PRODUCT SPECIFICATION

Integrated Circuits Group

LH28F640BFHG-PBTLE7 Flash Memory 64Mbit (4Mbitx16)

(Model Number: LHF64FE7)

Spec. Issue Date: December 1, 2004 Spec No: EL16Z002

		SPEC No.	EL1	
		ISSUE:	Dec. 1	, 2004
То;				
SPEC	IFICA	TIO	NS	
		0	\sim	
Product Type6 4	Mhit Flach	Memory		
		wiemory		
L H 2 8 F	640BFH	G — P I	BTL	E 7
Model No.	(LHF64FE7	7)		
If you have any objections, p	lease contact us before	issuing purchasi	ng order.	
* This apositions contain	a 40 magaza including th			
* This specifications contain * Refer to LH28F640BF Ser	ies Appendix (FUM007	(01).	nuix.	
CUSTOMERS ACCEPTANCE				
CUSTOMERS ACCEPTANCE				
DATE:				
BY:	PRESEN	ITED		
	DV.	1. 1. 1	a (. / A 1. / A 1. 7
	<u>BY: //</u>	. NAWAKI	<u>a for</u> M.	NAWAKI
	6	ept. General Mar	nager	
	REV	IEWED BY:	PREPA	RED BY:
	Ð.)	tasurama	J. F	mohino
		<pre>ict Development m-Flash Division</pre>	-	
	Integ	rated Circuits Gr	roup	
	SHA	RP CORPORAT	ION	

- Handle this document carefully for it contains material protected by international copyright law. Any reproduction, full or in part, of this material is prohibited without the express written permission of the company.
- When using the products covered herein, please observe the conditions written herein and the precautions outlined in the following paragraphs. In no event shall the company be liable for any damages resulting from failure to strictly adhere to these conditions and precautions.
 - The products covered herein are designed and manufactured for the following application areas. When using the products covered herein for the equipment listed in Paragraph (2), even for the following application areas, be sure to observe the precautions given in Paragraph (2). Never use the products for the equipment listed in Paragraph (3).
 - Office electronics
 - Instrumentation and measuring equipment
 - Machine tools

HARF

- Audiovisual equipment
- Home appliance
- Communication equipment other than for trunk lines
- (2) Those contemplating using the products covered herein for the following equipment <u>which demands high</u> <u>reliability</u>, should first contact a sales representative of the company and then accept responsibility for incorporating into the design fail-safe operation, redundancy, and other appropriate measures for ensuring reliability and safety of the equipment and the overall system.
 - Control and safety devices for airplanes, trains, automobiles, and other transportation equipment
 - Mainframe computers
 - Traffic control systems
 - Gas leak detectors and automatic cutoff devices
 - Rescue and security equipment
 - Other safety devices and safety equipment, etc.
- (3) Do not use the products covered herein for the following equipment which demands extremely high performance in terms of functionality, reliability, or accuracy.
 - Aerospace equipment
 - Communications equipment for trunk lines
 - Control equipment for the nuclear power industry
 - Medical equipment related to life support, etc.
- (4) Please direct all queries and comments regarding the interpretation of the above three Paragraphs to a sales representative of the company.
- Please direct all queries regarding the products covered herein to a sales representative of the company.

LHF64FE7

CONTENTS

PAGE

0.75mm pitch 48-Ball CSP (8mm×11mm) Pinout 3
Pin Descriptions 4
Simultaneous Operation Modes Allowed with Four Planes
Memory Map 6
Identifier Codes and OTP Address for Read Operation
Identifier Codes and OTP Address for Read Operation on Partition Configuration 7
OTP Block Address Map for OTP Program 8
Bus Operation
Command Definitions 10
Functions of Block Lock and Block Lock-Down 12
Block Locking State Transitions upon Command Write
Block Locking State Transitions upon WP# Transition
Status Register Definition 14

Extended Status Register Definition 15
Partition Configuration Register Definition 16
Partition Configuration 16
1 Electrical Specifications 17
1.1 Absolute Maximum Ratings 17
1.2 Operating Conditions 17
1.2.1 Capacitance 18
1.2.2 AC Input/Output Test Conditions 18
1.2.3 DC Characteristics 19
1.2.4 AC Characteristics - Read-Only Operations
1.2.5 AC Characteristics - Write Operations
1.2.6 Reset Operations 27
1.2.7 Block Erase, Full Chip Erase, (Page Buffer) Program and OTP Program Performance
2 Related Document Information
3 Package and packing specification

PAGE

LH28F640BFHG-PBTLE7 64Mbit (4Mbit×16) Page Mode Dual Work Flash MEMORY

64M density with 16Bit I/O Interface

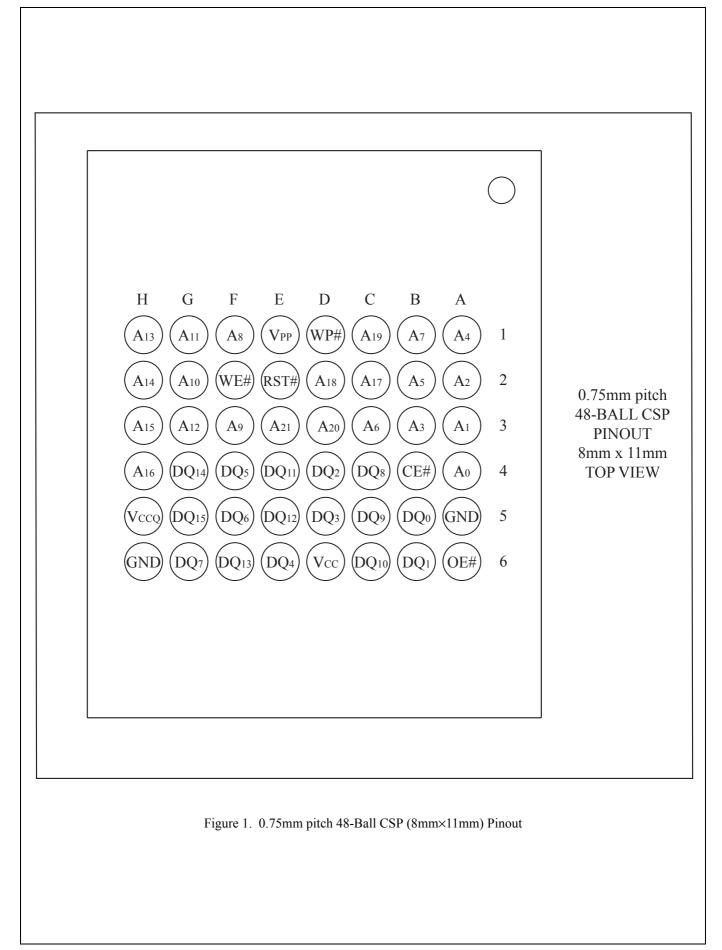
- High Performance Reads
 80/35ns 8-Word Page Mode
- Configurative 4-Plane Dual Work
 - Flexible Partitioning
 - Read operations during Block Erase or (Page Buffer) Program
 - Status Register for Each Partition
- Low Power Operation
 - 2.7V Read and Write Operations
 - V_{CCO} for Input/Output Power Supply Isolation
 - Automatic Power Savings Mode Reduces I_{CCR} in Static Mode
- Enhanced Code + Data Storage
 5µs Typical Erase/Program Suspends
- OTP (One Time Program) Block
 4-Word Factory-Programmed Area
 - 4-Word User-Programmable Area
- High Performance Program with Page Buffer
 - 16-Word Page Buffer
 - + 5 μ s/Word (Typ.) at 12V V_{PP}
- Operating Temperature -40°C to +85°C
- CMOS Process (P-type silicon substrate)

- Flexible Blocking Architecture
 - Eight 4K-word Parameter Blocks
 - One-hundred and twenty-seven 32K-word Main Blocks
 - Bottom Parameter Location
- Enhanced Data Protection Features
 - Individual Block Lock and Block Lock-Down with Zero-Latency
 - All blocks are locked at power-up or device reset.
 - Absolute Protection with $V_{PP} \leq V_{PPLK}$
 - Block Erase, Full Chip Erase, (Page Buffer) Word Program Lockout during Power Transitions
- Automated Erase/Program Algorithms
 - 3.0V Low-Power 11µs/Word (Typ.) Programming
 - 12V No Glue Logic 9µs/Word (Typ.) Production Programming and 0.5s Erase (Typ.)
- Cross-Compatible Command Support
 - Basic Command Set
 - Common Flash Interface (CFI)
- Extended Cycling Capability
 - Minimum 100,000 Block Erase Cycles
- 0.75mm pitch 48-Ball CSP (8mm×11mm)
- ETOX^{TM*} Flash Technology
- Not designed or rated as radiation hardened

The product, which is 4-Plane Page Mode Dual Work (Simultaneous Read while Erase/Program) Flash memory, is a low power, high density, low cost, nonvolatile read/write storage solution for a wide range of applications. The product can operate at $V_{CC}=2.7V-3.6V$ and $V_{PP}=1.65V-3.6V$ or 11.7V-12.3V. Its low voltage operation capability greatly extends battery life for portable applications.

The product provides high performance asynchronous page mode. It allows code execution directly from Flash, thus eliminating time consuming wait states. Furthermore, its newly configurative partitioning architecture allows flexible dual work operation.

