
ADVANCE INFORMATION

(Subject to change without notice) October 1, 1999

ABSOLUTE MAXIMUM RATINGS at $T_A = +25^{\circ}C$

Load Supply Voltage, V _{BB} 50 V
Output Current, I _{OUT}
Continuous ±2.5 A
Transient (<500 ns) ±5 A
Logic Supply Voltage,
V _{DD} 7.0 V
Sense Voltage, V _{SENSE} 0.5 V
Logic Input Voltage Range,
V_{IN} 0.3 V to V_{DD} + 0.3 V
High-Side Gate Voltage $V_{BB} + 8 V$
High-Side Gate Voltage \overrightarrow{V}_{BB} + 8 V Package Power Dissipation,
High-Side Gate Voltage $\mathbf{V}_{\mathbf{BB}} + 8 \mathbf{V}$
High-Side Gate Voltage \mathbf{V}_{BB} + 8 V Package Power Dissipation, \mathbf{P}_{D}
High-Side Gate Voltage
High-Side Gate Voltage $V_{BB} + 8 V$ Package Power Dissipation, P_D 2.2 W Operating Temperature Range, T_A 20°C to +85°C

Output duty cycle, ambient temperature, and heat sinking may limit current rating. Under any set of conditions, do not exceed the specified current rating or a junction temperature of 150 °C.

DUAL DMOS FULL-BRIDGE DRIVER

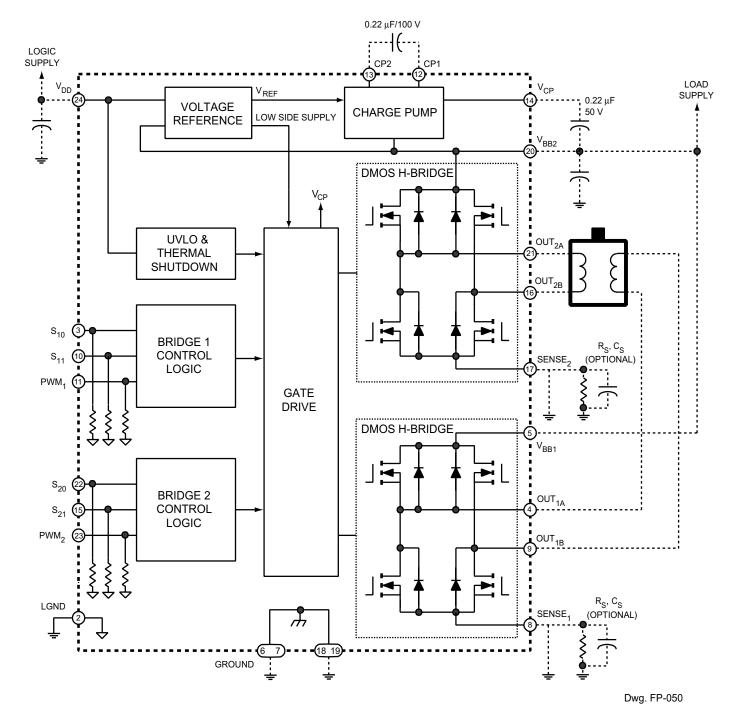
Designed to interface between external PWM control logic and inductive loads such as relays, solenoids, dc motors or stepper motors, the A3971SLB can operate with continuous output currents to ± 2.5 A and operating voltages to 50 V.

Low r_{DS(on)} DMOS output drivers provide low power dissipation during PWM operation. Internal charge pump circuitry is used to create a boosted voltage to fully enhance the high-side DMOS switches.

Three TTL-compatible logic-input terminals per bridge allow flexibility in configuring PWM control.

Internal circuit protection includes thermal shutdown with hysteresis, and crossover-current protection. Special power up sequencing is not required.

The A3971SLB is supplied in a 24-lead plastic SOIC with a copper batwing tab. The power tab is at ground potential and needs no electrical isolation.


FEATURES

- ±2.5 A, Continuous Load Current
- Low $r_{DS(on)}$ Outputs
 Typically 325 mΩ source, 175 mΩ sink
- Synchronous Rectification via Control Logic
- Parallel Outputs for 5 A Load-Current Capability
- Internal Undervoltage Monitor
- Crossover-Current Protection
- Source Connections for External Current Sensing
- Thermal Shutdown Circuitry

Always order by complete part number: A3971SLB

FUNCTIONAL BLOCK DIAGRAM

ELECTRICAL CHARACTERISTICS at T_A = +25°C, V_{BB} = 50 V, V_{DD} = 5.0 V (unless otherwise noted).

