB2	Y4	NC
T21	IO83NDB1	V13	IO101RSB2	Y5	GND
T22	NC	V14	IO96RSB2	Y6	NC
U1	NC	V15	IO90RSB2	Y7	NC
U2	NC	V16	GDB2/IO88RSB2	Y8	V_{CC}
U3	NC	V17	TDI	Y9	V_{CC}
U4	GEB1/IO143PDB3	V18	GNDQ	Y10	NC
U5	GEB0/IO143NDB3	V19	TDO	Y11	NC
U6	IO138RSB2	V20	GND	Y12	NC
U7	IO135RSB2	V21	NC	Y13	NC
U8	IO134RSB2	V22	NC	Y14	V_{CC}

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

ProASIC3 Flash Family FPGAs

484-Pin FBGA*	
Pin Number	A3P600 Function
Y15	$\mathrm{V}_{\text {CC }}$
Y16	NC
Y17	NC
Y18	GND
Y19	NC
Y20	NC
Y21	NC
Y22	$\mathrm{V}_{\text {CCI }} 1$
AA1	GND
AA2	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B}$
AA3	NC
AA4	NC
AA5	NC
AA6	IO131RSB2
AA7	IO126RSB2
AA8	NC
AA9	NC
AA10	IO116RSB2
AA11	NC
AA12	NC
AA13	IO103RSB2
AA14	NC
AA15	NC
AA16	IO93RSB2
AA17	NC
AA18	NC
AA19	NC
AA20	NC
AA21	$\mathrm{V}_{\text {CCI }} 1$
AA22	GND
AB1	GND
AB2	GND
AB3	$\mathrm{V}_{\text {CCI }} \mathrm{B} 2$
AB4	NC
AB5	NC
AB6	IO129RSB2

484-Pin FBGA*	
Pin Number	A3P600 Function
$A B 7$	IO124RSB2
$A B 8$	IO122RSB2
$A B 9$	IO118RSB2
$A B 10$	$N C$
$A B 11$	$N C$
$A B 12$	$I O 105 R S B 2$
$A B 13$	$I O 104 R S B 2$
$A B 14$	$N C$
$A B 15$	$N C$
$A B 16$	$I O 98 R S B 2$
$A B 17$	$I O 92 R S B 2$
$A B 18$	$N C$
$A B 19$	$N C$
$A B 20$	$V_{C C} B 2$
$A B 21$	$G N D$
$A B 22$	$G N D$