The memory array block architecture utilizes Enhanced Data Protection features, and provides separate Parameter and Main Blocks that provide maximum flexibility for safe nonvolatile code and data storage.


Fast program capability is provided through the use of high speed Page Buffer Program.

Special OTP (One Time Program) block provides an area to store permanent code such as a unique number.

* ETOX is a trademark of Intel Corporation.

LHF64FE7

SHARP

		Table 1. Pin Descriptions
Symbol	Туре	Name and Function
A ₀ -A ₂₁	INPUT	ADDRESS INPUTS: Inputs for addresses. 64M: A ₀ -A ₂₁
DQ ₀ -DQ ₁₅	INPUT/ OUTPUT	DATA INPUTS/OUTPUTS: Inputs data and commands during CUI (Command User Interface) write cycles, outputs data during memory array, status register, query code, identifier code and partition configuration register code reads. Data pins float to high- impedance (High Z) when the chip or outputs are deselected. Data is internally latched during an erase or program cycle.
CE#	INPUT	CHIP ENABLE: Activates the device's control logic, input buffers, decoders and sense amplifiers. CE#-high (V_{IH}) deselects the device and reduces power consumption to standby levels.
RST#	INPUT	RESET: When low (V_{IL}), RST# resets internal automation and inhibits write operations which provides data protection. RST#-high (V_{IH}) enables normal operation. After power-up or reset mode, the device is automatically set to read array mode. RST# must be low during power-up/down.
OE#	INPUT	OUTPUT ENABLE: Gates the device's outputs during a read cycle.
WE#	INPUT	WRITE ENABLE: Controls writes to the CUI and array blocks. Addresses and data are latched on the rising edge of CE# or WE# (whichever goes high first).
WP#	INPUT	WRITE PROTECT: When WP# is V_{IL} , locked-down blocks cannot be unlocked. Erase or program operation can be executed to the blocks which are not locked and not locked-down. When WP# is V_{IH} , lock-down is disabled.
V _{PP}	INPUT	$\begin{array}{c} \mbox{MONITORING POWER SUPPLY VOLTAGE: } V_{PP} \mbox{ is not used for power supply pin.} \\ \mbox{With } V_{PP} \leq V_{PPLK}, \mbox{ block erase, full chip erase, (page buffer) program or OTP program cannot be executed and should not be attempted. \\ \mbox{Applying } 12V \pm 0.3V \mbox{ to } V_{PP} \mbox{ provides fast erasing or fast programming mode. In this mode, } V_{PP} \mbox{ is power supply pin. } Applying 12V \pm 0.3V \mbox{ to } V_{PP} \mbox{ during erase/program can only be done for a maximum of 1,000 cycles on each block. } V_{PP} \mbox{ maximum of 12V \pm 0.3V for a total of 80 hours maximum. Use of this pin at 12V beyond these limits may reduce block cycling capability or cause permanent damage. \\ \end{array}$
V _{CC}	SUPPLY	DEVICE POWER SUPPLY (2.7V-3.6V): With $V_{CC} \leq V_{LKO}$, all write attempts to the flash memory are inhibited. Device operations at invalid V_{CC} voltage (see DC Characteristics) produce spurious results and should not be attempted.
V _{CCQ}	SUPPLY	INPUT/OUTPUT POWER SUPPLY (2.7V-3.6V): Power supply for all input/output pins.
GND	SUPPLY	GROUND: Do not float any ground pins.

LHF64FE7

		l'able 2. S	Simultan	eous Ope	eration Mc	des Allow	ed with Fo	our Plane	$S^{(1, 2)}$		
	THEN THE MODES ALLOWED IN THE OTHER PARTITION IS:										
IF ONE PARTITION IS:	Read Array	Read ID/OTP	Read Status	Read Query	Word Program	Page Buffer Program	OTP Program	Block Erase	Full Chip Erase	Program Suspend	Block Erase Suspend
Read Array	Х	Х	Х	Х	Х	Х		Х		Х	Х
Read ID/OTP	Х	Х	Х	Х	Х	Х		Х		Х	Х
Read Status	Х	Х	Х	Х	Х	Х	Х	Х	X	Х	Х
Read Query	Х	Х	Х	Х	Х	Х		Х		Х	Х
Word Program	Х	Х	Х	Х							Х
Page Buffer Program	Х	Х	Х	Х							Х
OTP Program			Х								
Block Erase	Х	Х	Х	Х							
Full Chip Erase			Х								
Program Suspend	Х	Х	Х	Х							Х
Block Erase Suspend	Х	X	Х	Х	Х	Х				Х	

Table 2. Simultaneous Operation Modes Allowed with Four $Planes^{(1, 2)}$

NOTES:

1. "X" denotes the operation available.

2. Configurative Partition Dual Work Restrictions:

Status register reflects partition state, not WSM (Write State Machine) state - this allows a status register for each partition. Only one partition can be erased or programmed at a time - no command queuing. Commands must be written to an address within the block targeted by that command.

BLOCK NUMBER ADDRESS RANGE

	RI (OCK NUMBER	ADDRESS RANGE
	134	32K-WORD	3F8000H - 3FFFFFH
	134	32K-WORD	3F0000H - 3F7FFFH
	132	32K-WORD	3E8000H - 3EFFFFH
	131	32K-WORD	3E0000H - 3E7FFFH
	130 129	32K-WORD 32K-WORD	3D8000H - 3DFFFFH 3D0000H - 3D7FFFH
	129	32K-WORD	3C8000H - 3CFFFFH
	127	32K-WORD	3C0000H - 3C7FFFH
Ξ	126	32K-WORD	3B8000H - 3BFFFFH
PLANE3 (UNIFORM PLANE)	125 124	32K-WORD 32K-WORD	3B0000H - 3B7FFFH 3A8000H - 3AFFFFH
LA	124	32K-WORD	3A0000H - 3A7FFFH
P	122	32K-WORD	398000H - 39FFFFH
Σ	121	32K-WORD	390000H - 397FFFH
18	120	32K-WORD	388000H - 38FFFFH
Ε	119	32K-WORD 32K-WORD	380000H - 387FFFH 378000H - 37FFFFH
Z	117	32K-WORD	370000H - 377FFFH
E	116	32K-WORD	368000H - 36FFFFH
E	115	32K-WORD	360000H - 367FFFH
Ī	114	32K-WORD	358000H - 35FFFFH 350000H - 357FFFH
V	112	32K-WORD 32K-WORD	348000H - 34FFFFH
L L	111	32K-WORD	340000H - 347FFFH
	110	32K-WORD	338000H - 33FFFFH
	109	32K-WORD	330000H - 337FFFH
	108 107	32K-WORD	328000H - 32FFFFH 320000H - 327FFFH
	107	32K-WORD 32K-WORD	318000H - 31FFFFH
	105	32K-WORD	310000H - 317FFFH
	104	32K-WORD	308000H - 30FFFFH
	103	32K-WORD	300000H - 307FFFH
	102	32K-WORD	2F8000H - 2FFFFFH
	102	32K-WORD	2F0000H - 2F7FFFH
	100	32K-WORD	2E8000H - 2EFFFFH
	99	32K-WORD	2E0000H - 2E7FFFH
	98	32K-WORD	2D8000H - 2DFFFFH 2D0000H - 2D7FFFH
	97 96	32K-WORD 32K-WORD	2C8000H - 2CFFFFH
	95	32K-WORD	2C0000H - 2C7FFFH
	94	32K-WORD	2B8000H - 2BFFFFH
FORM PLANE)	93	32K-WORD	2B0000H - 2B7FFFH
F	92 91	32K-WORD	2A8000H - 2AFFFFH 2A0000H - 2A7FFFH
L,	90	32K-WORD 32K-WORD	298000H - 29FFFFH
F	89	32K-WORD	290000H - 297FFFH
2	88	32K-WORD	288000H - 28FFFFH
ō	87	32K-WORD	280000H - 287FFFH
H	86	32K-WORD	278000H - 27FFFFH
E	85 84	32K-WORD 32K-WORD	270000H - 277FFFH 268000H - 26FFFFH
E	83	32K-WORD	260000H - 267FFFH
E	82	32K-WORD	258000H - 25FFFFH
Z	81	32K-WORD	250000H - 257FFFH
PLANE2 (UNII	80	32K-WORD	248000H - 24FFFFH
	79 78	32K-WORD 32K-WORD	240000H - 247FFFH 238000H - 23FFFFH
	77	32K-WORD 32K-WORD	230000H - 237FFFH
	76	32K-WORD	228000H - 22FFFFH
	75	32K-WORD	220000H - 227FFFH
	74	32K-WORD	218000H - 21FFFFH
	73 72	32K-WORD 32K-WORD	210000H - 217FFFH 208000H - 20FFFFH
	71	32K-WORD	200000H - 207FFFH
			-