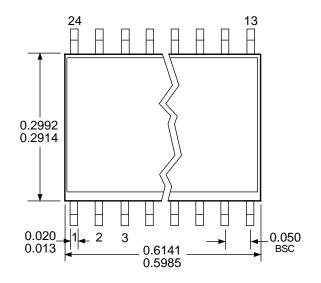
		, pp , pp	Limits			
Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Load Supply Voltage Range	V_{BB}	Operating	10	_	50	V
Logic Supply Voltage Range	V_{DD}	Operating	4.5	5.0	5.5	V
Load Supply Current	I _{BB}	Operating, each supply, no load	_	_	3.0	mA
Logic Supply Current	I _{DD}	Operating	_	_	5.0	mA
Output Drivers						
Output Leakage Current	I _{DSS}	V _{OUT} = V _{BB}	_	<1.0	20	μΑ
		V _{OUT} = 0 V	_	<-1.0	-20	mA
Output On Resistance	r _{DS(on)}	High-side switch	_	325	375	mΩ
		Low-side switch	_	175	200	mΩ
Body Diode Forward Voltage	V_{F}	Source diode, I _F = 2.5 A	_	1.2	_	V
		Sink diode, I _F = 2.5 A	_	1.0	_	V
High-Side Gate Voltage	V _{CP}	C = 0.22 μ F, reference V _{BB}	6.0	6.5	7.0	V
Control Logic						
Logic Input Voltage	V _{IN(0)}		_	_	8.0	V
	V _{IN(1)}		2.0	_	_	V
Logic Input Current	I _{IN(0)}	$V_{IN} = 0 V$	_	<1.0	-5.0	μΑ
	I _{IN(1)}	V _{IN} = 5.0 V	_	20	50	μΑ
Propagation Delay Time	t _{PD}	$I_{OUT} = \pm 2.5 \text{ A}, 50\% \text{ to } 90\%$				
		PWM change to source OFF	_	50	_	ns
		PWM change to sink OFF	_	60	_	ns
		PWM change to source ON	_	565	_	ns
		PWM change to sink ON	_	665	_	ns
		Disable to source ON		150		ns
		Disable to sink ON	_	250		ns
Thermal Shutdown Temperature	T_J		_	165		°C
Thermal Shutdown Hysteresis	ΔT_J		_	15		°C
UVLO Threshold	V_{UVLO}	Increasing V _{DD}	3.9	4.15	4.4	V
UVLO Hysteresis	ΔV_{UVLO}			0.15		V

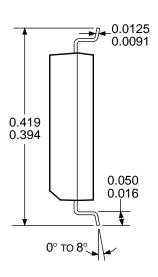
NOTES: 1. Typical Data is for design information only.
2. Negative current is defined as coming out of (sourcing) the specified device terminal.

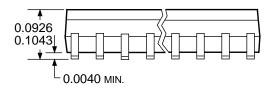
3971 DUAL DMOS FULL-BRIDGE DRIVER

Logic Truth Table

PWM _x	S _{x0}	S _{x1}	OUT _{xA}	OUT _{xB}	Function
Х	0	0	Z	Z	Disable
0	0	1	L	H	Forward
0	1	0	Н	L	Reverse
0	1	1	L	L	Synchronous
1	0	1	L	L	Rectification/
1	1	1	L	L	Slow Decay
1	1	0	L	L	Chop

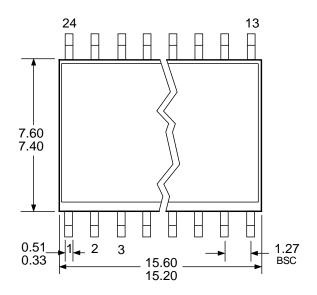

Terminal List

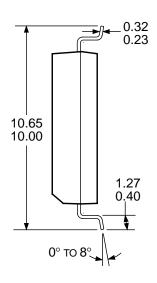

Terminal	Name	Description	
1	NC	No (Internal) connection	
2	LGND	Logic ground	
3	S ₁₀	Control input, bridge 1	
4	OUT _{1A}	Output A, bridge 1	
5	V_{BB1}	Load supply voltage, bridge 1	
6, 7	GND	Ground	
8	SENSE ₁	Sense resistor, bridge 1	
9	OUT _{1B}	Output B, bridge 1	
10	S ₁₁	Control input, bridge 1	
11	PWM ₁	Control input, bridge 1	
12	CP1	Charge-pump capacitor	
13	CP2	Charge-pump capacitor	
14	V _{CP}	Reservoir capacitor	
15	S ₂₁	Control input, bridge 2	
16	OUT _{2B}	Output B, bridge 2	
17	SENSE ₂	Sense resistor, bridge 2	
18, 19	GND	Ground	
20	V_{BB2}	Load supply voltage, bridge 2	
21	OUT _{2A}	Output A, bridge 2	
22	S ₂₀	Control input, bridge 2	
23	PWM ₂	Control input, bridge 2	
24	V _{DD}	Logic supply voltage	

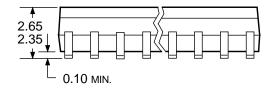


Dimensions in Inches

(for reference only)


Dwg. MA-008-24A in


NOTES:1. Exact body and lead configuration at vendor's option within limits shown.