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

ProASIC3 Flash Family FPGAs

484-Pin FBGA*		484-Pin FBGA*		484-Pin FBGA*	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
A1	GND	AA14	NC	B5	IO08RSB0
A2	GND	AA15	NC	B6	IO12RSB0
A3	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$	AA16	IO122RSB2	B7	IO15RSB0
A4	IO07RSB0	AA17	IO119RSB2	B8	IO19RSB0
A5	IO09RSB0	AA18	IO117RSB2	B9	IO24RSB0
A6	IO13RSB0	AA19	NC	B10	IO31RSB0
A7	IO18RSB0	AA20	NC	B11	IO39RSB0
A8	IO20RSB0	AA21	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$	B12	IO48RSB0
A9	IO26RSB0	AA22	GND	B13	IO54RSB0
A10	IO32RSB0	AB1	GND	B14	IO58RSB0
A11	IO40RSB0	AB2	GND	B15	IO63RSB0
A12	IO41RSB0	AB3	$\mathrm{V}_{\text {CCI }} \mathrm{B} 2$	B16	IO66RSB0
A13	IO53RSB0	AB4	IO180RSB2	B17	IO68RSB0
A14	IO59RSB0	AB5	IO176RSB2	B18	IO70RSB0
A15	IO64RSB0	AB6	IO173RSB2	B19	NC
A16	IO65RSB0	AB7	IO167RSB2	B20	NC
A17	IO67RSB0	AB8	IO162RSB2	B21	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$
A18	IO69RSB0	AB9	IO156RSB2	B22	GND
A19	NC	AB10	IO150RSB2	C1	$\mathrm{V}_{\text {CCI }} \mathrm{B} 3$
A20	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$	AB11	IO145RSB2	C2	IO220PDB3
A21	GND	AB12	IO144RSB2	C3	NC
A22	GND	AB13	IO132RSB2	C4	NC
AA1	GND	AB14	IO127RSB2	C5	GND
AA2	$\mathrm{V}_{\text {CCI }} 3$	AB15	IO126RSB2	C6	IO10RSB0
AA3	NC	AB16	IO123RSB2	C7	IO14RSB0
AA4	IO181RSB2	AB17	IO121RSB2	C8	$\mathrm{V}_{\text {CC }}$
AA5	IO178RSB2	AB18	IO118RSB2	C9	$\mathrm{V}_{\text {CC }}$
AA6	IO175RSB2	AB19	NC	C10	IO30RSB0
AA7	IO169RSB2	AB20	$\mathrm{V}_{\text {CCI }} \mathrm{B} 2$	C11	IO37RSB0
AA8	IO166RSB2	AB21	GND	C12	IO43RSB0
AA9	IO160RSB2	AB22	GND	C13	NC
AA10	IO152RSB2	B1	GND	C14	V_{CC}
AA11	IO146RSB2	B2	$\mathrm{V}_{\text {CCI }} 3$	C15	V_{CC}
AA12	IO139RSB2	B3	NC	C16	NC
AA13	IO133RSB2	B4	IO06RSB0	C17	NC

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

484-Pin FBGA*		484-Pin FBGA*	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
C18	GND	E9	IO21RSB0
C19	NC	E10	IO27RSB0
C20	NC	E11	IO34RSB0
C21	NC	E12	IO44RSB0
C22	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$	E13	IO51RSB0
D1	IO219PDB3	E14	IO57RSB0
D2	IO220NDB3	E15	GBC 1/IO73RSB0
D3	NC	E16	GBB0/IO74RSB0
D4	GND	E17	IO71RSB0
D5	GAA0/IO00RSB0	E18	GBA2/IO78PDB1
D6	GAA1/IO01RSB0	E19	IO81PDB1
D7	GAB0/IO02RSB0	E20	GND
D8	IO16RSB0	E21	NC
D9	IO22RSB0	E22	IO84PDB1
D10	IO28RSB0	F1	NC
D11	IO35RSB0	F2	IO215PDB3
D12	IO45RSB0	F3	IO215NDB3
D13	IO50RSB0	F4	IO224NDB3
D14	IO55RSB0	F5	IO225NDB3
D15	IO61RSB0	F6	VMV3
D16	GBB1/IO75RSB0	F7	IO11RSB0
D17	GBA0/IO76RSB0	F8	GAC0/IO04RSB0
D18	GBA1/IO77RSB0	F9	GAC1/IO05RSB0
D19	GND	F10	IO25RSB0
D20	NC	F11	IO36RSB0
D21	NC	F12	IO42RSB0
D22	NC	F13	IO49RSB0
E1	IO219NDB3	F14	IO56RSB0
E2	NC	F15	GBC0/IO72RSB0
E3	GND	F16	IO62RSB0
E4	GAB2/IO224PDB3	F17	VMV0
E5	GAA2/IO225PDB3	F18	IO78NDB1
E6	GNDQ	F19	IO81NDB1
E7	GAB1/IO03RSB0	F20	IO82PPB1
E8	IO17RSB0	F21	NC