SHARP

	DLC	JCK NUMBER	ADDRESS KAP
	70	32K-WORD	1F8000H - 1FFFFFH
	69	32K-WORD	1F0000H - 1F7FFFH
	68	32K-WORD	1E8000H - 1EFFFFH
	67	32K-WORD	1E0000H - 1E7FFFH
	66	32K-WORD	1D8000H - 1DFFFFH
	65	32K-WORD	1D0000H - 1D7FFFH
	64		1C8000H - 1CFFFFH
		32K-WORD	
	63	32K-WORD	1C0000H - 1C7FFFH
PLANE1 (UNIFORM PLANE)	62	32K-WORD	1B8000H - 1BFFFFH
\mathbf{Z}	61	32K-WORD	1B0000H - 1B7FFFH
V	60	32K-WORD	1A8000H - 1AFFFFH
	59	32K-WORD	1A0000H - 1A7FFFH
H	58	32K-WORD	198000H - 19FFFFH
\geq	57	32K-WORD	190000H - 197FFFH
1×	56	32K-WORD	188000H - 18FFFFH
<u> </u>	55	32K-WORD	180000H - 187FFFH
E	54	32K-WORD	178000H - 17FFFFH
E	53	32K-WORD	170000H - 177FFFH
Ľ	52	32K-WORD	168000H - 16FFFFH
<u> </u>	51		160000H - 167FFFH
Ш		32K-WORD	
Z	50	32K-WORD	158000H - 15FFFFH
V	49	32K-WORD	150000H - 157FFFH
	48	32K-WORD	148000H - 14FFFFH
щ	47	32K-WORD	140000H - 147FFFH
	46	32K-WORD	138000H - 13FFFFH
	45	32K-WORD	130000H - 137FFFH
	44	32K-WORD	128000H - 12FFFFH
	43	32K-WORD	120000H - 127FFFH
	42	32K-WORD	118000H - 11FFFFH
	41	32K-WORD	110000H - 117FFFH
	40	32K-WORD	108000H - 10FFFFH
	39		
	59	32K-WORD	100000H - 107FFFH
	38	32K-WORD	0F8000H - 0FFFFFH
	37	32K-WORD	0F0000H - 0F7FFFH
	36	32K-WORD	0E8000H - 0EFFFFH
	35	32K-WORD	0E0000H - 0E7FFFH
	34	32K-WORD	0D8000H - 0DFFFFH
	33	32K-WORD	0D0000H - 0D7FFFH
	32	32K-WORD	0C8000H - 0CFFFFH
	31	32K-WORD	0C0000H - 0C7FFFH
	30		0B8000H - 0BFFFFH
		32K-WORD	0B0000H - 0B7FFFH
	29	32K-WORD	
m	28	32K-WORD	0A8000H - 0AFFFFH
TER PLANE)	27	32K-WORD	0A0000H - 0A7FFFH
\mathbf{P}	26	32K-WORD	098000H - 09FFFFH
L,	25	32K-WORD	090000H - 097FFFH
	24	32K-WORD	088000H - 08FFFFH
L K	23	32K-WORD	080000H - 087FFFH
끈	22	32K-WORD	078000H - 07FFFFH
- 5	21	32K-WORD	070000H - 077FFFH
15	20	32K-WORD	068000H - 06FFFFH
17	19	32K-WORD	060000H - 067FFFH
2	18	32K-WORD	058000H - 05FFFFH
\mathbf{Z}	17	32K-WORD	050000H - 057FFFH
L PL	16		048000H - 04FFFFH
		32K-WORD	040000H - 047FFFH
ШШ	15	32K-WORD	038000H - 03FFFFH
PLANE0 (PAR	14	32K-WORD	
	13	32K-WORD	030000H - 037FFFH
1 H	12	32K-WORD	028000H - 02FFFFH
1	11	32K-WORD	020000H - 027FFFH
	10	32K-WORD	018000H - 01FFFFH
	9	32K-WORD	010000H - 017FFFH
	8	32K-WORD	008000H - 00FFFFH
	7	4K-WORD	007000H - 007FFFH
	6	4K-WORD	006000H - 006FFFH
	5	4K-WORD	005000H - 005FFFH
	4	4K-WORD	004000H - 004FFFH
		4K-WORD	003000H - 003FFFH
	3		
	2	4K-WORD	002000H - 002FFFH

Figure 2. Memory Map (Bottom Parameter)

Table 3. Identifier Codes and OTP Address for Read Operation								
	Code	Address [A ₁₅ -A ₀]	Data [DQ ₁₅ -DQ ₀]	Notes				
Manufacturer Code	Manufacturer Code	0000H	00B0H	1				
Device Code	Bottom Parameter Device Code	0001H	00B1H	1, 2				
Block Lock Configuration	Block is Unlocked		$DQ_0 = 0$	3				
Code	Block is Locked	Block	$DQ_0 = 1$	3				
	Block is not Locked-Down	$\begin{array}{c cccc} 0000H & 00B0H \\ \hline Code & 0001H & 00B1H \\ \hline DQ_0 = 0 \\ \hline DQ_0 = 1 \\ \hline Address \\ + 2 \\ \hline DQ_1 = 0 \\ \hline DQ_1 = 1 \\ \hline \end{array}$	3					
	Block is Locked-Down		$DQ_1 = 1$	3				
Device Configuration Code	Partition Configuration Register	0006H	PCRC	1, 4				
OTP	OTP Lock	0080H	OTP-LK	1, 5				
	OTP	0081-0088H	OTP	1, 6				

NOTES:

1. The address A_{21} - A_{16} are shown in below table for reading the manufacturer code, device code, device configuration code and OTP data.

2. Bottom parameter device has its parameter blocks in the plane0 (The lowest address).

- 3. Block Address = The beginning location of a block address within the partition to which the Read Identifier Codes/OTP command (90H) has been written.
- DQ_{15} - DQ_2 are reserved for future implementation.
- 4. PCRC=Partition Configuration Register Code.
- 5. OTP-LK=OTP Block Lock configuration.
- 6. OTP=OTP Block data.

Partition C	Configuration I	Register ⁽²⁾	Address (64M-bit device)
PCR.10	PCR.9	PCR.8	[A ₂₁ -A ₁₆]
0	0	0	00H
0	0	1	00H or 10H
0	1	0	00H or 20H
1	0	0	00H or 30H
0	1	1	00H or 10H or 20H
1	1	0	00H or 20H or 30H
1	0	1	00H or 10H or 30H
1	1	1	00H or 10H or 20H or 30H

Table 4. Identifier Codes and OTP Address for Read Operation on Partition Configuration⁽¹⁾ (64M-bit device)

NOTES:

1. The address to read the identifier codes or OTP data is dependent on the partition which is selected when writing the Read Identifier Codes/OTP command (90H).

2. Refer to Table 12 for the partition configuration register.

[A21-A0]	
000088H	
	Customer Programmable Area
000085H	
000084H	
	Factory Programmed Area
000081H	
000080H	Reserved for Future Implementation (DQ15-DQ2)
Customer Progra	mmable Area Lock Bit (DQ1)

Figure 3. OTP Block Address Map for OTP Program (The area outside 80H~88H cannot be used.)

Table 5. Bus $Operation^{(1,2)}$									
Mode	Notes	RST#	CE#	OE#	WE#	Address	V _{PP}	DQ ₀₋₁₅	
Read Array	6	V _{IH}	V _{IL}	V _{IL}	V _{IH}	Х	Х	D _{OUT}	
Output Disable		V_{IH}	V_{IL}	V _{IH}	V _{IH}	Х	Х	High Z	
Standby		V _{IH}	V _{IH}	Х	Х	X	Х	High Z	
Reset	3	V _{IL}	Х	Х	Х	Х	Х	High Z	
Read Identifier Codes/OTP	6	V _{IH}	V _{IL}	V _{IL}	V _{IH}	See Table 3 and Table 4	Х	See Table 3 and Table 4	
Read Query	6,7	V _{IH}	V _{IL}	V _{IL}	V _{IH}	See Appendix	Х	See Appendix	
Write	4,5,6	V_{IH}	V _{IL}	V _{IH}	V _{IL}	Х	Х	D _{IN}	

NOTES:

SHARP

1. Refer to DC Characteristics. When $V_{PP} \leq V_{PPLK}$, memory contents can be read, but cannot be altered. 2. X can be V_{IL} or V_{IH} for control pins and addresses, and V_{PPLK} or $V_{PPH1/2}$ for V_{PP} . See DC Characteristics for V_{PPLK} and $V_{PPH1/2}$ voltages. 3. RST# at GND±0.2V ensures the lowest power consumption.

4. Command writes involving block erase, full chip erase, (page buffer) program or OTP program are reliably executed when V_{PP}=V_{PPH1/2} and V_{CC}=2.7V-3.6V.
5. Refer to Table 6 for valid D_{IN} during a write operation.
6. Never hold OE# low and WE# low at the same timing.

