

## 9-Port Home PNA Packet Concentrator

Data Sheet

**Features** 

- 8 1/10Mbps Serial ports direct interface with Home PNA PHY or 8 10/100Mbps RMII ports
- Ideal for MDU (Multiple Dwelling Unit) application with Home PNA PHY
- 1 10/100Mbps auto-negotiating MII/serial port (port 8) that can be used as uplink port
- Up to 8 port-based VLANs can be configured from EEPROM
- · Internal 1k MAC address table
  - Auto address learning
  - Auto address aging
- Leading edge QoS capabilities provided based on 802.1p and IP TOS/DS field
  - 2 gueues per output port
  - Packet scheduling based on Weighted Round-Robin (WRR)
  - Weighted Random Early Detection/Drop (WRED) to drop packets during traffic congestion
  - 2 levels of packet drop provided
- · Supports both Full/Half duplex ports
- Full wirespeed layer 2 switching on all ports
- Ability to support WinSock2.0 and Windows98 & Windows2000 smart applications

February 2003

#### **Ordering Information**

MVTX1100AL 208 Pin PQFP

-40°C to +85°C

- Transmit delay control capabilities
  - Provides maximum delay guarantee (<1ms)(Last bit in to first bit out)
  - Supports mixed voice-data networks
- Support Concentrator mode
- Ports 0 & 1 can be trunked to provide a 2x1/10Mbps link to another switch or server
- Utilizes a single low-cost external SSRAM for buffer memory
  - 56k bytes or 512k bytes (1 chip)
- External I<sup>2</sup>C EEPROM for power-up configuration
- Support external parallel port for configuration updates
- · Optimized pin-out for easy board layout
- · Packaged in a 208 PQFP

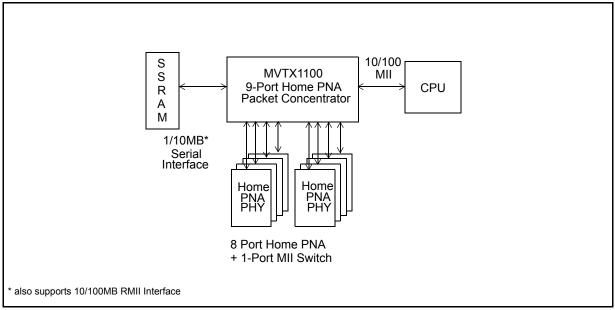
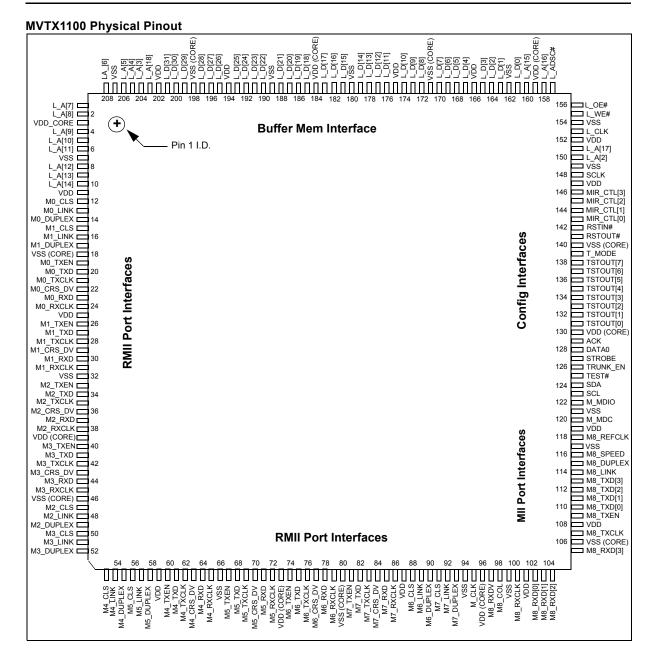



Figure 1 - System Block Diagram

#### **Description**

The MVTX1100 is a fully integrated 9-port Ethernet packet concentrator designed to support Home Networking. It is ideal for Multiple Dwelling Units (MDU) application. The MVTX1100 provides features, normally not associated with plug-and-play technology, without requiring an external processor to facilitate their utilization.


The MVTX1100 begins operating immediately at power-up, learning addresses automatically, and forwarding packets at full wire speed to any of its eight output ports or the uplink expansion port. At power-up, MVTX1100 configures itself from the EEPROM, and can then provide port trunking, port-based VLANs, and Quality of Service (QoS) capabilities, usually associated only with managed switches.

The proprietary built-in intelligence of the MVTX1100 allows it to recognize and offer packet prioritization QoS. Packets are prioritized based on their layer 2 VLAN priority tag or layer 3 Type-Of Service/ Differentiated Services (TOS/DS) field. This priority can be defined as transmit and/or drop priority.

The MVTX1100 can be used to create an 8-port unmanaged switch with one WAN router port by adding a CPU (ARM or MPC 850) connected to the additional MII port (port 8). The only external components needed for a low cost MDU system are the Home PNA physical layer transceivers and a single SSRAM per MVTX1100.

Operating at 50Mhz internally, and with a 50Mhz interface to the external SSRAM, the MVTX1100 sustains full wire-speed switching on all nine ports. When the system supports 8 ports of 1M Home PNA PHY with the 10M Serial uplink, the system clock can be operated to 20Mhz and still achieve full wire speed switching on all nine ports.

The chip is packaged in a small 208 pin Plastic Quad Flat-Pak (PQFP) package.



#### Pin Reference Table

| Pin# | Pin Name                        |
|------|---------------------------------|
| 1    | L_A[7]                          |
| 2    | L_A[8]                          |
| 3    | VDD (CORE)                      |
| 4    | L_A[9]                          |
| 5    | L_A[10]                         |
| 6    | L_A[11]                         |
| 7    | VSS                             |
| 8    | L_A[12]                         |
| 9    | L_A[13]                         |
| 10   | L_A[14]                         |
| 11   | VDD                             |
| 12   | M0_CLS                          |
| 13   | M0_LINK                         |
| 14   | M0_DUPLEX                       |
| 15   | M1_CLS                          |
| 16   | M1_LINK                         |
| 17   | M1_DUPLEX                       |
| 18   | VSS (CORE)                      |
| 19   | M0_TXEN                         |
| 20   | M0_TXD/(M0_TXD[0]) <sup>1</sup> |
| 21   | M0_TXCLK/(M0_TXD[1])            |
| 22   | M0_CRS_DV                       |
| 23   | M0_RXD/(M0_RXD[0])              |
| 24   | M0_RXCLK/(M0_RXD[1])            |
| 25   | VDD                             |
| 26   | M1_TXEN                         |
| 27   | M1_TXD/(M1_TXD[0])              |
| 28   | M1_TXCLK/(M1_TXD[1])            |
| 29   | M1_CRS_DV                       |
| 30   | M1_RXD/(M1_RXD[0])              |
| 31   | M1_RXCLK/(M1_RXD[1])            |
| 32   | VSS                             |
| 33   | M2_TXEN                         |
| 34   | M2_TXD/(M2_TXD[0])              |