484-Pin FBGA*	
Pin Number	A3P1000 Function
F22	IO84NDB1
G1	IO214NDB3
G2	IO214PDB3
G3	NC
G4	IO222NDB3
G5	IO222PDB3
G6	GAC2/IO223PDB3
G7	IO223NDB3
G8	GNDQ
G9	IO23RSB0
G10	IO29RSB0
G11	IO33RSB0
G12	IO46RSB0
G13	IO52RSB0
G14	IO60RSB0
G15	GNDQ
G16	IO80NDB1
G17	GBB2/IO79PDB1
G18	IO79NDB1
G19	IO82NPB1
G20	IO85PDB1
G21	IO85NDB1
G22	NC
H1	NC
H2	NC
H3	V_{CC}
H4	IO217PDB3
H5	IO218PDB3
H6	IO221NDB3
H7	IO221PDB3
H8	VMV0
H9	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$
H10	$\mathrm{V}_{\text {CCI }} \mathrm{BO}$
H11	IO38RSB0
H12	IO47RSB0

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

ProASIC3 Flash Family FPGAs

484-Pin FBGA*		484-Pin FBGA*		484-Pin FBGA*	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
H13	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$	K4	IO210PPB3	L17	GCA0/IO93NPB1
H14	$\mathrm{V}_{\mathrm{CCI}} \mathrm{BO}$	K5	IO213NDB3	L18	IO96NPB1
H15	VMV1	K6	IO213PDB3	L19	GCB0/IO92NPB1
H16	GBC2/IO80PDB1	K7	GFC 1/IO209PPB3	L20	IO97PDB1
H17	IO83PPB1	K8	$\mathrm{V}_{\text {CcI }} \mathrm{B} 3$	L21	IO97NDB1
H18	IO86PPB1	K9	$\mathrm{V}_{\text {CC }}$	L22	IO99NPB1
H19	IO87PDB1	K10	GND	M1	NC
H20	V_{CC}	K11	GND	M2	IO200NDB3
H21	NC	K12	GND	M3	IO206NDB3
H22	NC	K13	GND	M4	GFA2/IO206PDB3
J1	IO212NDB3	K14	V_{CC}	M5	GFA1/IO207PDB3
J2	IO212PDB3	K15	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$	M6	$\mathrm{V}_{\text {CCPLF }}$
J3	NC	K16	GCC 1/IO91PPB1	M7	IO205NDB3
J4	IO217NDB3	K17	IO90NPB1	M8	GFB2/IO205PDB3
J5	IO218NDB3	K18	IO88PDB1	M9	$\mathrm{V}_{\text {CC }}$
J6	IO216PDB3	K19	IO88NDB1	M10	GND
J7	IO216NDB3	K20	IO94NPB1	M11	GND
J8	$\mathrm{V}_{\text {CCI }} 33$	K21	IO98NDB1	M12	GND
J9	GND	K22	IO98PDB1	M13	GND
J10	$\mathrm{V}_{\text {CC }}$	L1	NC	M14	V_{CC}
J11	V_{CC}	L2	IO200PDB3	M15	GCB2/IO95PPB1
J12	V_{CC}	L3	IO210NPB3	M16	GCA1/I093PPB1
J13	$\mathrm{V}_{\text {CC }}$	L4	GFB0/IO208NPB3	M17	GCC2/I096PPB1
J14	GND	L5	GFA0/IO207NDB3	M18	IO100PPB1
J15	$\mathrm{V}_{\text {CLI }}{ }^{\text {B }}$	L6	GFB1/IO208PPB3	M19	GCA2/IO94PPB1
J16	IO83NPB1	L7	$\mathrm{V}_{\text {COMPLF }}$	M20	IO101PPB1
J17	IO86NPB1	L8	GFC0/IO209NPB3	M21	IO99PPB1
J18	IO90PPB1	L9	$\mathrm{V}_{\text {CC }}$	M22	NC
J19	IO87NDB1	L10	GND	N1	IO201NDB3
J20	NC	L11	GND	N2	IO201PDB3
J21	IO89PDB1	L12	GND	N3	NC
122	IO89NDB1	L13	GND	N4	GFC2/IO204PDB3
K1	IO211PDB3	L14	$\mathrm{V}_{\text {CC }}$	N5	IO204NDB3
K2	IO211NDB3	L15	GCC0/IO91NPB1	N6	IO203NDB3
K3	NC	L16	GCB1/IO92PPB1	N7	IO203PDB3