7. Refer to Appendix of LH28F640BF series for more information about query code.

	Ta	able 6. C	Command	Definitions ⁽¹	1)				
	Bus		First Bus Cycle			Se	Second Bus Cycle		
Command	Cycles Req'd	Notes	Oper ⁽¹⁾	Addr ⁽²⁾	Data	Oper ⁽¹⁾	Addr ⁽²⁾	Data ⁽³⁾	
Read Array	1		Write	PA	FFH				
Read Identifier Codes/OTP	≥2	4	Write	PA	90H	Read	IA or OA	ID or OD	
Read Query	≥2	4	Write	PA	98H	Read	QA	QD	
Read Status Register	2		Write	PA	70H	Read	PA	SRD	
Clear Status Register	1		Write	PA	50H				
Block Erase	2	5	Write	BA	20H	Write	BA	D0H	
Full Chip Erase	2	5,9	Write	Х	30H	Write	Х	D0H	
Program	2	5,6	Write	WA	40H or 10H	Write	WA	WD	
Page Buffer Program	≥4	5,7	Write	WA	E8H	Write	WA	N-1	
Block Erase and (Page Buffer) Program Suspend	1	8,9	Write	PA	B0H				
Block Erase and (Page Buffer) Program Resume	1	8,9	Write	PA	D0H				
Set Block Lock Bit	2		Write	BA	60H	Write	BA	01H	
Clear Block Lock Bit	2	10	Write	BA	60H	Write	BA	D0H	
Set Block Lock-down Bit	2		Write	BA	60H	Write	BA	2FH	
OTP Program	2	9	Write	OA	C0H	Write	OA	OD	
Set Partition Configuration Register	2		Write	PCRC	60H	Write	PCRC	04H	

NOTES:

SHARP

1. Bus operations are defined in Table 5.

2. All addresses which are written at the first bus cycle should be the same as the addresses which are written at the second bus cycle.

X=Any valid address within the device.

PA=Address within the selected partition.

IA=Identifier codes address (See Table 3 and Table 4).

QA=Query codes address. Refer to Appendix of LH28F640BF series for details.

BA=Address within the block being erased, set/cleared block lock bit or set block lock-down bit.

WA=Address of memory location for the Program command or the first address for the Page Buffer Program command. OA=Address of OTP block to be read or programmed (See Figure 3).

PCRC=Partition configuration register code presented on the address A_0 - A_{15} .

3. ID=Data read from identifier codes. (See Table 3 and Table 4).

QD=Data read from query database. Refer to Appendix of LH28F640BF series for details.

SRD=Data read from status register. See Table 10 and Table 11 for a description of the status register bits.

WD=Data to be programmed at location WA. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles.

OD=Data within OTP block. Data is latched on the rising edge of WE# or CE# (whichever goes high first) during command write cycles.

N-1=N is the number of the words to be loaded into a page buffer.

4. Following the Read Identifier Codes/OTP command, read operations access manufacturer code, device code, block lock configuration code, partition configuration register code and the data within OTP block (See Table 3 and Table 4). The Read Query command is available for reading CFI (Common Flash Interface) information.

- 5. Block erase, full chip erase or (page buffer) program cannot be executed when the selected block is locked. Unlocked block can be erased or programmed when RST# is V_{IH}.
- 6. Either 40H or 10H are recognized by the CUI (Command User Interface) as the program setup.
- 7. Following the third bus cycle, input the program sequential address and write data of "N" times. Finally, input the any valid address within the target block to be programmed and the confirm command (D0H). Refer to Appendix of

SHARP

- 8. If the program operation in one partition is suspended and the erase operation in other partition is also suspended, the suspended program operation should be resumed first, and then the suspended erase operation should be resumed next.
- 9. Full chip erase and OTP program operations can not be suspended. The OTP Program command can not be accepted while the block erase operation is being suspended.
- 10. Following the Clear Block Lock Bit command, block which is not locked-down is unlocked when WP# is V_{IL}. When WP# is V_{IH}, lock-down bit is disabled and the selected block is unlocked regardless of lock-down configuration.
 11. Commands other than those shown above are reserved by SHARP for future device implementations and should not be
- used.

		Cu	rrent State	_	(2)
State	WP#	$DQ_1^{(1)}$	$DQ_0^{(1)}$	State Name	Erase/Program Allowed ⁽²⁾
[000]	0	0	0	Unlocked	Yes
$[001]^{(3)}$	0	0	1	Locked	No
[011]	0	1	1	Locked-down	No
[100]	1	0	0	Unlocked	Yes
[101] ⁽³⁾	1	0	1	Locked	No
[110] ⁽⁴⁾	1	1	0	Lock-down Disable	Yes
[111]	1	1	1	Lock-down Disable	No

NOTES:

1. $DQ_0=1$: a block is locked; $DQ_0=0$: a block is unlocked.

 $DQ_1=1$: a block is locked-down; $DQ_1=0$: a block is not locked-down.

2. Erase and program are general terms, respectively, to express: block erase, full chip erase and (page buffer) program operations.

3. At power-up or device reset, all blocks default to locked state and are not locked-down, that is, [001] (WP#=0) or [101] (WP#=1), regardless of the states before power-off or reset operation.

4. When WP# is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked.

5. OTP (One Time Program) block has the lock function which is different from those described above.

	Curren	t State		Result after L	ock Command Writte	n (Next State)
State	WP#	DQ ₁	DQ ₀	Set Lock ⁽¹⁾	Clear Lock ⁽¹⁾	Set Lock-down ⁽¹⁾
[000]	0	0	0	[001]	No Change	[011] ⁽²⁾
[001]	0	0	1	No Change ⁽³⁾	[000]	[011]
[011]	0	1	1	No Change	No Change	No Change
[100]	1	0	0	[101]	No Change	[111] ⁽²⁾
[101]	1	0	1	No Change	[100]	[111]
[110]	1	1	0	[111]	No Change	[111] ⁽²⁾
[111]	1	1	1	No Change	[110]	No Change

Table 8. Block Locking State Transitions upon Command Write⁽⁴⁾

NOTES:

1. "Set Lock" means Set Block Lock Bit command, "Clear Lock" means Clear Block Lock Bit command and "Set Lock-down" means Set Block Lock-Down Bit command.

2. When the Set Block Lock-Down Bit command is written to the unlocked block ($DQ_0=0$), the corresponding block is locked-down and automatically locked at the same time.

3. "No Change" means that the state remains unchanged after the command written.

4. In this state transitions table, assumes that WP# is not changed and fixed V_{IL} or V_{IH} .

		Current S	State		Result after WP# Tr	ansition (Next State)
Previous State	State	WP#	DQ ₁	DQ ₀	WP#= $0 \rightarrow 1^{(1)}$	WP#= $1 \rightarrow 0^{(1)}$
-	[000]	0	0	0	[100]	-
-	[001]	0	0	1	[101]	-
[110] ⁽²⁾					[110]	-
Other than $[110]^{(2)}$	[011]	0	1	1	[111]	-
-	[100]	1	0	0	-	[000]
-	[101]	1	0	1	-	[001]
-	[110]	1	1	0	-	[011] ⁽³⁾
-	[111]	1	1	1	-	[011]

Table 9. Block Locking State Transitions upon WP# Transition⁽⁴⁾

NOTES:

SHARP

1. "WP#=0 \rightarrow 1" means that WP# is driven to V_{IH} and "WP#=1 \rightarrow 0" means that WP# is driven to V_{IL}.

2. State transition from the current state [011] to the next state depends on the previous state. 3. When WP# is driven to V_{IL} in [110] state, the state changes to [011] and the blocks are automatically locked.

4. In this state transitions table, assumes that lock configuration commands are not written in previous, current and next state.

SHARP

R	R	R	R	R	R	R	R
15	14	13	12	11	10	9	8
WSMS	BESS	BEFCES	PBPOPS	VPPS	PBPSS	DPS	R
7	6	5	4	3	2	1	0
ENHANCE R.7 = WRITE 1 = Ready	MENTS (R)	FOR FUTURE HINE STATUS	(WSMS)		NOT r indicates the sta achine). Even if	atus of the parti	
1 = Block 0 = Block	Erase Suspende Erase in Progre			be occupied by 3 or 4 partition Check SR.7 to	y the other partition to configuration. to determine bloc m or OTP progra	ion when the de k erase, full ch	vice is set to ip erase, (pa
STAT 1 = Error i	US (BEFCES) n Block Erase o		se	erase, (page b block lock-do	nd SR.4 are "1" puffer) program, own bit, set pa proper command	set/clear block	k lock bit, s ration regis
OTP 1 = Error i 0 = Succes $\text{SR.3} = \text{V}_{\text{PP}} \text{ S}^2$	PROGRAM ST n (Page Buffer) sful (Page Buff fATUS (VPPS)		P Program	The WSM inte Block Erase, F Program com	provide a continerrogates and ind full Chip Erase, (mand sequences e feedback when	licates the V _{PP} (Page Buffer) Pr s. SR.3 is not	level only af rogram or O' guaranteed
$0 = V_{PP} O$ SR.2 = (PAGE STAT 1 = (Page 1)	E BUFFER) PR US (PBPSS) Buffer) Program	OGRAM SUSP		bit. The WSM Erase, Full C Program com depending on t set. Reading th	provide a contin interrogates the hip Erase, (Pag mand sequence the attempted op ne block lock con ntifier Codes/OT	block lock bit o ge Buffer) Pro es. It informs eration, if the b nfiguration code	nly after Blo gram or O' the syste lock lock bit es after writi
$1 = \text{Erase} \circ$	or Program Atte d Block, Opera				and SR.0 are rese when polling th		