| 35 M2_TXCLK/M2_TXD[1]) 36 M2_CRS_DV 37 M2_RXD/(M2_RXD[0]) 38 M2_RXCLK/ (M2_RXD[1]) 39 VDD (CORE) 40 M3_TXEN 41 M3_TXD/(M3_TXD[0]) 42 M3_TXCLK/(M3_TXD[1]) 43 M3_CRS_DV 44 M3_RXD/(M3_RXD[0]) 45 M3_RXCLK/(M3_RXD[1]) 46 VSS (CORE) 47 M2_CLS 48 M2_LINK 49 M2_DUPLEX 50 M3_CLS 51 M3_LINK 52 M3_DUPLEX 53 M4_CLS 54 M4_LINK 55 M4_DUPLEX 56 M5_CLS 57 M5_LINK 58 M5_DUPLEX |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 37 M2_RXD/(M2_RXD[0]) 38 M2_RXCLK/ (M2_RXD[1]) 39 VDD (CORE) 40 M3_TXEN 41 M3_TXD/(M3_TXD[0]) 42 M3_TXCLK/(M3_TXD[1]) 43 M3_CRS_DV 44 M3_RXD/(M3_RXD[0]) 45 M3_RXCLK/(M3_RXD[1]) 46 VSS (CORE) 47 M2_CLS 48 M2_LINK 49 M2_DUPLEX 50 M3_CLS 51 M3_LINK 52 M3_DUPLEX 53 M4_CLS 54 M4_LINK 55 M4_DUPLEX 56 M5_CLS 57 M5_LINK 58 M5_DUPLEX                                     |
| 38 M2_RXCLK/ (M2_RXD[1]) 39 VDD (CORE) 40 M3_TXEN 41 M3_TXD/(M3_TXD[0]) 42 M3_TXCLK/(M3_TXD[1]) 43 M3_CRS_DV 44 M3_RXD/(M3_RXD[0]) 45 M3_RXCLK/(M3_RXD[1]) 46 VSS (CORE) 47 M2_CLS 48 M2_LINK 49 M2_DUPLEX 50 M3_CLS 51 M3_LINK 52 M3_DUPLEX 53 M4_CLS 54 M4_LINK 55 M4_DUPLEX 56 M5_CLS 57 M5_LINK 58 M5_DUPLEX                                                           |
| (M2_RXD[1])  39 VDD (CORE)  40 M3_TXEN  41 M3_TXD/(M3_TXD[0])  42 M3_TXCLK/(M3_TXD[1])  43 M3_CRS_DV  44 M3_RXD/(M3_RXD[0])  45 M3_RXCLK/(M3_RXD[1])  46 VSS (CORE)  47 M2_CLS  48 M2_LINK  49 M2_DUPLEX  50 M3_CLS  51 M3_LINK  52 M3_DUPLEX  53 M4_CLS  54 M4_LINK  55 M4_DUPLEX  56 M5_CLS  57 M5_LINK  58 M5_DUPLEX                                                    |
| 40 M3_TXEN 41 M3_TXD/(M3_TXD[0]) 42 M3_TXCLK/(M3_TXD[1]) 43 M3_CRS_DV 44 M3_RXD/(M3_RXD[0]) 45 M3_RXCLK/(M3_RXD[1]) 46 VSS (CORE) 47 M2_CLS 48 M2_LINK 49 M2_DUPLEX 50 M3_CLS 51 M3_LINK 52 M3_DUPLEX 53 M4_CLS 54 M4_LINK 55 M4_DUPLEX 56 M5_CLS 57 M5_LINK                                                                                                               |
| 41 M3_TXD/(M3_TXD[0]) 42 M3_TXCLK/(M3_TXD[1]) 43 M3_CRS_DV 44 M3_RXD/(M3_RXD[0]) 45 M3_RXCLK/(M3_RXD[1]) 46 VSS (CORE) 47 M2_CLS 48 M2_LINK 49 M2_DUPLEX 50 M3_CLS 51 M3_LINK 52 M3_DUPLEX 53 M4_CLS 54 M4_LINK 55 M4_DUPLEX 56 M5_CLS 57 M5_LINK 58 M5_DUPLEX                                                                                                             |
| 42 M3_TXCLK/(M3_TXD[1]) 43 M3_CRS_DV 44 M3_RXD/(M3_RXD[0]) 45 M3_RXCLK/(M3_RXD[1]) 46 VSS (CORE) 47 M2_CLS 48 M2_LINK 49 M2_DUPLEX 50 M3_CLS 51 M3_LINK 52 M3_DUPLEX 53 M4_CLS 54 M4_LINK 55 M4_DUPLEX 56 M5_CLS 57 M5_LINK                                                                                                                                                |
| 43 M3_CRS_DV  44 M3_RXD/(M3_RXD[0])  45 M3_RXCLK/(M3_RXD[1])  46 VSS (CORE)  47 M2_CLS  48 M2_LINK  49 M2_DUPLEX  50 M3_CLS  51 M3_LINK  52 M3_DUPLEX  53 M4_CLS  54 M4_LINK  55 M4_DUPLEX  56 M5_CLS  57 M5_LINK  58 M5_DUPLEX                                                                                                                                            |
| 44 M3_RXD/(M3_RXD[0]) 45 M3_RXCLK/(M3_RXD[1]) 46 VSS (CORE) 47 M2_CLS 48 M2_LINK 49 M2_DUPLEX 50 M3_CLS 51 M3_LINK 52 M3_DUPLEX 53 M4_CLS 54 M4_LINK 55 M4_DUPLEX 56 M5_CLS 57 M5_LINK                                                                                                                                                                                     |
| 45 M3_RXCLK/(M3_RXD[1]) 46 VSS (CORE) 47 M2_CLS 48 M2_LINK 49 M2_DUPLEX 50 M3_CLS 51 M3_LINK 52 M3_DUPLEX 53 M4_CLS 54 M4_LINK 55 M4_DUPLEX 56 M5_CLS 57 M5_LINK 58 M5_DUPLEX                                                                                                                                                                                              |
| 46 VSS (CORE)  47 M2_CLS  48 M2_LINK  49 M2_DUPLEX  50 M3_CLS  51 M3_LINK  52 M3_DUPLEX  53 M4_CLS  54 M4_LINK  55 M4_DUPLEX  56 M5_CLS  57 M5_LINK  58 M5_DUPLEX                                                                                                                                                                                                          |
| 47 M2_CLS  48 M2_LINK  49 M2_DUPLEX  50 M3_CLS  51 M3_LINK  52 M3_DUPLEX  53 M4_CLS  54 M4_LINK  55 M4_DUPLEX  56 M5_CLS  57 M5_LINK  58 M5_DUPLEX                                                                                                                                                                                                                         |
| 48 M2_LINK 49 M2_DUPLEX 50 M3_CLS 51 M3_LINK 52 M3_DUPLEX 53 M4_CLS 54 M4_LINK 55 M4_DUPLEX 56 M5_CLS 57 M5_LINK 58 M5_DUPLEX                                                                                                                                                                                                                                              |
| 49 M2_DUPLEX 50 M3_CLS 51 M3_LINK 52 M3_DUPLEX 53 M4_CLS 54 M4_LINK 55 M4_DUPLEX 56 M5_CLS 57 M5_LINK 58 M5_DUPLEX                                                                                                                                                                                                                                                         |
| 50 M3_CLS 51 M3_LINK 52 M3_DUPLEX 53 M4_CLS 54 M4_LINK 55 M4_DUPLEX 56 M5_CLS 57 M5_LINK 58 M5_DUPLEX                                                                                                                                                                                                                                                                      |
| 51 M3_LINK 52 M3_DUPLEX 53 M4_CLS 54 M4_LINK 55 M4_DUPLEX 56 M5_CLS 57 M5_LINK 58 M5_DUPLEX                                                                                                                                                                                                                                                                                |
| 52 M3_DUPLEX 53 M4_CLS 54 M4_LINK 55 M4_DUPLEX 56 M5_CLS 57 M5_LINK 58 M5_DUPLEX                                                                                                                                                                                                                                                                                           |
| 53 M4_CLS 54 M4_LINK 55 M4_DUPLEX 56 M5_CLS 57 M5_LINK 58 M5_DUPLEX                                                                                                                                                                                                                                                                                                        |
| 54 M4_LINK 55 M4_DUPLEX 56 M5_CLS 57 M5_LINK 58 M5_DUPLEX                                                                                                                                                                                                                                                                                                                  |
| 55 M4_DUPLEX 56 M5_CLS 57 M5_LINK 58 M5_DUPLEX                                                                                                                                                                                                                                                                                                                             |
| 56 M5_CLS<br>57 M5_LINK<br>58 M5_DUPLEX                                                                                                                                                                                                                                                                                                                                    |
| 57 M5_LINK 58 M5_DUPLEX                                                                                                                                                                                                                                                                                                                                                    |
| 58 M5_DUPLEX                                                                                                                                                                                                                                                                                                                                                               |
| =                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                            |
| 59 VDD                                                                                                                                                                                                                                                                                                                                                                     |
| 60 M4_TXEN                                                                                                                                                                                                                                                                                                                                                                 |
| 61 M4_TXD/(M4_TXD[0])                                                                                                                                                                                                                                                                                                                                                      |
| 62 M4_TXCLK/(M4_TXD[1])                                                                                                                                                                                                                                                                                                                                                    |
| 63 M4_CRS_DV                                                                                                                                                                                                                                                                                                                                                               |
| 64 M4_RXD/(M4_RXD[0])                                                                                                                                                                                                                                                                                                                                                      |
| 65 M4_RXCLK/(M4_RXD[1])                                                                                                                                                                                                                                                                                                                                                    |
| 66 VSS                                                                                                                                                                                                                                                                                                                                                                     |
| 67 M5_TXEN                                                                                                                                                                                                                                                                                                                                                                 |
| 68 M5_TXD/(M5_TXD[0])                                                                                                                                                                                                                                                                                                                                                      |
| 69 M5_TXCLK/M5_TXD[1])                                                                                                                                                                                                                                                                                                                                                     |

| 70  | M5_CRS_DV                |
|-----|--------------------------|
| 71  | M5_RXD/(M5_RXD[0])       |
| 72  | M5_RXCLK/<br>(M5_RXD[1]) |
| 73  | VDD (CORE)               |
| 74  | M6_TXEN                  |
| 75  | M6_TXD/(M6_TXD[0])       |
| 76  | M6_TXCLK/<br>(M6_TXD[1]) |
| 77  | M6_CRS_DV                |
| 78  | M6_RXD/(M6_RXD[0])       |
| 79  | M6_RXCLK/<br>(M6_RXD1])  |
| 80  | VSS (CORE)               |
| 81  | M7_TXEN                  |
| 82  | M7_TXD/(M7_TXD[0])       |
| 83  | M7_TXCLK/(M7_TXD[1])     |
| 84  | M7_CRS_DV                |
| 85  | M7_RXD/(M7_RXD[0])       |
| 86  | M7_RXCLK/(M7_RXD[1])     |
| 87  | VDD                      |
| 88  | M6_CLS                   |
| 89  | M6_LINK                  |
| 90  | M6_DUPLEX                |
| 91  | M7_CLS                   |
| 92  | M7_LINK                  |
| 93  | M7_DUPLEX                |
| 94  | VSS                      |
| 95  | M_CLK                    |
| 96  | VDD (CORE)               |
| 97  | M8_RXDV/S8_CRS_DV        |
| 98  | M8_COL/S8_COL            |
| 99  | VSS                      |
| 100 | M8_RXCLK/S8_RXCLK        |
| 101 | VDD                      |
| 102 | M8_RXD[0]/S8_RXD         |
| 103 | M8_RXD[1]                |

| 104 | M8_RXD[2]          |
|-----|--------------------|
| 105 | M8_RXD[3]          |
| 106 | VSS (CORE)         |
| 107 | M8_TXCLK/S8_TXCLK  |
| 108 | VDD                |
| 109 | M8_TXEN[0]/S8_TXEN |
| 110 | M8_TXD[0]/S8_TXD   |
| 111 | M8_TXD[1]          |
| 112 | M8_TXD[2]          |
| 113 | M8_TXD[3]          |
| 114 | M8_LINK/S8_LINK    |
| 115 | M8_DUPLEX/S8_DUPLE |
| 116 | M8_SPEED           |
| 117 | VSS                |
| 118 | M8_REFCLK          |
| 119 | VDD                |
| 120 | M_MDC              |
| 121 | VSS                |
| 122 | M_MDIO             |
| 123 | SCL                |
| 124 | SDA                |
| 125 | TEST#              |
| 126 | TRUNK_ENABLE       |
| 127 | STROBE             |
| 128 | DATA0              |
| 129 | ACK                |
| 130 | VDD (CORE)         |
| 131 | TSTOUT[0]          |
| 132 | TSTOUT[1]          |
| 133 | TSTOUT[2]          |
| 134 | TSTOUT[3]          |
| 135 | TSTOUT[4]          |
| 136 | TSTOUT[5]          |
| 137 | TSTOUT[6]          |
| 138 | TSTOUT[7]          |
|     | •                  |

| 139 | T_MODE              |
|-----|---------------------|
| 140 | VSS (CORE)          |
| 141 | RSTOUT#             |
| 142 | RSTIN#              |
| 143 | (MIRROR_CONTROL[0]) |
| 144 | (MIRROR_CONTROL[1]) |
| 145 | (MIRROR_CONTROL[2]) |
| 146 | (MIRROR_CONTROL[3]) |
| 147 | VDD                 |
| 148 | SCLK                |
| 149 | VSS                 |
| 150 | L_A[2]              |
| 151 | L_A[17]             |
| 152 | VDD                 |
| 153 | L_CLK               |
| 154 | VSS                 |
| 155 | L_WE#               |
| 156 | L_OE#               |
| 157 | L_ADSC#             |
| 158 | L_A[16]             |
| 159 | VDD (CORE)          |
| 160 | L_A[15]             |
| 161 | L_D[0]              |
| 162 | VSS                 |
| 163 | L_D[1]              |
| 164 | L_D[2]              |
| 165 | L_D[3]              |
| 166 | VDD                 |
| 167 | L_D[4]              |
| 168 | L_D[5]              |
| 169 | L_D[6]              |
| 170 | L_D[7]              |
| 171 | VSS (CORE)          |
| 172 | L_D[8]              |
| 173 | L_D[9]              |
| 174 | L_D[10]             |

| 175 | VDD        |
|-----|------------|
| 176 | L_D[11]    |
| 177 | L_D[12]    |
| 178 | L_D[13]    |
| 179 | L_D[14]    |
| 180 | VSS        |
| 181 | L_D[15]    |
| 182 | L_D[16]    |
| 183 | L_D[17]    |
| 184 | VDD (CORE) |
| 185 | L_D[18]    |
| 186 | L_D[19]    |
| 187 | L_D[20]    |
| 188 | L_D[21]    |
| 189 | VSS        |
| 190 | L_D[22]    |
| 191 | L_D[23]    |
| 192 | L_D[24]    |
| 193 | L_D[25]    |
| 194 | VDD        |
| 195 | L_D[26]    |
| 196 | L_D[27]    |
| 197 | L_D[28]    |
| 198 | VSS (CORE) |
| 199 | L_D[29]    |
| 200 | L_D[30]    |
| 201 | L_D[31]    |
| 202 | VDD        |
| 203 | L_A[18]    |
| 204 | L_A[3]     |
| 205 | L_A[4]     |
| 206 | L_A[5]     |
| 207 | VSS        |
| 208 | L_A[6]     |
|     |            |

Note 1: Pin names inside ( ) indicate RMII pins for ports 0-7.