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

484-Pin FBGA*		484-Pin FBGA*		484-Pin FBGA*	
Pin Number	A3P1000 Function	Pin Number	A3P1000 Function	Pin Number	A3P1000 Function
N8	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 3$	P21	IO104PDB1	T12	IO141RSB2
N9	V_{CC}	P22	IO103NDB1	T13	IO129RSB2
N10	GND	R1	NC	T14	IO124RSB2
N11	GND	R2	IO197PPB3	T15	GNDQ
N12	GND	R3	$\mathrm{V}_{\text {CC }}$	T16	IO110PDB1
N13	GND	R4	IO197NPB3	T17	$\mathrm{V}_{\text {JTAG }}$
N14	V_{CC}	R5	IO196NPB3	T18	GDC0/IO111NDB1
N15	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$	R6	IO193NPB3	T19	GDA1/IO113PDB1
N16	IO95NPB1	R7	GEC0/IO190NPB3	T20	NC
N17	IO100NPB1	R8	VMV3	T21	IO108PDB1
N18	IO102NDB1	R9	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B2}$	T22	IO105NDB1
N19	IO102PDB1	R10	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 2$	U1	IO195PDB3
N20	NC	R11	IO147RSB2	U2	IO195NDB3
N21	IO101NPB1	R12	IO136RSB2	U3	IO194NPB3
N22	IO103PDB1	R13	$\mathrm{V}_{\text {CII }} \mathrm{C}$	U4	GEB1/IO189PDB3
P1	NC	R14	$\mathrm{V}_{\mathrm{Cl}} \mathrm{B} 2$	U5	GEB0/IO189NDB3
P2	IO199PDB3	R15	VMV2	U6	VMV2
P3	IO199NDB3	R16	IO110NDB1	U7	IO179RSB2
P4	IO202NDB3	R17	GDB1/IO112PPB1	U8	IO171RSB2
P5	IO202PDB3	R18	GDC 1/IO111PDB1	U9	IO165RSB2
P6	IO196PPB3	R19	IO107NDB1	U10	IO159RSB2
P7	IO193PPB3	R20	$\mathrm{V}_{\text {CC }}$	U11	IO151RSB2
P8	$\mathrm{V}_{\text {CCI }} \mathrm{B} 3$	R21	IO104NDB1	U12	IO137RSB2
P9	GND	R22	IO105PDB1	U13	IO134RSB2
P10	$\mathrm{V}_{\text {CC }}$	T1	IO198PDB3	U14	IO128RSB2
P11	$V_{\text {CC }}$	T2	IO198NDB3	U15	VMV1
P12	V_{CC}	T3	NC	U16	TCK
P13	V_{CC}	T4	IO194PPB3	U17	$V_{\text {PUMP }}$
P14	GND	T5	IO192PPB3	U18	TRST
P15	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B1}$	T6	GEC 1/IO190PPB3	U19	GDA0/IO113NDB1
P16	GDB0/IO112NPB1	T7	IO192NPB3	U20	NC
P17	IO106NDB1	T8	GNDQ	U21	IO108NDB1
P18	IO106PDB1	T9	GEA2/IO187RSB2	U22	IO109PDB1
P19	IO107PDB1	T10	IO161RSB2	V1	NC
P20	NC	T11	IO155RSB2	V2	NC

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

484-Pin FBGA*	
Pin Number	A3P1000 Function
V3	GND
V4	GEA1/IO188PDB3
V5	GEA0/IO188NDB3
V6	IO184RSB2
V7	GEC2/IO185RSB2
V8	IO168RSB2
V9	IO163RSB2
V10	IO157RSB2
V11	IO149RSB2
V12	IO143RSB2
V13	IO138RSB2
V14	IO131RSB2
V15	IO125RSB2
V16	GDB2/IO115RSB2
V17	TDI
V18	GNDQ
V19	TDO
V20	GND
V21	NC
V22	IO109NDB1
W1	NC
W2	IO191PDB3
W3	NC
W4	GND
W5	IO183RSB2
W6	GEB2/IO186RSB2
W7	IO172RSB2
W8	IO170RSB2
W9	IO164RSB2
W10	IO158RSB2
W11	IO153RSB2
W12	IO142RSB2
W13	IO135RSB2
W14	IO130RSB2
W15	GDC2/IO116RSB2