LHF64FE7

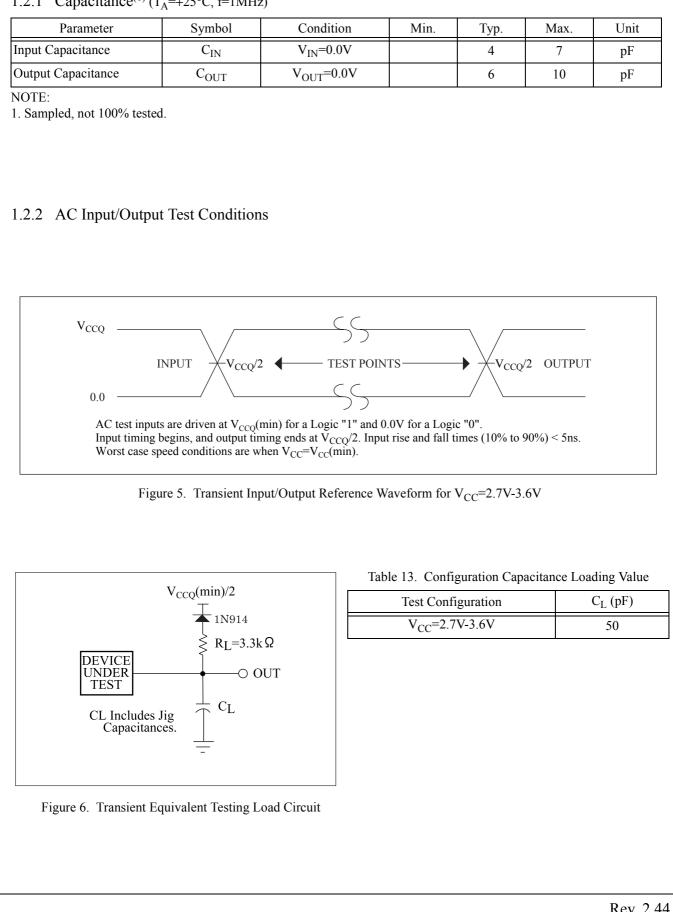
		Table 1	1. Extended Sta	atus Register De	finition				
R	R	R	R	R R R R					
15	14	13	12	11	10	9	8		
SMS	R	R	R	R	R	R	R		
7	6	5	4	3	2	1	0		
ENHANCE XSR.7 = STAT 1 = Page B	ESERVED FOR F MENTS (R) E MACHINE S Suffer Program a Suffer Program r	TATUS (SMS) vailable		After issue a XSR.7="1" ind If XSR.7 is "0" Buffer Progran check if page b XSR.15-8 and	licates that the , the command in n command (E8 uffer is availabl	Program con entered comma is not accepted a BH) should be e or not.	nd is accepted. and a next Page issued again to		
XSR.6-0 = RES	SERVED FOR FU	JTURE ENHAN	CEMENTS (R)	should be may register.					

SHARP

		Table 12.	Partition Config	guration R	legist	er Definition			
R	R	R	R	R		PC2	PC1	PC0	
15	14	13	12	11		10	9	8	
R	R	R	R	R		R	R	R	
7	6	5	4	3		2	1	0	
PCR.10-8 = P. $000 = No$ $001 = Pla$ $(defau$ $010 = Pla$ $(defau$ $011 = Pla$ $(defau$ $011 = Pla$ $110 = Pla$ $110 = Pla$ $three$ $opera$ $101 = Pla$ $three$		ENTS (R) IFIGURATION al Work is not a d into one parti arameter device e2-3 are merged ed into one part heter device) ed into one part his configuration between any two ed into one part his configuration between any two ed into one part his configuration between any two ed into one part	allowed. tion.) l into one ition. There are on. Dual work to partitions. ition. There are on. Dual work to partitions. ition. There are on. Dual work	PCR.7-0 After por "001" in paramet See Figu PCR.15- should	PCR 15-11 and PCR 7-0 are reserved for future use and				
PC2 PC1 PC0	PARTITION	ING FOR DUA	L WORK	PC2 PC	PC0	PARTITION	NING FOR DU	AL WORK	
0 0 0		ARTITION0	PLANE0	0 1	1		N2 PARTITION IIINEI IIINEI	DARTITION0	
0 0 1		PLANE2	PARTITION0	1 1	0	PARTITION2 PAF	branez	0NOITII	
0 1 0	PARTITIONI PARTITIONO PARTITION2 PARTITION1 PARTITIONO 0 1 0 Image: Strategy of the strategy								
1 0 0	PARTITION1	PARTITIO ETANEJ BLANEJ	0X PLANE0	1 1	1	PARTITION3 PART	ITION2 PARTITIC	DN1 PARTITION0	
		Η	Figure 4. Partit	ion Confi	gurati	ion			

 Electrical Specifications Absolute Maximum Ratings* Operating Temperature During Read, Erase and Program40°C to +85°C ⁽¹⁾ 	*WARNING: Stressing the device beyond the "Absolute Maximum Ratings" may cause permanent damage. These are stress ratings only. Operation beyond the "Operating Conditions" is not recommended and extended exposure beyond the "Operating Conditions" may affect device reliability.
Storage Temperature During under Bias40°C to +85°C During non Bias65°C to +125°C Voltage On Any Pin (except V_{CC} and V_{PP})0.5V to V_{CC} +0.5V ⁽²⁾ V_{CC} and V_{CCQ} Supply Voltage0.2V to +3.9V ⁽²⁾ V_{PP} Supply Voltage0.2V to +12.6V ^(2, 3, 4)	 NOTES: 1. Operating temperature is for extended temperature product defined by this specification. 2. All specified voltages are with respect to GND. Minimum DC voltage is -0.5V on input/output pins and -0.2V on V_{CC} and V_{PP} pins. During transitions, this level may undershoot to -2.0V for periods <20ns. Maximum DC voltage on input/output pins is V_{CC}+0.5V which, during transitions, may overshoot to V_{CC}+2.0V for periods <20ns. 3. Maximum DC voltage on V_{PP} may overshoot to +13.0V for periods <20ns. 4. V_{PP} erase/program voltage is normally 2.7V-3.6V. Applying 11.7V-12.3V to V_{PP} during erase/program can be done for a maximum of 1,000 cycles on the main blocks and 1,000 cycles on the parameter blocks. V_{PP} may be connected to 11.7V-12.3V for a total of 80 hours maximum
Output Short Circuit Current 100mA ⁽⁵⁾	hours maximum.5. Output shorted for no more than one second. No more than one output shorted at a time.

1.2 Operating Conditions


Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Operating Temperature	T _A	-40	+25	+85	°C	
V _{CC} Supply Voltage	V _{CC}	2.7	3.0	3.6	V	1
I/O Supply Voltage	V _{CCQ}	2.7	3.0	3.6	V	1
V _{PP} Voltage when Used as a Logic Control	V _{PPH1}	1.65	3.0	3.6	V	1
V _{PP} Supply Voltage	V _{PPH2}	11.7	12	12.3	V	1, 2
Main Block Erase Cycling: V _{PP} =V _{PPH1}		100,000			Cycles	
Parameter Block Erase Cycling: V _{PP} =V _{PPH1}		100,000			Cycles	
Main Block Erase Cycling: V _{PP} =V _{PPH2} , 80 hrs.				1,000	Cycles	
Parameter Block Erase Cycling: $V_{PP}=V_{PPH2}$, 80 hrs.				1,000	Cycles	
Maximum V_{PP} hours at V_{PPH2}				80	Hours	

NOTES:

 See DC Characteristics tables for voltage range-specific specification.
 Applying V_{PP}=11.7V-12.3V during a erase or program can be done for a maximum of 1,000 cycles on the main blocks and 1,000 cycles on the parameter blocks. A permanent connection to V_{PP}=11.7V-12.3V is not allowed and can cause damage to the device.

HARP

LHF64FE7

1.2.1 Capacitance⁽¹⁾ (T_A =+25°C, f=1MHz)

V_{CC}=2.7V-3.6V

1.2.3 DC Characteristics

Symbol Parameter Notes Min. Тур. Max. Unit **Test Conditions** V_{CC}=V_{CC}Max., 1 I_{LI} Input Load Current -1.0 +1.0μA V_{CCQ}=V_{CCQ}Max., V_{IN}/V_{OUT}=V_{CCQ} or I_{LO} Output Leakage Current 1 -1.0 +1.0μA GND V_{CC}=V_{CC}Max., CE#=RST#= I_{CCS} V_{CC} Standby Current μΑ 1 4 20 $V_{CCQ} \pm 0.2V$, WP#=V_{CCQ} or GND V_{CC}=V_{CC}Max., V_{CC} Automatic Power Savings Current I_{CCAS} 1.4 4 20 μΑ CE#=GND±0.2V, WP#=V_{CCO} or GND V_{CC} Reset Power-Down Current 1 4 20 RST#=GND±0.2V **I**_{CCD} μA Average V_{CC} Read 25 1,7 15 mА V_{CC}=V_{CC}Max., Current Normal Mode CE#=VIL, I_{CCR} OE#=V_{IH}, Average V_{CC} Read 8 Word Read f=5MHz Current 1,7 5 10 mA Page Mode V_{PP}=V_{PPH1} 1,5,7 20 60 mA V_{CC} (Page Buffer) Program Current **I**_{CCW} V_{PP}=V_{PPH2} 1,5,7 10 20 mA V_{PP}=V_{PPH1} 1,5,7 10 30 mА V_{CC} Block Erase, Full Chip I_{CCE} Erase Current V_{PP}=V_{PPH2} 1,5,7 4 10 mA V_{CC} (Page Buffer) Program or **I**_{CCWS} 1,2,7 10 200 CE#=V_{IH} μΑ Block Erase Suspend Current I_{CCES} I_{PPS} V_{PP} Standby or Read Current V_{PP}≤V_{CC} 1,6,7 2 5 μA I_{PPR} 2 V_{PP}=V_{PPH1} 1,5,6,7 5 μΑ V_{PP} (Page Buffer) Program Current **I**_{PPW} V_{PP}=V_{PPH2} 1,5,6,7 10 30 mА V_{PP}=V_{PPH1} 1,5,6,7 2 5 μA V_{PP} Block Erase, Full Chip IPPE Erase Current V_{PP}=V_{PPH2} 1,5,6,7 5 15 mА 2 5 V_{PP}=V_{PPH1} 1,6,7 μA V_{PP} (Page Buffer) Program **I**_{PPWS} Suspend Current V_{PP}=V_{PPH2} 1,6,7 10 200 μΑ V_{PP}=V_{PPH1} 2 5 1,6,7 μA V_{PP} Block Erase Suspend Current IPPES V_{PP}=V_{PPH2} 1,6,7 10 200 μA