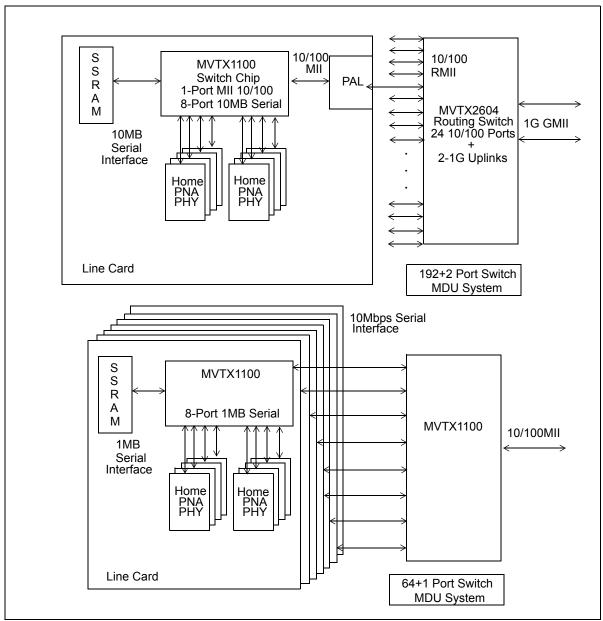



Figure 2 - System Block Diagram (High Port Density MDU system)

6

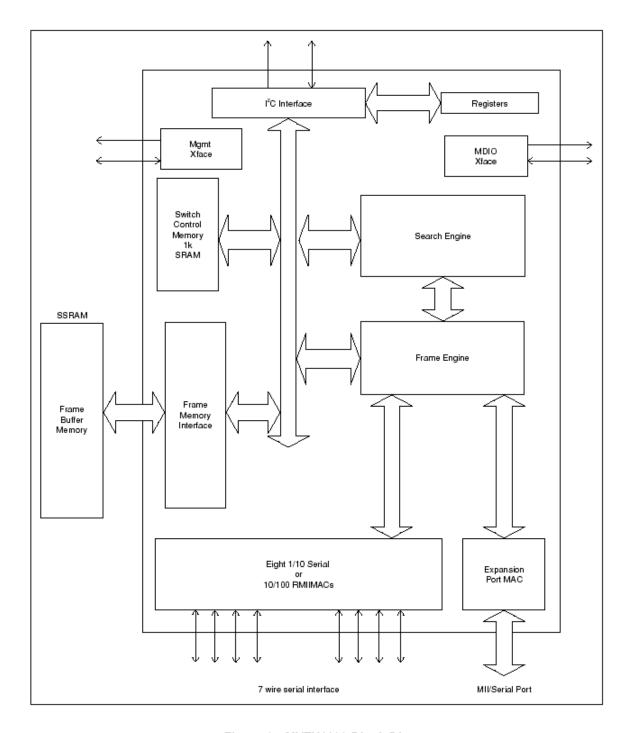



Figure 3 - MVTX1100 Block Diagram

#### 1.0 Functional Operation

The MVTX1100 was designed to provide a cost-effective layer 2 switching solution, using technology from the Zarlink family to offer a highly integrated product for the unmanaged, DiffServ ready, Ethernet switching market.

Nine 1/10 Media Access Controllers (MAC) provide the protocol interface into the MVTX1100. These MACs perform the required packet checks to ensure that each packet provided to the Frame Engine meets all the IEEE 802.1 standards. Data packets longer than 1518 (1522 with VLAN tag) bytes and shorter than 64 bytes are dropped, and MVTX1100 has been designed to support minimum inter-frame gaps between incoming packets.

The Frame Engine (FE) is the primary packet buffering and forwarding engine within the MVTX1100. As such, the FE controls the storage of packets in and out of the external frame buffer memory, keeps track of frame buffer availability, and schedules output packet transmissions. While packet data is being buffered, the FE extracts the necessary information from each packet header and sends it to the Search Engine for processing. Search results returned to the FE ensue the scheduling of packet transmission and prioritization. When a packet is chosen for transmission, the FE reads the packet from external buffer memory and places it in the output FIFO of the output port.

#### 2.0 Address Learning and Aging

The MVTX1100 is able to begin address learning and packet forwarding shortly after powerup has been completed. The Search Engine examines the contents of its internal Switch Database Memory for each valid packet received on an input port.

Unknown source and destination MAC addresses are detected when the Search Engine does not find a match within its database. These unknown source MAC addresses are learned by creating a new entry in the switch database memory, and storing the necessary resulting information in that location. Subsequent searches to a learned destination MAC address will return the new contents of that MAC Control Table (MCT) entry.

After each source address search the MCT entry aging flag is updated. MCT entries that have not been accessed during a user configurable time period (2 to 67,108 seconds) will be removed. This aging time period can be configured using the 16-bit value stored in the registers MAC Address Aging Time Low and High (MATL[7:0], MATH[7:0]). The aging period is defined by the following equation:

 $\{MATH[7:0]\&MATL[7:0]\} \times 1024ms = Tage$ 

The aging of all MCT entries is checked once during each time period. If the MCT entry has not been utilized before the end of the next time period, it will be deleted.

Note that when the system clock operates at 20Mhz, the aging period will be increased, compared with 50Mhz of system clock. One should adjust the MATH and MATHL content variable accordingly.

#### 3.0 Quality of Service

The MVTX1100 utilizes Zarlink's architecture that provides a new level of Quality of Service (QoS) capability to unmanaged switch applications. Similar in operation to the QoS capabilities of other Zarlink chipset members, MVTX1100 provides two transmit queues per output port.

The Frame Engine manages the output transmission queues for all the MVTX1100 ports. Once the destination address search is complete, and the switch decision is passed back to the FE, the packet is inserted into the appropriate output queue. The packet entry into the high or low priority queue is controlled by either the VLAN tag information or the Type of Service/Differentiated Service (TOS/DS) field in the IP header. Either of these priority fields can be used to select the transmission priority, and the mapping of the priority field values into either the high or low priority queue can be configured using the MVTX1100 configuration registers.

If the system uses the TOS/DS field to prioritize packets, there are two choices regarding which bits of the TOS/DS field are used. Bits [0:2] of the TOS byte (known as the IP precedence field) or bits [3:5] of the TOS byte (known as the DRT field) can be used to map the transmission queue priority. Either bits, [0:2] or [3:5], can also be used as a packet drop precedence, by using bits 6 and 7 of the FCB Buffer Low Threshold register (FCBST).

MVTX1100 utilizes Weighted Round Robin (WRR) and Weighted Random Early Detection/Drop (WRED) to schedule packets for transmission. To enable MVTX1100's QoS capabilities requires the use of an external EEPROM to change the default register configurations and turn on QoS.

Weighted Round Robin is an efficient method to ensure that each of the transmission queues gets at least a minimum service level. With two output transmission queues, MVTX1100 will transmit "X" packets from the high priority queue before transmitting "Y" packets from the low priority queue. MVTX1100 allows the designer to set the high priority weight to a value between 0 and 16. The low priority weight is fixed at the value 1. If the high priority weight is set to the value 4, then it will transmit 4 high priority packets before transmitting each low priority packet.

MVTX1100 also uses a proprietary mechanism to ensure the timely delivery of high priority packets. When the latency of high priority packets reaches a threshold, it will override the WRR weights and transmit only high priority packets until the high priority packet delays are below the threshold. This threshold limit is set at less than 1ms (last bit in and first bit out).

The QoS capabilities of the MVTX1100 are enabled by loading the appropriate values into the configuration registers. QoS for packet transmission is enabled by performing the following four steps:

- 1. Select the TOS/DS or VLAN Priority Tag field as the control for IP packet transmission. The selection is made using bit 7 of the Flooding Control (FCR[7]) register.
  - FCR[7]=0, use VLAN Priority Tag field to map the transmission priority if this Tag field exists.
  - FCR[7]=1, use TOS/DS field for IP packet transmission priority mapping.
- 2. Select which TOS/DS field to use as the control for packet transmission priority if the TOS/DS field was selected in step 1. The selection is made using bit 6 of the FCB Buffer Low Threshold (FCBST[6]) register.
  - FCBST[6]=0, use DTR subfield to map the transmission priority.
  - FCBST[6]=1, use IP precedence subfield<sup>1</sup> to map the transmission priority.
- 3. Set the transmission queue weight for the high priority queue in the Transmission Scheduling Control (AXSC[3:0]) register.
- 4. Set the priority mappings from the TOS/DS or VLAN Priority Tag field to the high or low priority output queue. The selection is made using the VLAN Priority Map (AVPM) and TOS Priority Map (TOSPML) registers.

Note that, for half duplex operation, the priority queues<sup>2</sup> must be enabled using bit 7 in the Transmission Scheduling Control (AXSC[7]) register to utilize the QoS function.

When QoS is enabled, MVTX1100 will utilize WRR to schedule packet transmission, and will use Weighted Random Early Detection/Drop (WRED) to drop random packets in order to handle buffer memory congestion. In this method, only certain packet flows are slowed down while the remaining see no impact from the network traffic congestion.

Weighted Random Early Detection/Drop (WRED) is a method of handling traffic congestion in the absence of flow control mechanisms. When flow control is enabled, all devices that are connected to a switch node that is exercising flow control are effectively unable to transmit, including nodes that are not directly responsible for the congestion problem. This inability to transmit during flow control periods would play havoc with voice packets, or other high priority packet flows, and therefore flow control is not recommended for networks that mix voice and data traffic.

<sup>1.</sup> IP precedence and DTR subfields are referred to as TOS/DS[0:2] and TOS/DS[3:5] in the IP TOS/DS byte.

<sup>2.</sup> In Half Duplex mode, the QoS functions are disabled by default.

WRED allows traffic to continue flowing into ports on a switch, and randomly drops packets with different probabilities based upon each packet's priority markings. As the switch congestion increases, the probability of dropping an input packet increases, and as congestion decreases, the probability of dropping an input packet decreases. In this manner, only traffic flows that have had packets dropped will be affected by the congestion. Other traffic flows will see no effect.

The following table summarizes the WRED operation of the MVTX1100. It lists the buffer thresholds at which each drop probability takes effect.

|         | WRED Threshold                                     |                                     | Drop Percentage                         |                                        |
|---------|----------------------------------------------------|-------------------------------------|-----------------------------------------|----------------------------------------|
|         | Condition for High<br>Priority Queue               | Condition for Low<br>Priority Queue | Drop Percentage for<br>High-Drop Packet | Drop Percentage for<br>Low-Drop Packet |
| Level 0 | Total buffer space available in device is<br>≤LPBT |                                     | 50%                                     | 0%                                     |
| Level 1 | 24 buffers occupied                                | 72 buffers occupied                 | 75%                                     | 25%                                    |
| Level 2 | 84 buffers occupied                                |                                     | 100%                                    | 50%                                    |

Table 1 - WRED Operation of the MVTX1100

The WRED packet drop capabilities of MVTX1100 are enabled by performing the following three steps:

- 1. Select the TOS/DS or VLAN Tag field as the control for packet dropping. The selection is made using bit 7 of the Flooding Control (FCR[7]) register.
  - FCR[7]=0, use VLAN Priority Tag field to map the drop priority if this Tag field exists.
  - FCR[7]=1, use ToS/DS field for IP packet transmission priority mapping.
- 2. Select which TOS/DS Tag field to use for packet dropping provided that the TOS/DS field was selected in step 1. The selection is made using bit 7 of the FCB Buffer Low Threshold (FCBST[7]) register.
  - FCBST[7]=0, use DTR subfield to map the drop priority.
  - FCBST[7]=1, use IP precedence subfield to map the drop priority.
- 3. Set the drop mappings from the TOS/DS or VLAN Tag field to the high or low drop priority output flag. The selection is made using the VLAN Drop Map (AVDM) and TOS Discard Map (TOSDML) registers.

Note that to utilize the QoS function of the MVTX1100, flow control has to be disabled.

#### 4.0 Buffer Management

MVTX1100 stores each input packet into the external frame buffer memory while determining the destination the packet is to be forwarded to. The total number of packets that can be stored in the frame buffer memory depends upon the size of the external SSRAM that is utilized. For a 256k byte SSRAM MVTX1100 can buffer 170 packets. For a 512K byte SSRAM MVTX1100 can buffer 340 packets.

In order to provide good Quality of Service characteristics, MVTX1100 must allocate the available buffer space to low and high priority unicast and multicast traffic. This can be accomplished using the external EEPROM to load the appropriate values into MVTX1100 configuration registers. To allow the designer to set the minimum number of buffers provided for low drop priority unicast traffic, use the Low Drop Priority Buffer Threshold (LPBT[7:0]) register. To set the maximum number of buffers allocated for all multicast packets, use the Multicast Buffer Control (MBCR[7:0]) register. During operation MVTX1100 will continuously monitor the amount of frame buffer memory that is available, and when the unused buffer space falls below a designer configurable threshold, MVTX1100 will begin to drop incoming packets (WRED). This threshold is set using the FCB Buffer Low Threshold (FCBST[5:0]) register.

#### 5.0 Virtual LANs

MVTX1100 provides the designer the ability to define a single port-based Virtual LAN (VLAN) for each of the nine ports. This VLAN is individually defined for each port using the Port Control Registers (ECR1Px[6:4]). Bits [6:4] allow the designer to define a VLAN ID (value between 0-7) for each port.