484-Pin FBGA*	
Pin Number	A3P1000 Function
W16	IO120RSB2
W17	GDA2/IO114RSB2
W18	TMS
W19	GND
W20	NC
W21	NC
W22	NC
Y1	$\mathrm{V}_{\text {CII }} 33$
Y2	IO191NDB3
Y3	NC
Y4	IO182RSB2
Y5	GND
Y6	IO177RSB2
Y7	IO174RSB2
Y8	V_{CC}
Y9	$\mathrm{V}_{\text {CC }}$
Y10	IO154RSB2
Y11	IO148RSB2
Y12	IO140RSB2
Y13	NC
Y14	V_{CC}
Y15	V_{CC}
Y16	NC
Y17	NC
Y18	GND
Y19	NC
Y20	NC
Y21	NC
Y22	$\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$

Note: *Refer to the "User I/O Naming Convention" section on page 2-46.

Datasheet Information

List of Changes

The following table lists critical changes that were made in the current version of the document.

Previous Version	Changes in Current Version (Advanced v0.5)	Page
Advanced v0.4	The "I/Os Per Package" was updated for the following devices and packages	ii
Advanced v0.3	M7 device information is new.	
	The I/O counts in the "I/Os Per Package" table were updated.	ii
	The "Security" section was updated to include information concerning M7 ProASIC3 AES support.	1-1
	In the "PLL and Clock Conditioning Circuitry (CCC)" section, the low jitter bullet was updated.	1-5
	Table 2-2 was updated to include the number of rows in each top or bottom spine.	2-11
	EXTFB was removed from Figure 2-14.	2-16
	The "PLL Macro" section was updated. EXTFB information was removed from this section.	2-17
	EXTFB was removed from Figure 2-17.	2-19
	The CCC Output Peak-to-Peak Period Jitter $\mathrm{F}_{\text {CCC_out }}$ was updated in Table 2-4.	2-20
	EXTFB was removed from Figure 2-19.	2-21
	The "Hot-Swap Support" section was updated.	2-35
	Table 2-15 was updated.	2-35
	The "Cold-Sparing Support" section was updated.	2-36
	The "Electrostatic Discharge (ESD) Protection" section was updated.	2-36
	The LVPECL specification in Table 2-16 was updated.	2-36
	In the Bank 1 area of Figure 2-36, VMV2 was changed to $\mathrm{VMV1}$ and $\mathrm{V}_{\mathrm{CC}} \mathrm{B} 2$ was changed to $\mathrm{V}_{\mathrm{CCI}} \mathrm{B} 1$.	2-46
	The "JTAG Pins" were updated.	2-49
	The $\mathrm{V}_{\text {JTAG }}$ and I/O pin descriptions were updated in the "Pin Descriptions" section	2-48
	The "128-Bit AES Decryption" section was updated to include M7 device information.	2-50
	Table 3-6 was updated.	3-4
	Table 3-7 was updated.	3-5
	In Table 3-10 PAC4 was updated.	3-6
	Table 3-17 was updated.	3-15
	The note in Table 3-23 was updated.	3-17
	All Timing Characteristic tables were updated from LVTTL to Register Delays.	3-19 to 3-44
	The Timing Characteristics for RAM4K9, RAM512X18, and FIFO were updated.	3-54 to 3-58
	The data for $\mathrm{F}_{\text {TCKMAX }}$ was updated in Table 3-71.	3-59