		V _{CC} =2	2.7V-3.6V	7			
Symbol	Parameter	Notes	Min.	Тур.	Max.	Unit	Test Conditions
V _{IL}	Input Low Voltage	5	-0.4		0.4	V	
V _{IH}	Input High Voltage	5	2.4		V _{CCQ} + 0.4	V	
V _{OL}	Output Low Voltage	5			0.2	V	$V_{CC}=V_{CC}Min., \\ V_{CCQ}=V_{CCQ}Min., \\ I_{OL}=100\mu A$
V _{OH}	Output High Voltage	5	V _{CCQ} -0.2			V	$V_{CC}=V_{CC}Min.,$ $V_{CCQ}=V_{CCQ}Min.,$ $I_{OH}=-100\mu A$
V _{PPLK}	V _{PP} Lockout during Normal Operations	3,5,6			0.4	V	
V _{PPH1}	V _{PP} during Block Erase, Full Chip Erase, (Page Buffer) Program or OTP Program Operations		1.65	3.0	3.6	V	
V _{PPH2}	V _{PP} during Block Erase, Full Chip Erase, (Page Buffer) Program or OTP Program Operations		11.7	12	12.3	V	
V _{LKO}	V _{CC} Lockout Voltage		1.5			V	

DC Characteristics (Continued)

NOTES:

HARP

1. All currents are in RMS unless otherwise noted. Typical values are the reference values at V_{CC} =3.0V and T_A =+25°C unless V_{CC} is specified.

I_{CCWS} and I_{CCES} are specified with the device de-selected. If read or (page buffer) program is executed while in block erase suspend mode, the device's current draw is the sum of I_{CCES} and I_{CCR} or I_{CCW}. If read is executed while in (page buffer) program suspend mode, the device's current draw is the sum of I_{CCWS} and I_{CCR}.

 Block erase, full chip erase, (page buffer) program and OTP program are inhibited when V_{PP}≤V_{PPLK}, and not guaranteed in the range between V_{PPLK}(max.) and V_{PPH1}(min.), between V_{PPH1}(max.) and V_{PPH2}(min.) and above V_{PPH2}(max.).

4. The Automatic Power Savings (APS) feature automatically places the device in power save mode after read cycle completion. Standard address access timings (t_{AVQV}) provide new data when addresses are changed.

5. Sampled, not 100% tested.

- 6. V_{PP} is not used for power supply pin. With V_{PP}≤V_{PPLK}, block erase, full chip erase, (page buffer) program and OTP program cannot be executed and should not be attempted.
 - Applying $12V\pm0.3V$ to V_{PP} provides fast erasing or fast programming mode. In this mode, V_{PP} is power supply pin and supplies the memory cell current for block erasing and (page buffer) programming. Use similar power supply trace widths and layout considerations given to the V_{CC} power bus.

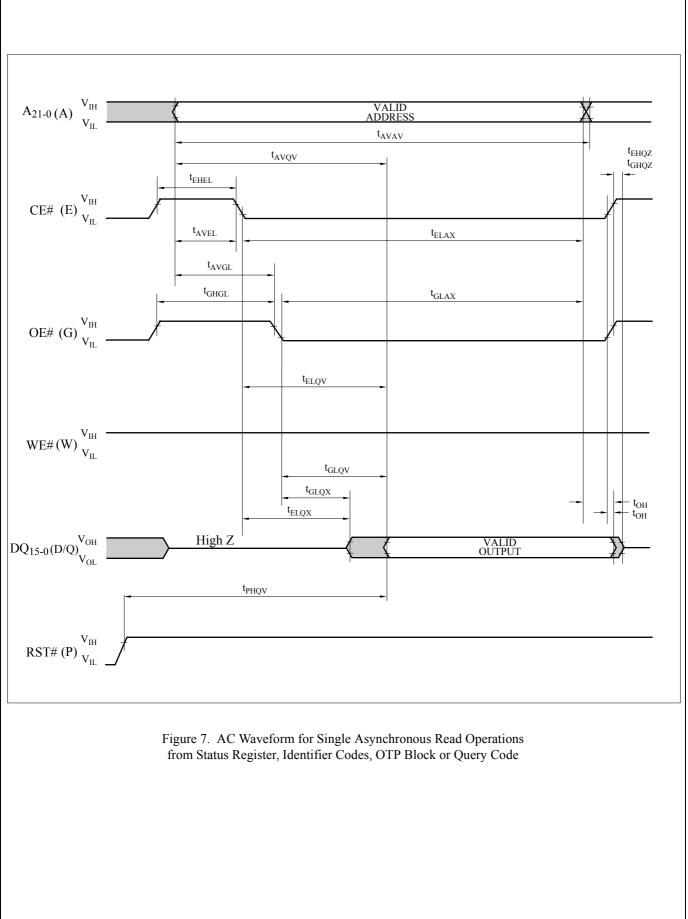
Applying $12V\pm0.3V$ to V_{PP} during erase/program can only be done for a maximum of 1,000 cycles on each block. V_{PP} may be connected to $12V\pm0.3V$ for a total of 80 hours maximum.

7. The operating current in dual work is the sum of the operating current (read, erase, program) in each plane.

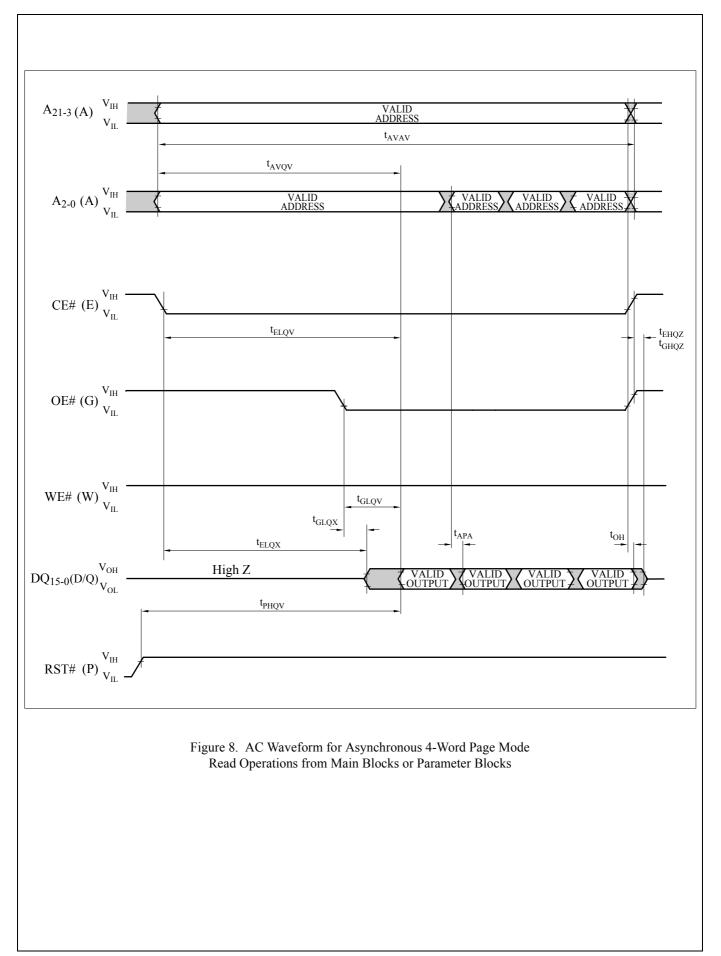
1.2.4 AC Characteristics - Read-Only Operations⁽¹⁾

Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Read Cycle Time		80		ns
t _{AVQV}	Address to Output Delay			80	ns
t _{ELQV}	CE# to Output Delay	3		80	ns
t _{APA}	Page Address Access Time			35	ns
t _{GLQV}	OE# to Output Delay	3		20	ns
t _{PHQV}	RST# High to Output Delay			150	ns
t _{EHQZ} , t _{GHQZ}	CE# or OE# to Output in High Z, Whichever Occurs First	2		20	ns
t _{ELQX}	CE# to Output in Low Z	2	0		ns
t _{GLQX}	OE# to Output in Low Z	2	0		ns
t _{OH}	Output Hold from First Occurring Address, CE# or OE# change	2	0		ns
t _{AVEL} , t _{AVGL}	Address Setup to CE#, OE# Going Low for Reading Status Register	4, 6	10		ns
t _{ELAX} , t _{GLAX}	Address Hold from CE#, OE# Going Low for Reading Status Register	5, 6	30		ns
t _{EHEL} , t _{GHGL}	CE#, OE# Pulse Width High for Reading Status Register	6	30		ns