When packets arrive at an input of MVTX1100, the search engine will determine the VLAN ID for that port, and then determine which of the other ports also are members of that VLAN by matching their assigned VLAN Id values. The packet will then be transmitted to each port with the same VLAN ID as the source port.

#### 6.0 Concentration Mode

MVTX1100 supports a Concentration Mode, where each of the 0-7 port is only allowed to directly communicate with the uplink port 8. This mode ensures that data from any of ports 0-7 cannot be directly seen by any other port. This feature is used in MDU applications to provide data privacy to subscribers.

To use this mode, a CONC (concentration) bit in each ECR1 register of ports 0-8 must be enabled, i.e., ECR1 [7]=1, and ports 0-7 must each be set on a separate VLAN. Note that, in concentration mode, the VLAN of port 8 will be ignored.

A more flexible concentration mode can be set up. For this mode, ports 0 –7 are partitioned into several groups, sharing the same VLAN ID. This will allow traffic within the same group to freely communicate with each other, while continuing to communicate outside the group in concentration mode.

#### 7.0 Port Trunking

Port trunking allows the designer to configure the MVTX1100, such that ports 0 and 1 are defined as a logical port. This provides a 20Mb/s link to a switch or server using two 10Mb/s ports in parallel.

Ports 0 and 1 can be trunked by pulling the TRUNK\_EN pin to the high state. In this mode, the source MAC address of all packets received from the trunk are checked against the MCT database to ensure that they have a port ID of 0 or 1. Packets that have a port ID other than 0 and 1 will effect the MVTX1100 to learn the new MAC address for this port change.

On transmission, the selected trunk port is determined by hashing the source and destination MAC addresses. This provides a one-to-one mapping between the trunk port and the MAC addresses. Subsequent packets with the same MAC addresses will always utilize the same trunk port.

MVTX1100 also provides a safe fail-over mode for port trunking. If one of the two ports goes down, via the ports link signal, MVTX1100 will switch all traffic destined to the failed port over to the remaining port in the trunk. Thus maintaining the trunk link, albeit at a lower effective bandwidth.

#### 8.0 Port Mirroring

The port mirroring function is only supported in RMII mode. Using the 4 port mirroring control pins provides the ability to enable or disable port mirroring, select which of the remaining 7 ports is to be mirrored, and whether the received or transmitted data is being mirrored. The control for this function is shown in the following table.

| Mirrored Port | Mirror_Control [3] | Mirror_Control [2] | Mirror_Control [1] | Mirror_Control [0] |
|---------------|--------------------|--------------------|--------------------|--------------------|
| Port 0 RX     | 1                  | 0                  | 0                  | 0                  |
| Port 0 TX     | 0                  | 0                  | 0                  | 0                  |
| Port 1 RX     | 1                  | 0                  | 0                  | 1                  |
| Port 1 TX     | 0                  | 0                  | 0                  | 1                  |
| Port 2 RX     | 1                  | 0                  | 1                  | 0                  |
| Port 2 TX     | 0                  | 0                  | 1                  | 0                  |
| Port 3 RX     | 1                  | 0                  | 1                  | 1                  |
| Port 3 TX     | 0                  | 0                  | 1                  | 1                  |
| Port 4 RX     | 1                  | 1                  | 0                  | 0                  |
| Port 4 TX     | 0                  | 1                  | 0                  | 0                  |
| Port 5 RX     | 1                  | 1                  | 0                  | 1                  |
| Port 5 TX     | 0                  | 1                  | 0                  | 1                  |
| Port 6 RX     | 1                  | 1                  | 1                  | 0                  |
| Port 6 TX     | 0                  | 1                  | 1                  | 0                  |
| Disabled      | Х                  | 1                  | 1                  | 1                  |

**Table 2 - Port Mirroring Configuration** 

When enabled, port mirroring will allow the user to monitor traffic going through the switch on output Port 7. If the port mirroring control pins, Mirror\_Control[3:0], are left floating, MVTX1100 will operate with the port mirroring function disabled.

When port mirroring is enabled, the user must configure Port 7 to operate in the same mode as the port it is mirroring (autoneg, duplex, speed, flow control).

## 9.0 Power Saving Mode in MAC

The power saving mode is activated only in RMII mode. MVTX1100 was designed to be power efficient. When the internal RMII MAC sections detect that the external port in not receiving or transmitting packets, it will shut down and conserve power. When new packet data is loaded into the output transmit FIFO of a MAC in power saving mode, the MAC will return to life and begin operating immediately.

When the MAC is in power saving mode and new packet data is received on the RMII interface, the MAC will return to life and receive data normally into the receive FIFO. This wake up occurs when the MAC sees the CRS\_DV signal asserted.

Using this method, the switch will turn off all MAC sections during periods when there is no network activity (at night for example), and save power. For large networks this power savings can be significant. To achieve the maximum power efficiency, the designer should use a physical layer transceiver that utilizes "Wake-On-LAN" technology.

## 10.0 EEPROM I<sup>2</sup>C Interface

A simple 2 wire serial interface is provided to allow the configuration of the MVTX1100 via an external EEPROM. MVTX1100 utilizes a 1K bit EEPROM with an I<sup>2</sup>C interface.

## 11.0 Management Interface

MVTX1100 uses a standard parallel port interface to provide external CPU access to the internal registers. This parallel interface consists of 3 pins: DATA0; STROBE; and ACK. The DATA0 pin provides the address and data content input to MVTX1100, while the ACK pin provides the corresponding output to the external CPU. The STROBE pin is provided as the clock for both serial data streams. Any of its internal registers can be modified through this parallel port interface.

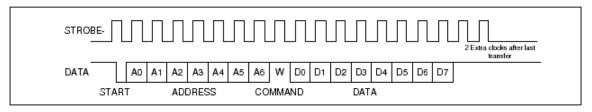



Figure 4 - Write Command

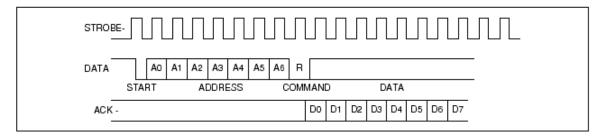



Figure 5 - Read Command

Each management interface transfer consists of four parts:

- A START pulse occurs when DATA is sampled high when STROBE is rising followed by DATA being sampled low when STROBE falls.
- 2. Register Address strobed into DATA0 pin by the high level of the STROBE pin.
- 3. Either a Read or Write Command (see waveforms above).
- 4. Data to be written provided on DATA0, or data to be read back provided on ACK.

Any command can be aborted in the middle by sending an ABORT pulse to MVTX1100. An ABORT pulse occurs when DATA is sampled low and STROBE is rising, then DATA is sampled high when STROBE falls.

## 12.0 Configuration Register Definitions

MVTX1100 registers can be accessed via the parallel interface and/or the  $I^2C$  interface. Some registers are only accessible through the parallel interface. The access method for each register is listed in the individual register definitions. Each register is 8-bit wide.

#### 12.1 GCR - Global Control Register

Access: parallel interface, Write Only

Address: h30

| Bit 0 | Save configuration                  | (Default = 0) |
|-------|-------------------------------------|---------------|
| Bit 1 | Save configuration and reset system | (Default = 0) |
| Bit 2 | Start BIST                          | (Default = 0) |
| Bit 3 | Reset system                        | (Default = 0) |

#### 12.2 DCR - Device Status and Signature Register

· Access: parallel interface, Read Only

Address: h31

| Bit 0     | Busy writing configuration from I <sup>2</sup> C |
|-----------|--------------------------------------------------|
| Bit 1     | Busy reading configuration from I <sup>2</sup> C |
| Bit 2     | BIST in progress                                 |
| Bit 3     | RAM error                                        |
| Bit [5:4] | Reserved                                         |
| Bit [7:6] | Revision                                         |

#### 12.3 DA – DA Register

· Access: parallel interface, Read Only

· Address: h36

Always returns 8-bit value hDA. Indicates the (Default DA) parallel port connection is good.

#### 12.4 MBCR – Multicast Buffer Control Register (Address H00)

Access: parallel interface and I<sup>2</sup>C, Read/Write

Address: h00

Bit [7:0] MAX\_CNT\_LMT Maximum number of (Default = 1F) multicast frames allowed

#### 12.5 FCBST - FCB Buffer Low Threshold

Access: parallel interface and I<sup>2</sup>C, Read/Write

Address: h01

Bits [5:0] BUF\_LOW\_TH Buffer Low Threshold – (Default = 1F)

number of FCB left before

triggering WRED.

Bit 6 Use IP precedence field (Default = 0)

(TOS[0:2]) for Priority

Bit 7 Use IP precedence subfield (Default = 0)

(TOS[0:2]) for Drop

Note that, for Bits 6 and 7, Default = 0 means to use DTR filed (TOS[3:5]).

#### 12.6 LPBT - Low Drop Priority Buffer Threshold

Access: parallel interface and I<sup>2</sup>C, Read/Write

Address: h02

Bit [7:0] LOW\_PRI\_CNT Number of frame buffers (Default 3F)

reserved for low-dropping

traffic

#### 12.7 FCR - Flooding Control Register

Access: parallel interface and I<sup>2</sup>C, Read/Write

Address: h03

Bits [3:0] U2MR Unicast to Multicast Rate (Default = 8) Bits [6:4] TimeBase  $000 = 100 \mu s 001 = 200 \mu s$  (Default = 000)

010 = 400 μs 011 = 800 μs 100 = 1.6 ms 101 = 3.2 ms 110 = 6.4 ms 111 = 100 μs

Bit 7 USE TOS Pick TOS over VLAN (Default = 0)

priority for IP Packet.

## 12.8 AVTCL - VLAN Type Code Register Loq

Access: parallel interface and I<sup>2</sup>C. Read/Write

Address: h04

Bit [7:0] VLANType\_LOW Lower 8 bits of VLAN type (Default 00) code.

#### 12.9 AVTCH - VLAN Type Code Register High

Access: parallel interface and I<sup>2</sup>C, Read/Write

Address: h05

Bit [7:0] VLANType\_HIGH Upper 8 bits of the VLAN (Default 81)

type code

## 12.10 AVPM - VLAN Priority Map

Access: parallel interface and I<sup>2</sup>C, Read/Write

Address: h06

Map VLAN tag into 2 transmit queues (0 = low priority, 1 = high priority)

| Bit 0 | Mapped priority of tag value 0 | (Default 0) |
|-------|--------------------------------|-------------|
| Bit 1 | Mapped priority of tag value 1 | (Default 0) |
| Bit 2 | Mapped priority of tag value 2 | (Default 0) |
| Bit 3 | Mapped priority of tag value 3 | (Default 0) |
| Bit 4 | Mapped priority of tag value 4 | (Default 0) |
| Bit 5 | Mapped priority of tag value 5 | (Default 0) |
| Bit 6 | Mapped priority of tag value 6 | (Default 0) |
| Bit 7 | Mapped priority of tag value 7 | (Default 0) |

## 12.11 AVDM - VLAN Discard Map

Access: parallel interface and I<sup>2</sup>C, Read/Write

· Address: h07

Map VLAN tag into frame discard when low priority buffer usage is above threshold

| Bit 0 | Frame discard for tag value 0 | (Default 0) |
|-------|-------------------------------|-------------|
| Bit 1 | Frame discard for tag value 1 | (Default 0) |
| Bit 2 | Frame discard for tag value 2 | (Default 0) |
| Bit 3 | Frame discard for tag value 3 | (Default 0) |
| Bit 4 | Frame discard for tag value 4 | (Default 0) |
| Bit 5 | Frame discard for tag value 5 | (Default 0) |
| Bit 6 | Frame discard for tag value 6 | (Default 0) |
| Bit 7 | Frame discard for tag value 7 | (Default 0) |

#### 12.12 TOSPML – TOS/DS Priority Map Low

· Access: parallel interface and I2 C, Read/Write

Address: h08

Map TOS field in IP packet into 2 transmit queues (0 = low priority, 1 = high priority).

| Bit 0 | Mapped priority when TOS is 0              | (Default 0) |
|-------|--------------------------------------------|-------------|
| Bit 1 | Mapped priority when TOS is 1 <sup>1</sup> | (Default 0) |
| Bit 2 | Mapped priority when TOS is 2              | (Default 0) |
| Bit 3 | Mapped priority when TOS is 3              | (Default 0) |
| Bit 4 | Mapped priority when TOS is 4              | (Default 0) |
| Bit 5 | Mapped priority when TOS is 5              | (Default 0) |
| Bit 6 | Mapped priority when TOS is 6              | (Default 0) |
| Bit 7 | Mapped priority when TOS is 7              | (Default 0) |

<sup>1.</sup> TOS = 1 means the appropriate 3-bit TOS subfield is "001.