Previous Version	Changes in Current Version (Advanced v0.5)	Page
Advanced v0.2	The A3P1000 table was updated in the "208-Pin PQFP* ".	4-20
	The A3P1000 table was updated in the "144-Pin FBGA*".	4-27
	The A3P1000 table was updated in the "256-Pin FBGA*".	4-39
	The A3P1000 table was updated in the "484-Pin FBGA* ".	4-53
	The "I/Os Per Package" table was updated.	11
	The "Live at Power-Up" is new.	1-2
	Figure 2-5 was updated.	2-6
	The "Clock Resources (VersaNets)" was updated.	2-10
	The "VersaNet Global Networks and Spine Access " was updated.	2-12
	The "PLL Macro" was updated.	2-17
	Figure 2-17 was updated.	2-19
	Figure 2-19 was updated.	2-21
	Table 2-6 was updated.	2-26
	Table 2-7 was updated.	2-26
	The "FIFO Flag Usage Considerations" was updated.	2-29
	Table 2-13 was updated.	2-30
	Figure 2-23 was updated.	2-32
	The "Cold-Sparing Support" is new.	2-36
	Table 2-16 was updated.	2-36
	Table 2-18 was updated.	2-44
	The "User I/O Naming Convention" was updated.	2-46
	Pin descriptions in the "JTAG Pins" section on page 2-49 were updated.	2-48
	Table 3-7 was updated.	3-5
	The "Methodology" section was updated.	3-7
	Table 3-34 and Table 3-35 were updated.	3-23
	The A3P250 "100-Pin VQFP* " pin table was updated.	4-5
	The A3P250 "208-Pin PQFP* " pin table was updated.	4-16
	The A3P250 "144-Pin FBGA* pin table was updated.	4-25
	The A3P250 "256-Pin FBGA* pin table was updated.	4-28

Datasheet Categories

In order to provide the latest information to designers, some datasheets are published before data has been fully characterized. Datasheets are designated as "Product Brief," "Advanced," "Production," and "Web-only." The definition of these categories are as follows:

Product Brief

The product brief is a summarized version of a advanced datasheet (advanced or production) containing general product information. This brief gives an overview of specific device and family information.

Advanced

This datasheet version contains initial estimated information based on simulation, other products, devices, or speed grades. This information can be used as estimates, but not for production.

Datasheet Supplement

The datasheet supplement gives specific device information for a derivative family that differs from the general family datasheet. The supplement is to be used in conjunction with the datasheet to obtain more detailed information and for specifications that do not differ between the two families.

Unmarked (production)

This datasheet version contains information that is considered to be final.

Export Administration Regulations (EAR)

The products described in this datasheet are subject to the Export Administration Regulations (EAR). They could require an approved export license prior to export from the United States. An export includes release of product or disclosure of technology to a foreign national inside or outside the United States.

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

http://www.actel.com

2061 Stierlin Court Mountain View, CA 94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Actel Europe Ltd.

Dunlop House, Riverside Way Camberley, Surrey GU15 3YL United Kingdom
Phone +44 (0) 1276401450
Fax +44 (0) 1276401490

Actel Japan
www.jp.actel.com
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668

Actel Hong Kong
www.actel.com.cn
Suite 2114, Two Pacific Place
88 Queensway, Admiralty Hong Kong
Phone +852 21856460
Fax +85221856488

[^0]: Figure 2-16 • CLKBUF and CLKINT

[^1]: Figure 2-32 • Timing Diagram (Option 2: Enables Skew Circuit)

[^2]: Figure 2-34 • Timing Diagram (Bypasses Skew Circuit)

[^3]: Note: *Applies to all ProASIC3 devices except AЗP030

[^4]: 1. The PLL dynamic contribution depends on the input clock frequency, the number of output clock signals generated by the PLL, and the frequency of each output clock. If a PLL is used to generate more than one output clock, include each output clock in the formula by adding its corresponding contribution ($P_{\text {AC14 }}$ * $F_{\text {CLKOUT }}$ product) to the total PLL contribution.
[^5]: Figure 3-26 • RAM Models