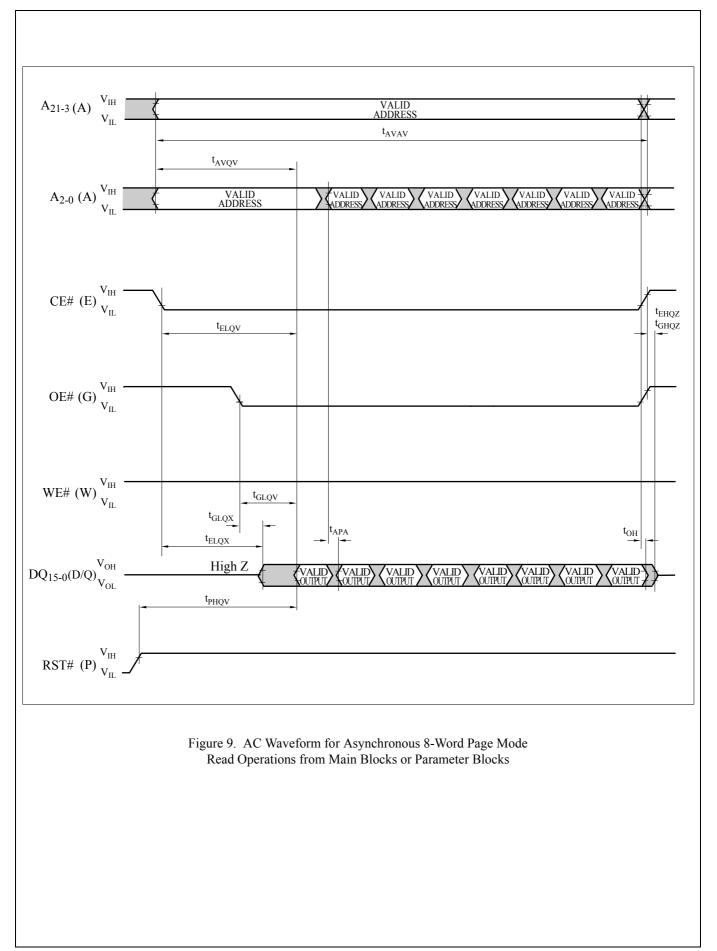
 V_{CC} =2.7V-3.6V, T_{A} =-40°C to +85°C


NOTES:

1. See AC input/output reference waveform for timing measurements and maximum allowable input slew rate.


2. Sampled, not 100% tested.

 3. OE# may be delayed up to t_{ELQV} — t_{GLQV} after the falling edge of CE# without impact to t_{ELQV}.
 4. Address setup time (t_{AVEL}, t_{AVGL}) is defined from the falling edge of CE# or OE# (whichever goes low last).
 5. Address hold time (t_{ELAX}, t_{GLAX}) is defined from the falling edge of CE# or OE# (whichever goes low last).
 6. Specifications t_{AVEL}, t_{AVGL}, t_{ELAX}, t_{GLAX} and t_{EHEL}, t_{GHGL} for read operations apply to only status register read operations. operations.


LHF64FE7

LHF64FE7

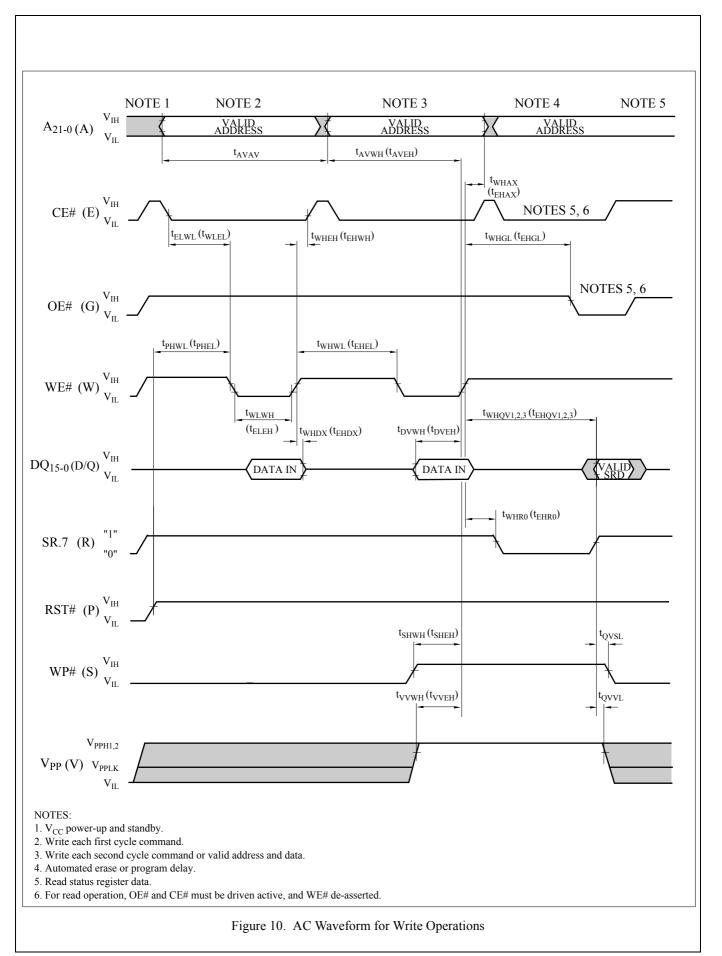
LHF64FE7

1.2.5 AC Characteristics - Write Operations^{(1), (2)}

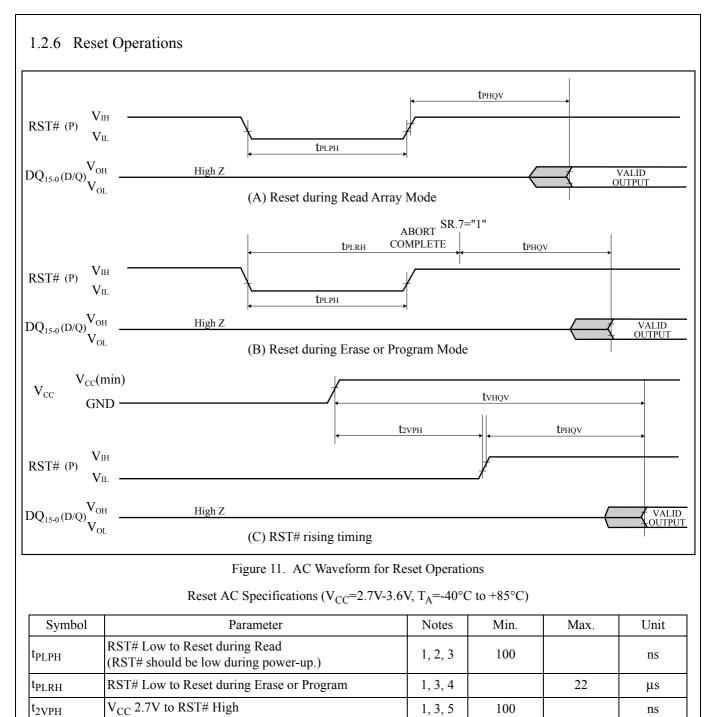
Symbol	Parameter	Notes	Min.	Max.	Unit
t _{AVAV}	Write Cycle Time		80		ns
t_{PHWL} (t_{PHEL})	RST# High Recovery to WE# (CE#) Going Low	3	150		ns
$t_{\rm ELWL} \left(t_{\rm WLEL} ight)$	CE# (WE#) Setup to WE# (CE#) Going Low		0		ns
$t_{WLWH}(t_{ELEH})$	WE# (CE#) Pulse Width	4	50		ns
t _{DVWH} (t _{DVEH})	Data Setup to WE# (CE#) Going High	8	40		ns
$t_{\rm AVWH} (t_{\rm AVEH})$	Address Setup to WE# (CE#) Going High	8	50		ns
$t_{\rm WHEH} \left(t_{\rm EHWH} ight)$	CE# (WE#) Hold from WE# (CE#) High		0		ns
t_{WHDX} (t_{EHDX})	Data Hold from WE# (CE#) High		0		ns
$t_{WHAX} (t_{EHAX})$	Address Hold from WE# (CE#) High		0		ns
$t_{\rm WHWL}$ ($t_{\rm EHEL}$)	WE# (CE#) Pulse Width High	5	30		ns
$t_{\rm SHWH} \left(t_{\rm SHEH} ight)$	WP# High Setup to WE# (CE#) Going High	3	0		ns
t _{VVWH} (t _{VVEH})	V _{PP} Setup to WE# (CE#) Going High	3	200		ns
t_{WHGL} (t_{EHGL})	Write Recovery before Read		30		ns
t _{QVSL}	WP# High Hold from Valid SRD	3, 6	0		ns
t _{QVVL}	V _{PP} Hold from Valid SRD	3, 6	0		ns
$t_{WHR0} (t_{EHR0})$	WE# (CE#) High to SR.7 Going "0"	3, 7		t_{AVQV}^+ 50	ns

V _{CC} =2.7V-3.6V,	T_A =-40°C to	+85°C
-----------------------------	-----------------	-------

NOTES:


- 1. The timing characteristics for reading the status register during block erase, full chip erase, (page buffer) program and OTP program operations are the same as during read-only operations. Refer to AC Characteristics for read-only operations.
- 2. A write operation can be initiated and terminated with either CE# or WE#.