#### 12.13 TOSDML - TOS/DS Discard Map

- Access: parallel interface and I<sup>2</sup>C, Read/Write
- Address: h0A

| Map TOS into frame discard when low priority buffer usage is above threshold |                             |             |  |  |  |
|------------------------------------------------------------------------------|-----------------------------|-------------|--|--|--|
| Bit 0                                                                        | Frame discard when TOS is 0 | (Default 0) |  |  |  |
| Bit 1                                                                        | Frame discard when TOS is 1 | (Default 0) |  |  |  |
| Bit 2                                                                        | Frame discard when TOS is 2 | (Default 0) |  |  |  |
| Bit 3                                                                        | Frame discard when TOS is 3 | (Default 0) |  |  |  |
| Bit 4                                                                        | Frame discard when TOS is 4 | (Default 0) |  |  |  |
| Bit 5                                                                        | Frame discard when TOS is 5 | (Default 0) |  |  |  |
| Bit 6                                                                        | Frame discard when TOS is 6 | (Default 0) |  |  |  |
| Bit 7                                                                        | Frame discard when TOS is 7 | (Default 0) |  |  |  |

# 12.14 AXSC - Transmission Scheduling Control Register

- Access: parallel interface and I<sup>2</sup>C, Read/Write
- Address: h0B

| Bits [3:0]: | Transmission Queue Service Weight for high priority queue | (Default F)         |
|-------------|-----------------------------------------------------------|---------------------|
| Bit [4]     | Reserved                                                  |                     |
| Bit [5]     | Reserved                                                  |                     |
| Bit [6]:    | Global Flow Control                                       | (Default 0, enable) |
| Bit [7]:    | Half Duplex Priority Enable                               | (Default 0)         |

#### 12.15 MII\_OP0 - MII Register Option 0

- Access by parallel interface and I<sup>2</sup>C, Read/Write
- Address: h0C

To provide a non-standard address for the Phy Status Register. When low and high Address bytes are 0, MVTX1100 will use the standard address. Bit [7:0] Low order address byte (Default 00)

#### 12.16 MII\_OP1 - MII Register Option 1

Access: parallel interface and I<sup>2</sup>C, Read/Write

· Address: h0D

Bit [7:0] High order address byte (Default 00)

### 12.17 AGETIME\_LOW – Mac Address Aging Timer Low

Access: parallel interface and I<sup>2</sup>C, Read/Write

Address: h0E

Bit [7:0] Low byte of the MAC address aging timer. (Default 25)

#### 12.18 AGETIME\_HIGH - Mac Address Aging Timer High

Access: parallel interface and I<sup>2</sup>C, Read/Write

Address: h0F

Bit [7:0] High byte of the MAC address aging timer. (Default 01)

The aging time is based on the The default following equation: setting provides

{AGETIME\_TIME,AGETIME\_LOW} X a 300 second 1024ms aging time at SCLK=50Mhz.

#### 12.19 ECR1P0 - Port 0 Control Register

Access: parallel interface and I<sup>2</sup>C, Read/Write

Address: h10

Bits [3:0] RMII Port Mode Only for RMII (Default 0000)

mode. Serial Mode DON'T CARE

Bit [0] 1 – Flow Control Off

0 - Flow Control On

Bit [1] 1 – Half Duplex

0 – Full Duplex

Bit [2] 1 – 10 Mbps

0 - 100 Mbps

Bit [3] 1 – Force configuration based on

Bits [2:0]

0 - Auto and advertise based on

Bits [2:0]

Bits [6:4] PVID Port-based VLAN ID (Default 000)

Bit [7] CONC: Enable Concentration Mode

#### 12.20 ECR1P1 - Port 1 Control Register

Access: parallel interface and I<sup>2</sup>C, Read/Write

RMII Port Mode

Address: h11

Bits [3:0]

Serial Mode DON'T CARE 1 - Flow Control Off Bit [0] 0 - Flow Control On 1 - Half Duplex Bit [1] 0 - Full Duplex Bit [2] 1 – 10 Mbps

Only for RMII mode,

(Default 0000)

0 - 100 Mbps

1 - Force configuration based on Bit [3]

Bits [2:0]

0 - Auto and advertise based on

Bits [2:0]

Port-based VLAN ID (Default 000) Bits [6:4] **PVID** Bit [7] CONC: **Enable Concentration Mode** (Default 0)

#### 12.21 ECR1P2 - Port 2 Control Register

Access: parallel interface and I<sup>2</sup>C, Read/Write

Address: h12

| Bits [3:0] | RMII Port Mode | Only for RMII mode,(Default<br>0000)<br>Serial Mode DON'T CARE                                  | (Default 0000) |
|------------|----------------|-------------------------------------------------------------------------------------------------|----------------|
| Bit [0]    |                | 1 – Flow Control Off<br>0 – Flow Control On                                                     |                |
| Bit [1]    |                | 1 – Half Duplex<br>0 – Full Duplex                                                              |                |
| Bit [2]    |                | 1 – 10 Mbps<br>0 – 100 Mbps                                                                     |                |
| Bit [3]    |                | 1 – Force configuration based on<br>Bits [2:0]<br>0 – Auto and advertise based on<br>Bits [2:0] |                |
| Bits [6:4] | PVID           | Port-based VLAN ID                                                                              | (Default 000)  |
| Bit [7]    | CONC:          | Enable Concentration Mode                                                                       | (Default 0)    |

#### 12.22 ECR1P3 - Port 3 Control Register

Access: parallel interface and I<sup>2</sup>C, Read/Write

Address: h13

Bits [3:0] RMII Port Mode Only for RMII mode, (Default 0000) Serial Mode DON'T CARE 1 - Flow Control Off Bit [0] 0 - Flow Control On Bit [1] 1 – Half Duplex 0 - Full Duplex Bit [2] 1 – 10 Mbps 0 - 100 Mbps1 - Force configuration based on Bit [3] Bits [2:0] 0 - Auto and advertise based on Bits [2:0] Port-based VLAN ID (Default 000) Bits [6:4] PVID Bit [7] CONC: **Enable Concentration Mode** (Default 0)

#### 12.23 ECR1P4 - Port 4 Control Register

Access: parallel interface and I<sup>2</sup>C, Read/Write

Address: h14

| Bits [3:0] | RMII Port Mode | Only for RMII mode, (Default<br>0000)<br>Serial Mode DON'T CARE                               | (Default 0000) |
|------------|----------------|-----------------------------------------------------------------------------------------------|----------------|
| Bit [0]    |                | 1 – Flow Control Off<br>0 – Flow Control On                                                   |                |
| Bit [1]    |                | 1 – Half Duplex<br>0 – Full Duplex                                                            |                |
| Bit [2]    |                | 1 – 10 Mbps<br>0 – 100 Mbps                                                                   |                |
| Bit [3]    |                | 1 – Force configuration based on<br>Bit [2:0]<br>0 – Auto and advertise based on<br>Bit [2:0] |                |
| Bits [6:4] | PVID           | Port-based VLAN ID                                                                            | (Default 000)  |
| Bit [7]    | Reserved       | Enable Concentration Mode                                                                     | (Default 0)    |

#### 12.24 ECR1P5 - Port 5 Control Register

Access: parallel interface and I<sup>2</sup>C, Read/Write

Address: h15

Bits [3:0] RMII Port Mode Only for RMII mode, (Default 0000) Serial Mode DON'T CARE 1 - Flow Control Off Bit [0] 0 - Flow Control On Bit [1] 1 – Half Duplex 0 - Full Duplex Bit [2] 1 – 10 Mbps 0 - 100 Mbps1 - Force configuration based on Bit [3] Bit [2:0] 0 - Auto and advertise based on Bits [2:0] Port-based VLAN ID (Default 000) Bits [6:4] **PVID** Bit [7] CONC: **Enable Concentration Mode** (Default 0)

#### 12.25 ECR1P6 - Port 6 Control Register

Access: parallel interface and I<sup>2</sup>C, Read/Write

RMII Port Mode

Address: h16

Bits [3:0]

| [0.0]      |       | Serial Mode DON'T CARE                                                                        | (= :::::::;   |
|------------|-------|-----------------------------------------------------------------------------------------------|---------------|
| Bit [0]    |       | 1 – Flow Control Off<br>0 – Flow Control On                                                   |               |
| Bit [1]    |       | 1 – Half Duplex<br>0 – Full Duplex                                                            |               |
| Bit [2]    |       | 1 – 10 Mbps<br>0 – 100 Mbps                                                                   |               |
| Bit [3]    |       | 1 – Force configuration based on<br>Bit [2:0]<br>0 – Auto and advertise based on<br>Bit [2:0] |               |
| Bits [6:4] | PVID  | Port-based VLAN ID                                                                            | (Default 000) |
| Bit [7]    | CONC: | Enable Concentration Mode                                                                     | (Default 0)   |

Only for RMII mode,

(Default 0000)

#### 12.26 ECR1P7 - Port 7 Control Register

Access: parallel interface and I<sup>2</sup>C, Read/Write

Address: h17

Bits [3:0] RMII Port Mode Only for RMII mode, (Default 0000) Serial Mode DON'T CARE

Bit [0] 1 – Flow Control Off

0 – Flow Control On

Bit [1] 1 – Half Duplex 0 – Full Duplex

t [2] 1 – 10 Mbps

Bit [2] 1 – 10 Mbps 0 – 100 Mbps

Bit [3] 1 – Force configuration based on

Bit [2:0]

0 - Auto and advertise based on

Bit [2:0]

Bits [6:4] PVID Port-based VLAN ID (Default 000)
Bit [7] CONC: Enable Concentration Mode (Default 0)

#### 12.27 ECR1P8 - Port 8 Control Register

Access: parallel interface and I<sup>2</sup>C, Read/Write

Address: h18

Bits [3:0] Port Mode (Default 0000)

Bit [3] 1 – Force configuration based on

Bit [2:0]

0 - Autonegotiate and advertise

based on Bit[2:0]

Bit [2] 1 – 10 Mbps

0 – 100 Mbps

Bit [1] 1 – Half Duplex

0 - Full Duplex

Bit [0] 1 – Flow Control Off

0 - Flow Control On

Bits [6:4] PVID Port-based VLAN ID (Default 000)
Bit [7] CONC: Enable Concentration Mode (Default 0)

#### 12.28 FC\_0 - Flow Control Byte 0

- Access: parallel interface and I<sup>2</sup>C, Read/Write
- Address: h19

The flow control hold time parameter is the length of time a flow control message is effectual (i.e. halts incoming traffic) after being received. The hold time is measured in units of "slots," the time it takes to transmit 64 bytes at wire speed. The default setting is 32 slots, or for a 100 Mbps port, approximately 164 s.