- 2. Lead spacing tolerance is non-cumulative
- 3. Webbed lead frame. Leads 6, 7, 18, and 19 are internally one piece.

Dimensions in Millimeters

(controlling dimensions)

Dwg. MA-008-24A mm

NOTES:1. Exact body and lead configuration at vendor's option within limits shown.

- 2. Lead spacing tolerance is non-cumulative
- 3. Webbed lead frame. Leads 6, 7, 18, and 19 are internally one piece.

3971
DUAL DMOS
FULL-BRIDGE DRIVER

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the design of its products.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

3971 DUAL DMOS FULL-BRIDGE DRIVER

MOTOR DRIVERS SELECTION GUIDE

unction Output Ratings *		atings *	Part Number †			
INTEGRATED CIRCUITS FOR BRUSHLESS DC MOTORS						
3-Phase Controller/Drivers	±2.0 A	45 V	2936 & 2936-120			
Hall-Effect Latched Sensors	10 mA	24 V	3175 & 3177			
2-Phase Hall-Effect Sensor/Controller	20 mA	25 V	3235			
Hall-Effect Complementary-Output Sensor	20 mA	25 V	3275			
2-Phase Hall-Effect Sensor/Driver	900 mA	14 V	3625			
2-Phase Hall-Effect Sensor/Driver	400 mA	26 V	3626			
3-Phase Power MOSFET Controller	_	28 V	3933			
Hall-Effect Complementary-Output Sensor/Driver	300 mA	60 V	5275			
3-Phase Back-EMF Controller/Driver	±900 mA	14 V	8902–A			
INTEGRATED BRIDGE DRIVERS	INTEGRATED BRIDGE DRIVERS FOR DC AND BIPOLAR STEPPER MOTORS					
PWM Current-Controlled Dual Full Bridge	±750 mA	45 V	2916			
PWM Current-Controlled Dual Full Bridge	±1.5 A	45 V	2917			
PWM Current-Controlled Dual Full Bridge	±1.5 A	45 V	2918			
PWM Current-Controlled Dual Full Bridge	±750 mA	45 V	2919			
Dual Full-Bridge Driver	±2.0 A	50 V	2998			
PWM Current-Controlled Full Bridge	±2.0 A	50 V	3952			
PWM Current-Controlled Full Bridge	±1.3 A	50 V	3953			
PWM Current-Controlled Microstepping Full Bridge	±1.5 A	50 V	3955			
PWM Current-Controlled Microstepping Full Bridge	±1.5 A	50 V	3957			
DMOS Full Bridge PWM Driver	±2.0 A	50 V	3958			
PWM Current-Controlled Dual Full Bridge	±800 mA	33 V	3964			
PWM Current-Controlled Dual Full Bridge	±650 mA	30 V	3966			
PWM Current-Controlled Dual Full Bridge	±650 mA	30 V	3968			
PWM Current-Controlled Dual Full Bridge	±750 mA	45 V	6219			
OTHER INTEGRATED CIRCUIT & PMCM MOTOR DRIVERS						
Unipolar Stepper-Motor Quad Driver	1.8 A	50 V	2544			
Unipolar Stepper-Motor Translator/Driver	1.25 A	50 V	5804			
Unipolar Stepper-Motor Quad Drivers	1 A	46 V	7024 & 7029			
Unipolar Stepper-Motor Quad Drivers	3 A	46 V	7026			
Unipolar Microstepper-Motor Quad Driver	1.2 A	46 V	7042			
Unipolar Microstepper-Motor Quad Driver	3 A	46 V	7044			
Voice-Coil Motor Driver	±500 mA	6 V	8932–A			
Voice-Coil Motor Driver	±800 mA	16 V	8958			

^{*} Current is maximum specified test condition, voltage is maximum rating. See specification for sustaining voltage limits or over-current protection voltage limits. Negative current is defined as coming out of (sourcing) the output.

[†] Complete part number includes additional characters to indicate operating temperature range and package style.