Bits [7:0]

Flow control hold time byte 0

(Default 20)

#### 12.29 FC\_1 - Flow Control Byte 1

- Access: parallel interface and I<sup>2</sup>C, Read/Write
- Address: h1A

Bits [7:0]

Flow control hold time byte 1

(Default 00)

## 12.30 FC\_2 - Flow Control CRC Byte 0

- Access: parallel interface and I<sup>2</sup>C. Read/Write
- Address: h1B

Bits [7:0]

Flow control frame CRC byte 0

(Default E5)

#### 12.31 FC\_3 – Flow Control CRC Byte 1

- Access: parallel interface and I<sup>2</sup>C, Read/Write
- Address: h1C

Bits [7:0]

Flow control frame CRC byte 1

(Default DE)

#### 12.32 FC\_4 - Flow Control CRC Byte 2

- Access: parallel interface and I<sup>2</sup>C, Read/Write
- Address: h1D

Bits [7:0]

Flow control frame CRC byte 2

(Default 3F)

#### 12.33 FC 5 - Flow Control CRC Byte 3

- Access: parallel interface and I<sup>2</sup>C, Read/Write
- Address: h1E

Bits [7:0]

Flow control frame CRC byte 3

(Default 76)

#### 12.34 CHECKSUM - EEPROM Checksum

- Access: parallel interface and I<sup>2</sup>C, Read/Write
- Address: h24

The calculation is 0x100 - ((sum of registers 0x00~0x23) & 0xff)

Bits [7:0]

Checksum

(Default 2D)

#### **MVTX1100 Pin Descriptions** 13.0

Note:

S

Active low signal Input signal Input signal with Schmitt-Trigger Output signal Open-Drain driver Input & Output signal Slew Rate Controlled 0 OD I/O ŠĹ

D Pulldown Pullup 5V Tolerance U 5

| Pin No(s).                                                                                                                                                                       | Symbol        | Туре          | Name & Functions                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|-------------------------------------|
| Frame Buffer Memory Into                                                                                                                                                         | erface        | 1             |                                     |
| 201, 200, 199, 197, 196,<br>195, 193, 192, 191, 190,<br>188, 187, 186, 185, 183,<br>182, 181, 179, 178, 177,<br>176, 174, 173, 172, 170,<br>169, 168, 167, 165, 164,<br>163, 161 | L_D[31:0]     | I/O, U, SL    | Databus to Frame Buffer Memory      |
| 203, 151, 158, 160, 10, 9,<br>8, 6, 5, 4, 2, 1, 208, 206,<br>205, 204, 150                                                                                                       | L_A[18:2]     | I/O, U, SL    | Address pins for buffer memory      |
| 153                                                                                                                                                                              | L_CLK         | 0             | Frame Buffer Memory Clock           |
| 155                                                                                                                                                                              | L_WE#         | O, SL         | Frame Buffer Memory Write Enable    |
| 156                                                                                                                                                                              | L_OE#         | 0             | Frame Buffer Memory Output Enable   |
| 157                                                                                                                                                                              | L_ADSC#       | O, SL         | Address Status Control              |
| MII Management Interface                                                                                                                                                         | )             | •             |                                     |
| 120                                                                                                                                                                              | M_MDC         | 0             | MII Management Data Clock           |
| 122                                                                                                                                                                              | M_MDIO        | I/O, U        | MII Management Data I/O             |
| I <sup>2</sup> C Interface (Serial EEPR                                                                                                                                          | OM Interface) |               |                                     |
| 123                                                                                                                                                                              | SCL           | O, U, 5       | I <sup>2</sup> C Data Clock         |
| 124                                                                                                                                                                              | SDA           | I/O, U, OD, 5 | I <sup>2</sup> C Data I/O           |
| Parallel Port Management                                                                                                                                                         | Interface     | •             |                                     |
| 127                                                                                                                                                                              | STROBE        | I, U, S, 5    | Strobe Pin                          |
| 128                                                                                                                                                                              | DATA0         | I, U, 5       | Data Pin                            |
| 129                                                                                                                                                                              | ACK           | O, U, OD, 5   | Acknowledge Pin                     |
| Port 0 Serial Interface                                                                                                                                                          | •             | •             |                                     |
| 23                                                                                                                                                                               | M0_RXD        | I, U          | Port 0 Receive Data                 |
| 24                                                                                                                                                                               | M0_RXCLK      | I, U          | Port 0 Receive Clock                |
| 22                                                                                                                                                                               | M0_CRS_DV     | I, D          | Port 0 Carrier Sense and Data Valid |
| 20                                                                                                                                                                               | M0_TXD        | 0             | Port 0 Transmit Data                |
| 21                                                                                                                                                                               | M0_TXCLK      | 1             | Port 0 Transmit Clock               |
| 19                                                                                                                                                                               | M0_TXEN       | 0             | Port 0 Transmit Enable              |
| 12                                                                                                                                                                               | M0_CLS        | I, U          | Port 0 Colllision Detection         |

| Pin No(s).              | Symbol    | Type  | Name & Functions                            |
|-------------------------|-----------|-------|---------------------------------------------|
| 13                      | M0_LINK   | I, U  | Port 0 Link Status                          |
| 14                      | M0_DUPLEX | I, U  | Port 0 Full Duplex Select (half-duplex = 0) |
| Port 1 Serial Interface |           | -     |                                             |
| 30                      | M1_RXD    | I, U  | Port 1 Receive Data                         |
| 31                      | M1_RXCLK  | I, U  | Port 1 Receive Clock                        |
| 29                      | M1_CRS_DV | I, D  | Port 1 Carrier Sense and Data Valid         |
| 27                      | M1_TXD    | 0     | Port 1 Transmit Data                        |
| 28                      | M1_TXCLK  | I     | Port 1 Transmit Clock                       |
| 26                      | M1_TXEN   | 0     | Port 1 Transmit Enable                      |
| 15                      | M1_CLS    | I, U  | Port 1 Collision Detection                  |
| 16                      | M1_LINK   | I, U  | Port 1 Link Status                          |
| 17                      | M1_DUPLEX | I, U  | Port 1 Full-Duplex Select (half-duplex = 0) |
| Port 2 Serial Interface | •         | •     |                                             |
| 37                      | M2_RXD    | I, U  | Port 2 Receive Data                         |
| 38                      | M2_RXCLK  | I, U  | Port 2 Receive Clock                        |
| 36                      | M2_CRS_DV | I, D  | Port 2 Carrier Sense and Data Valid         |
| 34                      | M2_TXD    | 0     | Port 2 Transmit Data                        |
| 35                      | M2_TXCLK  | I     | Port 2 Transmit Clock                       |
| 33                      | M2_TXEN   | 0     | Port 2 Transmit Enable                      |
| 47                      | M2_CLS    | I, U  | Port 2 Collision Detection                  |
| 48                      | M2_LINK   | I, U  | Port 2 Link Status                          |
| 49                      | M2_DUPLEX | I, Uʻ | Port 2 Full-Duplex Select (half-duplex = 0) |
| Port 3 Serial Interface |           |       |                                             |
| 44                      | M3_RXD    | I, U  | Port 3 Receive Data                         |
| 45                      | M3_RXCLK  | I, U  | Port 3 Receive Clock                        |
| 43                      | M3_CRS_DV | I, D  | Port 3 Carrier Sense and Data Valid         |
| 41                      | M3_TXD    | 0     | Port 3 Transmit Data                        |
| 42                      | M3_TXCLK  | I     | Port 3 Transmit Clock                       |
| 40                      | M3_TXEN   | 0     | Port 3 Transmit Enable                      |
| 50                      | M3_CLS    | I, U  | Port 3 Collision Detection                  |
| 51                      | M3_LINK   | I, U  | Port 3 Link Status                          |
| 52                      | M3_DUPLEX | i, u  | Port 3 Full-Duplex Select (half duplex = 0{ |
| Port 4 Serial Interface |           |       |                                             |
| 64                      | M4_RXD    | I, U  | Port 4 Receive Data                         |
| 65                      | M4_RXCLK  | I, U  | Port 4 Receive Clock                        |
| 63                      | M4_CRS_DV | I, U  | Port 4 Carrier Sense and Data Valid         |
| 61                      | M4_TXD    | 0     | Port 4 Transmit Data                        |
| 62                      | M4_TXCLK  | I     | Port 4 Transmit Clock                       |
| 60                      | M4_TXEN   | 0     | Port 4 Transmit Enable                      |

| Pin No(s).              | Symbol      | Туре | Name & Functions                            |
|-------------------------|-------------|------|---------------------------------------------|
| 53                      | M4_CLS      | I, U | Port 4 Collision Detection                  |
| 54                      | M4_LINK     | I, U | Port 4 Link Status                          |
| 55                      | M4_DUPLEX   | I, U | Port 4 Full-Duplex Select (half-duplex = 0) |
| Port 5 Serial Interface |             |      |                                             |
| 71                      | M5_RXD      | I, U | Port 5 Receive Data                         |
| 72                      | M5_RXCLK    | I, U | Port 5 Receive Clock                        |
| 70                      | M5_CRS_DV   | I, D | Port 5 Carrier Sense and Data Valid         |
| 68                      | M5_TXD      | 0    | Port 5 Transmit Data                        |
| 69                      | M5_TXCLK    | 1    | Port 5 Transmit Clock                       |
| 67                      | M5_TXEN     | 0    | Port 5 Transmit Enable                      |
| 56                      | M5_CLS      | I, U | Port 5 Collision Detection                  |
| 57                      | M5_LINK     | I, U | Port 5 Link Status                          |
| 58                      | M5_DUPLEX   | I, U | Port 5 Full-Duplex Select (half-duplex = 0) |
| Port 6 Serial Interface |             |      |                                             |
| 78                      | M6_RXD      | I, U | Port 6 Receive Data                         |
| 79                      | M6_RXCLK    | I, U | Port 6 Receive Clock                        |
| 77                      | M6_CRS_DV   | I, D | Port 6 Carrier Sense and Data Valid         |
| 75                      | M6_TXD      | 0    | Port 6 Transmit Data                        |
| 76                      | M6_TXCLK    | I    | Port 6 Transmit Clock                       |
| 74                      | M6_TXEN     | 0    | Port 6 Transmit Enable                      |
| 88                      | M6_CLS      | I, U | Port 6 Collision Detection                  |
| 89                      | M6_LINK     | I, U | Port 6 Link Status                          |
| 90                      | M6_DUPLEX   | I, U | Port 6 Full-Duplex Select (half-duplex = 0) |
| Port 7 Serial Interface |             |      |                                             |
| 85                      | M7_RXD      | I, U | Port 7 Receive Data                         |
| 86                      | M7_RXCLK    | I, U | Port 7 Receive Clock                        |
| 84                      | M7_CRS_DV   | I, D | Port 7 Carrier Sense and Data Valid         |
| 82                      | M7_TXD      | 0    | Port 7 Transmit Data                        |
| 83                      | M7_TXCLK    | I    | Port 7 Tansmit Clock                        |
| 81                      | M7_TXEN     | 0    | Port 7 Transmit Enable                      |
| 91                      | M7_CLS      | U    | Port 7 Collision Detection                  |
| 92                      | M7_LINK     | I, U | Port 7 Link Status                          |
| 93                      | M7_DUPLEX   | I, U | Port 7 Full-Duplex Select (half-duplex = 0) |
| Port 0 RMII Interface   | ·           |      |                                             |
| 24, 23                  | M0_RXD[1:0] | I, U | Port 0 Receive Data                         |
| 22                      | M0_CRS_DV   | I, D | Port 0 Carrier Sense and Data Valid         |
| 21, 20                  | M0_TXD[1:0] | 0    | Port 0 Transmit Data                        |
| 19                      | M0_TXEN     | 0    | Port 0 Transmit Enable                      |

| Pin No(s).            | Symbol      | Туре | Name & Functions                    |
|-----------------------|-------------|------|-------------------------------------|
| Port 1 RMII Interface |             |      | <u> </u>                            |
| 31, 30                | M1_RXD[1:0] | I, U | Port 1 Receive Data                 |
| 29                    | M1_CRS_DV   | I, D | Port 1 Carrier Sense and Data Valid |
| 28, 27                | M1_TXD[1:0] | 0    | Port 1 Transmit Data                |
| 26                    | M1_TXEN     | 0    | Port 1 Transmit Enable              |
| Port 2 RMII Interface |             |      |                                     |
| 38, 27                | M2_RXD[1:0] | I, U | Port 2 Receive Data                 |
| 36                    | M2_CRS_DV   | I, D | Port 2 Carrier Sense and Data Valid |
| 35, 34                | M2_TXD[1:0] | 0    | Port 2 Transmit Data                |
| 34                    | M2_TXEN     | 0    | Port 2 Transmit Enable              |
| Port 3 RMII Interface | l           |      | 1                                   |
| 45, 44                | M3_RXD[1:0] | I, U | Port 3 Receive Data                 |
| 43                    | M3_CRS_DV   | I, D | Port 3 Carrier Sense and Data Valid |
| 42, 41                | M3_TXD[1:0] | 0    | Port 3 Transmit Data                |
| 40                    | M3_TXEN     | 0    | Port 3 Transmit Enable              |
| Port 4 RMII Interface | l           |      | 1                                   |
| 65, 64                | M4_RXD[1:0] | I, U | Port 4 Receive Data                 |
| 63                    | M4_CRS_DV   | I, D | Port 4 Carrier Sense and Data Valid |
| 62, 61                | M4_TXD[1:0] | 0    | Port 4 Transmit Data                |
| 60                    | M4_TXEN     | 0    | Port 4 Transmit Enable              |
| Port 5 RMII Interface | <u> </u>    | _L   |                                     |
| 72, 71                | M5_RXD[1:0] | I, U | Port 5 Receive Data                 |
| 70                    | M5_CRS_DV   | I, D | Port 5 Carrier Sense and Data Valid |
| 69, 68                | M5_TXD[1:0] | 0    | Port 5 Transmit Data                |
| 67                    | M5_TXEN     | 0    | Port 5 Transmit Enable              |
| Port 6 RMII Interface | 1           | ·    |                                     |
| 79, 78                | M6_RXD[1:0] | I, U | Port 6 Receive Data                 |
| 77                    | M6_CRS_DV   | I, D | Port 6 Carrier Sense and Data Valid |
| 76, 75                | M6_TXD[1:0] | 0    | Port 6 Transmit Data                |
| 74                    | M6_TXEN     | 0    | Port 6 Transmit Enable              |
| Port 7 RMII Interface |             |      |                                     |
| 86, 85                | M7_RXD[1:0] | I, U | Port7 Receive Data                  |
| 84                    | M7_CRS_DV   | I, D | Port 7 Carrier Sense and Data Valid |
| 83, 82                | M7_TXD[1:0] | 0    | Port 7 Transmit Data                |
| 81                    | M7_TXEN     | 0    | Port 7 Transmit Enable              |
| Port 8 MII Interface  | •           | •    | ·                                   |
| 105, 104, 103, 102    | M8_RXD[3:0] | I, U | Port 8 Receive Data                 |
| 113, 112, 111, 110    | M8_TXD[3:0] | 0    | Port 8 Transmit Data                |
| 109                   | M8_TXEN     | 0    | Port 8 Transmit Enable              |

| Pin No(s).                | Symbol       | Туре   | Name & Functions                                   |
|---------------------------|--------------|--------|----------------------------------------------------|
| 97                        | M8_RXDV      | I, D   | Port 8 Receive Data Valid                          |
| 100                       | M8_RXCLK     | I, U   | Port 8 Receive Clock                               |
| 107                       | M8_TXCLK     | I/O, U | Port 8 Transmit Clock                              |
| 114                       | M8_LINK      | I, U   | Port 8 Link Status                                 |
| 116                       | M8_SPEED     | I/O, U | Port 8 Speed Select (100Mb = 1)                    |
| 115                       | M8_DUPLEX    | I, U   | Port 8 Full-Duplex Select (half-duplex = 0)        |
| 98                        | M8_COL       | I, U   | Port 8 Collision Detect                            |
| 118                       | M8_REFCLK    | O, U   | Port 8 Reference Clock<br>M8_REFCLK=1/2 M_CLK      |
| Port 8 Serial Interface   |              | •      |                                                    |
| 102                       | S8_RXD       | I, U   | Port 8 Serial Receive Data                         |
| 100                       | S8_RXCLK     | I, U   | Port 8 Serial Receive Clock                        |
| 97                        | S8_CRS_DV    | I, D   | Port 8 Serial Carrier Sense and Data Valid         |
| 110                       | S8_TXD       | 0      | Port 8 Serial Transmit Data                        |
| 107                       | S8_TXCLK     | I      | Port 8 Serial Transmit Clock                       |
| 109                       | S8_TXEN      | 0      | Port 8 Serial Transmit Enable                      |
| 98                        | S8_COL       | I, U   | Port 8 Serial Collision Detect                     |
| 114                       | S8_LINK      | I, U   | Port 8 Link Status                                 |
| 115                       | S8_DUPLEX    | I, U   | Port 8 Full-Duplex Select (half-duplex = 0)        |
| Miscellaneous Control Pir | is           |        |                                                    |
| 95                        | M_CLK        | I      | Reference Clock for Serial interface = 50Mhz±50ppm |
| 148                       | SCLK         | I      | System Clock (50 Mhz)                              |
| 126                       | TRUNK_EN     | I, D   | Port Trunking Enable                               |
| 142                       | RESIN_       | I, S   | Reset Pin                                          |
| 141                       | RESETOUT_    | 0      | PHY Reset Pin                                      |
| 146, 145, 144, 143        | MIR_CTL[3:0] | I/O, U | Port Mirroring Control (only for RMII mode)        |
| Test Pins                 |              |        |                                                    |
| 125                       | TEST#        |        | No Connect                                         |
| 139                       | TMODE        | I/O, U | Puts MVTX1100 into test mode for ATE test          |
| 138, 137, 136, 135        | TSTOUT[7:4]  | 0      | Test Outputs                                       |
| 134, 133, 132, 131        | TSTOUT[3:0]  | I/O, U | Test Outputs                                       |

| Pin No(s).                                                        | Symbol     | Туре  | Name & Functions                            |  |
|-------------------------------------------------------------------|------------|-------|---------------------------------------------|--|
| Power Pins                                                        |            |       |                                             |  |
| 3, 39, 73, 96, 130, 159,<br>184                                   | VDD (Core) | Input | +3.3 Volt DC Supply for Core Logic (7 pins) |  |
| 11, 25, 59, 87, 101, 108,<br>119, 147, 152, 166, 175,<br>194, 202 | VDD        | Input | +3.3 Volt DC Supply for I/O Pads (13 pins)  |  |
| 18, 46, 80, 106, 140, 171,<br>198                                 | VSS (Core) | Input | Ground for Core Logic (7 pins)              |  |
| 7, 32, 66, 94, 99, 117, 121, 149, 154, 162, 180, 189, 207         | VSS        | Input | Ground for I/O Pads (13 pins)               |  |

#### 13.1 STRAP Options

The Strap options are relevant during the initial power-on period, when reset is asserted. During reset, MVTX1100 will examine the boot strap address pin to determine its value and modify the internal configuration of the chip accordingly.

"1" means Pull UP

"0" means Pull Down with an external 1K Ohm

Default value is 1, (all boot strap pins have internal pull up resistor).

| Pin No(s)         | Symbol                | Name & Functions                                                                           |
|-------------------|-----------------------|--------------------------------------------------------------------------------------------|
| 206 (L_A[5])      | Memory Size           | 1 - Memory size = 256 KB,<br>0 - Memory size = 512KB                                       |
| 208 (L_A [6])     | EEPROM                | 1 - NO EEPROM Installed<br>0 - EEPROM Installed <sup>1</sup>                               |
| 5, 4 (L_A [10:9]) | XLINK Speed           | 11 - 100Mbps<br>10 - 200 Mbps<br>01 - 300Mbps<br>00 - 400Mbps (0 - Pull down, 1 - Pull up) |
| 160 (L_A[15])     | Ports 0-7 RMII/Serial | 1 - RMII Mode for ports 0-7<br>0 - Serial mode for ports 0-7                               |
| 151 (L_A[17])     | Port 8 MII/Serial     | 1 - MII Mode for port 8<br>0 - Serial mode for port 8                                      |
| 150 (L_A[2])      | Link Polarity         | Link Polarity for serial interface 1 - Active Low 0 - Active High                          |
| 204 (L_A[3])      | FDX Polarity          | Full/Half Duplex Polarity for serial interface 1 - Active Low 0 - Active High              |
| 205 (L_A[4])      | SPD100 Polarity       | Speed polarity for serial interface 1 - Active Low 0 - Active High                         |
| 2 (L_A[8])        | Device ID             | Use in cascade mode only                                                                   |
| 133 (TST[2])      | SRAM Self Test        | For Board/System Manufacturing Test <sup>2</sup> 1 - Disable 0 - Enable                    |

Note 1: 1. If the MVTX1100 is configured from EEPROM preset (L\_A[6] pulled down at reset), it will try to load its configuration from the EEPROM. If the EEPROM is blank or not preset, it will not boot up. The parallel port can be used to program the EEPROM at any time.

Note 2: During normal power-up the MVTX1100 will run through an external SSRAM memory test to ensure that there are no memory interface problems. If a problem is detected, the chip will stop functioning. To facilitate board debug in the event that a system stops functioning, the MVTX1100 can be put into a continuous SSRAM self test mode to allow an operator to determine if there are stuck pins in the memory interface (using network analyzer).

#### 14.0 DC Electrical Characteristics

#### 14.1 Absolute Maximum Ratings

Storage Temperature -65C to +150C

Operating Temperature -40 to +85C

Supply Voltage VDD with Respect to Vss +3.0 V to +3.6 V

Voltage on 5V Tolerant Input Pins -0.5 V to (VDD + 3.3 V)

Voltage on Other Pins -0.5 V to (VDD + 0.3 V)

Caution: Stresses above those listed may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to the Absolute Maximum Ratings for extended periods may affect device reliability.

#### 14.2 DC Electrical Characteristics

VDD = 3.0 V to 3.6 V (3.3 V +/- 10%)  $T_{AMBIENT} = -40 \text{C}$  to +85 C

| Symbol                           | Parameter Description                                                                                                    | Min       | Тур. | Max          | Unit |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------|-----------|------|--------------|------|
| f <sub>OSC</sub>                 | Frequency of Operation                                                                                                   | 50        | 66   | 80           | MHz  |
| I <sub>DD</sub>                  | Supply Current - @ 80 MHz (VDD = 3.3V)                                                                                   |           |      | TBD          | mA   |
| $V_{OH}$                         | Output High Voltage (CMOS)                                                                                               | VDD - 0.5 |      |              | V    |
| $V_{OL}$                         | Output Low Voltage (CMOS)                                                                                                |           |      | 0.5          | V    |
| V <sub>IH</sub> -TTL             | Input High Voltage (TTL 5V tolerant)                                                                                     | VDD x 70% |      | VDD + 2.0    | V    |
| V <sub>IL</sub> -TTL             | Input Low Voltage (TTL 5V tolerant)                                                                                      |           |      | VDD x<br>30% | V    |
| I <sub>IH</sub> - 5VT            | Input Leakage Current (0.1 V < V <sub>IN</sub> < VDD) (all pins except those with internal pull-up/ pull-down resistors) |           |      | 10           | μΑ   |
| I <sub>IL</sub> - <sub>5VT</sub> | Output Leakage Current (0.1 V < V <sub>OUT</sub> < VDD)                                                                  |           |      | 10           | μА   |
| C <sub>IN</sub>                  | Input Capacitance                                                                                                        |           |      | 5            | pF   |
| C <sub>OUT</sub>                 | Output Capacitance                                                                                                       |           |      | 5            | pF   |
| C <sub>I/O</sub>                 | I/O Capacitance                                                                                                          |           |      | 7            | pF   |

# 14.3 Clock Frequency Specifications

| Symbol | Parameter                         | (Hz)  | Note:            |
|--------|-----------------------------------|-------|------------------|
| C1     | SCLK - Core System Clock Input    | 50M   |                  |
| C2     | M_CLK - RMII Port Clock           | 50M   |                  |
| C3     | M8_REFCLK - MII Reference Clock   | 25M   |                  |
| C4     | L_CLK - Frame Buffer Memory Clock | 55M   | L_CLK = SCLK     |
| C5     | M_MDC - MII Management Data Clock | 1.56M | M_MDC = SCLK/32  |
| C6     | SCL - I <sup>2</sup> C Data Clock | 50K   | SCL = M_CLK/1000 |

Suggestion Clock rate for various configurations:

|               |             | Inp    | out    |        |         | Output   |     |
|---------------|-------------|--------|--------|--------|---------|----------|-----|
| Configuration |             | COLK   | M_CLK  | Mo DEE | 1 01 1/ | M MDC    | 661 |
| Port 0-7      | Port 8      | SCLK   | (RMII) | M8_REF | L_CLK   | M_MDC    | SCL |
| 10M RMII      | 10/100M MII | 50M    | 50M    |        | =SCLK   | =SCLK/32 | 50K |
| 100M RMII     | Not Used    | 55M    | 50M    |        | =SCLK   | =SCLK/32 | 50K |
| 100M RMII     | 10/100M MII | 60M    | 50M    |        | =SCLK   | =SCLK/32 | 50K |
| 100M RMII     | 200M MII    | 66.66M | 50M    | 50M    | =SCLK   | =SCLK/32 | 50K |
| 100M RMII     | 300M MII    | 75M    | 50M    | 75M    | =SCLK   | =SCLK/32 | 50K |
| 100M RMII     | 400M MII    | 80M    | 50M    | 100M   | =SCLK   | =SCLK/32 | 50K |

# 15.0 AC Timing Characteristics

## 15.1 Frame Buffer Memory Interface:

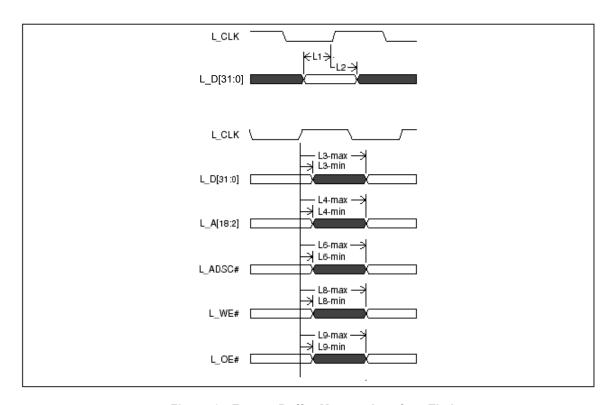



Figure 6 - Framer Buffer Memory Interface Timing

| Cumbal | Parameter                    | 501      | ЛНz      | Nata                  |
|--------|------------------------------|----------|----------|-----------------------|
| Symbol | Parameter                    | Min (ns) | Max (ns) | Note                  |
| L1     | L_D[31:0] input setup time   | 5        |          |                       |
| L2     | L_D[31:0] input hold time    | 0        |          |                       |
| L3     | L_D[31:0] output valid delay | 1        | 8        | C <sub>L</sub> = 30pF |
| L4     | L_A[18:2] output valid delay | 1        | 8        | C <sub>L</sub> = 50pF |
| L6     | L_ADSC# output valid delay   | 1        | 8        | C <sub>L</sub> = 50pF |
| L8     | L_WE# output valid delay     | 1        | 8        | C <sub>L</sub> = 30pF |
| L9     | L_OE# output valid delay     | 1        | 8        | C <sub>L</sub> = 30pF |

Table 3 - Frame Buffer Memory Interface Timing

# 15.2 Serial Timing Requirements

| Symbol | Devenueter                     | 501      | ЛНz      | Nata                  |
|--------|--------------------------------|----------|----------|-----------------------|
| Symbol | Parameter                      | Min (ns) | Max (ns) | Note:                 |
| M1     | M_[8:0]_[TX/RX]CLK             |          |          | Serial Input Clock    |
| M2     | M[8:0]_RXD input setup time    | 4        |          |                       |
| M3     | M[8:0]_RXD input hold time     | 1        |          |                       |
| M4     | M[8:0]_CRS_DV input setup time | 4        |          |                       |
| M5     | M[8:0]_TXEN output delay time  | 1        | 11       | C <sub>L</sub> = 30pF |
| M6     | M[8:0]_TXD output delay time   | 1        | 11       | C <sub>L</sub> = 30pF |
| M7     | M[8:0]_LINK input setup time   | 4        |          |                       |

Table 4 - Serial Timing Requirements

# 15.3 RMII Timing Requirements

| Cymphol | Parameter                         | 501      | ЛНz      | Note:                 |
|---------|-----------------------------------|----------|----------|-----------------------|
| Symbol  | Parameter                         | Min (ns) | Max (ns) | Note:                 |
| M1      | M_CLK                             |          |          | Reference Input Clock |
| M2      | M[7:0]_RXD[1:0] input setup time  | 4        |          |                       |
| M3      | M[7:0]_RXD[1:0] input hold time   | 1        |          |                       |
| M4      | M[7:0]_CRS_DV input setup time    | 4        |          |                       |
| M5      | M[7:0]_TXEN output delay time     | 1        | 11       | C <sub>L</sub> = 30pF |
| M6      | M[7:0]_TXD[1:0] output delay time | 1        | 11       | C <sub>L</sub> = 30pF |
| M7      | M[7:0]_LINK input setup time      | 4        |          |                       |

# 15.4 MII Timing Requirements

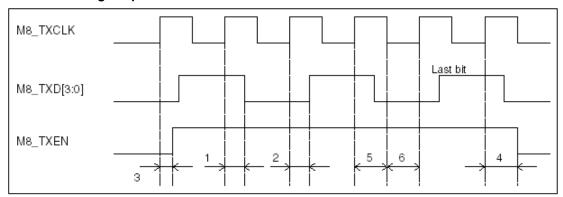



Figure 7 - Transmit Timing

| Comple at | Downworton                                                 |     | Time |      |  |
|-----------|------------------------------------------------------------|-----|------|------|--|
| Symbol    | Parameter                                                  | Min | Max  | Unit |  |
| 1         | M8_TXCLK rise to M8_TXD[3:0] inactive delay                | 5   | 20   | ns   |  |
| 2         | M8_TXCLK rise to M8_TXD[3:0] active delay                  | 5   | 20   | ns   |  |
| 3         | M8_TXCLK rise to M8_TXEN active delay                      | 5   | 20   | ns   |  |
| 4         | M8_TXCLK rise of last M8_TXD bit to M8_TXEN inactive delay | 5   | 20   | ns   |  |
| 5         | M8_TXCLK High wide                                         | 25  | Inf. | ns   |  |
| 6         | M8_TXCLK Low wide                                          | 25  | Inf. | ns   |  |
|           | M8_TXCLK input rise time require                           |     | 5    | ns   |  |
|           | M8_TXCLK input fall time require                           |     | 5    | ns   |  |

\*Inf. = infinite

Table 5 - Transmit Timing Requirements

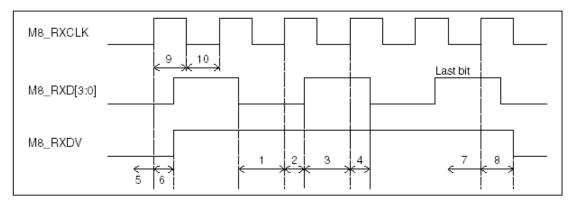
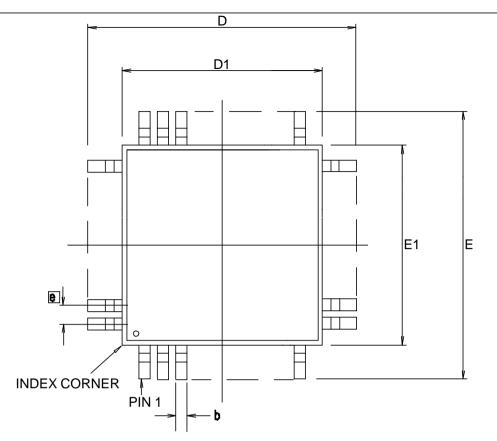
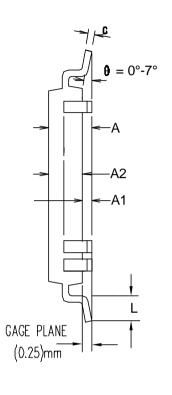





Figure 8 - Receive Timing

| 0      | B                                 | Time |      | 11   |
|--------|-----------------------------------|------|------|------|
| Symbol | Parameter                         | Min  | Max  | Unit |
| 1      | M8_RXD[3:0] Low input setup time  | 10   |      | ns   |
| 2      | M8_RXD[3:0] Low input hold time   |      | 5    | ns   |
| 3      | M8_RXD[3:0] High input setup time | 10   |      | ns   |
| 4      | M8_RXD[3:0] High input hold time  |      | 5    | ns   |
| 5      | M8_RXDV Low input setup time      | 10   |      | ns   |
| 6      | M8_RXDV Low input hold time       |      | 5    | ns   |
| 7      | M8_RXDV High input setup time     | 10   |      | ns   |
| 8      | M8_RXDV High input hold time      |      | 5    | ns   |
| 9      | M8_RXCLK High wide                | 25   | Inf. | ns   |
| 10     | M8_RXCLK Low wide                 | 25   | Inf. | ns   |
|        | M8_RXCLK input rise time require  |      | 5    | ns   |
|        | M8_RXCLK input fall time require  |      | 5    | ns   |

Table 6 - Receive Timing Requirements





|        | Contro | ol Dime          |      |  |
|--------|--------|------------------|------|--|
| Symbol | in r   | <u>millime</u> t |      |  |
|        | MIN    | Nominal          | MAX  |  |
| Α      | I      | I                | 4.10 |  |
| A1     | 0.25   | _                | _    |  |
| A2     | 3.20   | 3.32             | 3.60 |  |
| D      | 30     | .60 B            | SC   |  |
| D1     | 28     | .00 B            | SC   |  |
| E      | 30     | .60 B            | SC   |  |
| E1     | 28     | .00 B            | SC   |  |
| L      | 0.45   | 0.60             | 0.75 |  |
| е      | 0.     | 50 BS            | SC   |  |
| Ь      | 0.17   | 0.20             | 0.27 |  |
| С      | 0.09   | 0.15             | 0.20 |  |
| θ      | 0°     | _                | 7°   |  |
| ccc    | _      | 0.08             | _    |  |
| N      | 208    |                  |      |  |
| ND     | 52     |                  |      |  |
| NE     |        | 52               |      |  |

Conforms to JEDEC MO-143

## Notes:

- 1. Pin 1 indicator may be a corner chamfer, dot or both.
- 2. Controlling dimensions are in millimeters.
- 3. The top package body size may be smaller than the bottom package body size by a max. of 0.15 mm.
- 4. Dimension D1 and E1 do not include mould protusion.
- 5. Dimension b does not include dambar protusion.

| © Zarlink Semiconductor 2003 All rights reserved. |        |  | eserved. |                          |                         | Package Code ()                             |
|---------------------------------------------------|--------|--|----------|--------------------------|-------------------------|---------------------------------------------|
| ISSUE                                             | 1      |  |          |                          | Previous package codes: | Package Outline for 208 Lead                |
| ACN                                               | 213984 |  |          | ZARLINK<br>SEMICONDUCTOR |                         | MQFP (28x28x3.32mm) + 2.6<br>mm (footprint) |
| DATE                                              | 3Feb03 |  |          | 32111231(33213)          | ,                       |                                             |
| APPRD.                                            |        |  |          |                          |                         | GPD00828                                    |



# For more information about all Zarlink products visit our Web Site at

www.zarlink.com

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's  $I^2C$  components conveys a licence under the Philips  $I^2C$  Patent rights to use these components in an  $I^2C$  System, provided that the system conforms to the  $I^2C$  Standard Specification as defined by Philips.

Zarlink and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.

Copyright 2002, Zarlink Semiconductor Inc. All Rights Reserved.

TECHNICAL DOCUMENTATION - NOT FOR RESALE