3. Sampled, not 100% tested.


4. Write pulse width (t_{WP}) is defined from the falling edge of CE# or WE# (whichever goes low last) to the rising edge of CE# or WE# (whichever goes high first). Hence, $t_{WP}=t_{WLWH}=t_{ELEH}=t_{WLEH}=t_{ELWH}$. 5. Write pulse width high (t_{WPH}) is defined from the rising edge of CE# or WE# (whichever goes high first) to the falling

- edge of CE# or WE# (whichever goes low last). Hence, t_{WPH}=t_{WHWL}=t_{EHEL}=t_{WHEL}=t_{EHWL}.
 6. V_{PP} should be held at V_{PP}=V_{PPH1/2} until determination of block erase, full chip erase, (page buffer) program or OTP program success (SR.1/3/4/5=0).
- 7. t_{WHR0} (t_{EHR0}) after the Read Query or Read Identifier Codes/OTP command= t_{AVOV} +100ns.
- 8. Refer to Table 6 for valid address and data for block erase, full chip erase, (page buffer) program, OTP program or lock bit configuration.

LHF64FE7

t_{VHQV} NOTES: 3

2. t_{PLPH} is <100ns the device may still reset but this is not guaranteed.

V_{CC} 2.7V to Output Delay

3. Sampled, not 100% tested.

4. If RST# asserted while a block erase, full chip erase, (page buffer) program or OTP program operation is not executing, the reset will complete within 100ns.

5. When the device power-up, holding RST# low minimum 100ns is required after V_{CC} has been in predefined range and also has been in stable there.

ms

^{1.} A reset time, t_{PHQV}, is required from the later of SR.7 going "1" or RST# going high until outputs are valid. Refer to AC Characteristics - Read-Only Operations for t_{PHQV}.

1.2.7 Block Erase, Full Chip Erase, (Page Buffer) Program and OTP Program Performance⁽³⁾

Symbol	Parameter	Notes	Page Buffer Command is Used or not Used	V _{PP} =V _{PPH1} (In System)			V _{PP} =V _{PPH2} (In Manufacturing)			Unit
				Min.	Тур. ⁽¹⁾	Max. ⁽²⁾	Min.	Тур. ⁽¹⁾	Max. ⁽²⁾	
t _{WPB}	4K-Word Parameter Block	2	Not Used		0.05	0.3		0.04	0.12	S
WPB	Program Time	2	Used		0.03	0.12		0.02	0.06	S
t _{WMB}	32K-Word Main Block	2	Not Used		0.38	2.4		0.31	1.0	S
WMB	Program Time	2	Used		0.24	1.0		0.17	0.5	S
t _{WHQV1} /	Word Program Time	2	Not Used		11	200		9	185	μs
t _{EHQV1}	word i rogram Time	2	Used		7	100		5	90	μs
t _{WHOV1} / t _{EHOV1}	OTP Program Time	2	Not Used		36	400		27	185	μs
t _{WHQV2} / t _{EHQV2}	4K-Word Parameter Block Erase Time	2	-		0.3	4		0.2	4	s
t _{WHQV3} / t _{EHQV3}	32K-Word Main Block Erase Time	2	-		0.6	5		0.5	5	s
	Full Chip Erase Time	2			80	700		65	700	S
t _{WHRH1} / t _{EHRH1}	(Page Buffer) Program Suspend Latency Time to Read	4	-		5	10		5	10	μs
t _{WHRH2} / t _{EHRH2}	Block Erase Suspend Latency Time to Read	4	-		5	20		5	20	μs
t _{ERES}	Latency Time from Block Erase Resume Command to Block Erase Suspend Command	5	-	500			500			μs

 V_{CC} =2.7V-3.6V, T_A =-40°C to +85°C

NOTES:

1. Typical values measured at V_{CC} =3.0V, V_{PP} =3.0V or 12V, and T_A =+25°C. Assumes corresponding lock bits are not set. Subject to change based on device characterization.

2. Excludes external system-level overhead.

3. Sampled, but not 100% tested.

4. A latency time is required from writing suspend command (WE# or CE# going high) until SR.7 going "1".

5. If the interval time from a Block Erase Resume command to a subsequent Block Erase Suspend command is shorter than t_{ERES} and its sequence is repeated, the block erase operation may not be finished.

2 Related Document Information⁽¹⁾

	Document No.	Document Name
ĺ	FUM00701	LH28F640BF series Appendix

NOTE:

1. International customers should contact their local SHARP or distribution sales offices.

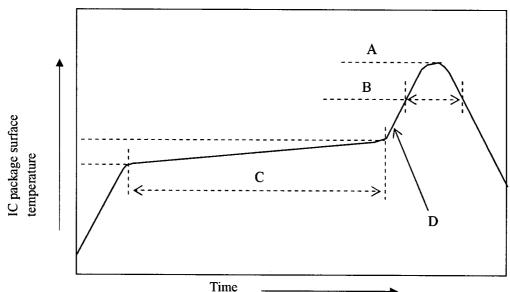
.

SHARP	LHF64I	FE7			30
3 Package and packing specification					
[Applicability]					
This specification applies to IC package	of the LEAT	-FREE delivered :	as a standard spe	cification	
1. Storage Conditions.					
1-1. Storage conditions required before ope	ning the dry J	backing.			
• Normal temperature : $5 \sim 40^{\circ}$ C	1 1 1 1				
 Normal humidity : 80%(Relativ "Humidity" means "Relative hu 		hax.			
fundaty means Relative nu	muny				
1-2. Storage conditions required after open	ing the dry pa	cking.			
In order to prevent moisture absorp	tion after ope	ning, ensure the fo	ollowing storage		
conditions apply:					
(1) Storage conditions for one-tim	ne soldering.	(Convection reflow	v ^{*1} , IR/Convecti	on reflow. ^{*1})	
• Temperature : $5 \sim 25^{\circ}$ C					
• Humidity : 60% max.					
 Period : 96 hours max. after (2) Storage conditions for two-time 		Convection roflow.	¹ ID/Convertion	•	
a. Storage conditions following					
• Temperature : 5~25°C	opening and	prior to performin	g the 1st renow.		
• Humidity : 60% max.					
• Period : 96 hours max. after	opening.				
b. Storage conditions following	; completion	of the 1st reflow ar	nd prior to perfor	rming	
the 2nd reflow.					
• Temperature : $5 \sim 25^{\circ}$ C					
• Humidity : 60% max.					
• Period : 96 hours max. after * ¹ :Air or nitrogen environment.	completion o	f the 1st reflow.			
Air of mirogen environment.					
1-3. Temporary storage after opening.					
To re-store the devices before solder	ing, do so on	y once and use a d	lry box or place	desiccant	
(with a blue humidity indicator) with	the devices	and perform dry pa	cking again usi	ng	
heat-sealing.					
The storage period, temperature and	-	st be as follows :			
(1) Storage temperature and humid	•				
※1 : External atmosphe	re temperatur	e and humidity of	the dry packing.		
First opening \checkmark X1 \rightarrow	► Re-sealing	y▶]	Re-opening 🗲 🗕	— X2 —	Mounting
O			O		
$%1$ Temperature $:5 \sim 40^{\circ}$	Ŷ	※ 1 5~40℃	. 5	~25℃	
Humidity : 80% max. 60% max.		80% max.		%. max.	
i	i				
(2) Storage period. $\cdot X_1 + X_2$: Refer to Section 1	2(1) and (2)	a donandiz 1	a marti	ih a d	
• X1+X2 : Refer to Section 1 • Y : Two weeks max.	-2(1) and (2)		ie mounting met	110 u .	

- 2. Baking Condition.
 - (1) Situations requiring baking before mounting.
 - Storage conditions exceed the limits specified in Section 1-2 or 1-3.
 - Humidity indicator in the desiccant was already red (pink) when opened. (Also for re-opening.)
 - (2) Recommended baking conditions.
 - Baking temperature and period :
 - $120 + 10 \swarrow -0^{\circ} C$ for $2 \sim 3$ hours.
 - The above baking conditions apply since the trays are heat-resistant.
 - (3) Storage after baking.
 - After baking, store the devices in the environment specified in Section 1-2 and mount immediately.

250°C max.

40 to 60 seconds as 220°C


It is 1 to 3°C/seconds

It is 150 to 200°C, and is 120±30 seconds

3. Surface mount conditions.

The following soldering condition are recommended to ensure device quality.

- (Use paste recommends Sn-Ag-Cu paste. However, Sn-Pb paste is not recommended.)
- 3-1. Soldering.
- (1) Convection reflow or IR/Convection. (one-time soldering or two-time soldering in air or nitrogen environment)
 - Temperature and period :
 - A) Peak temperature.
 - B) Heating temperature.
 - C) Preheat temperature.
 - D) Temperature increase rate.
 - Measuring point : IC package surface.
 - Temperature profile :

3-2. Recommended heating condition for repair.

Pre heating : 100° C or more within 90 sec. from room temperature to 90 ± 30 sec. Reflow heating : within ten sec. at a temperature of 250° C to 260° C (Please confirm not only melting solder of the repair area but also the back of the PCB.)

4. Condition for removal of residual flux.

32

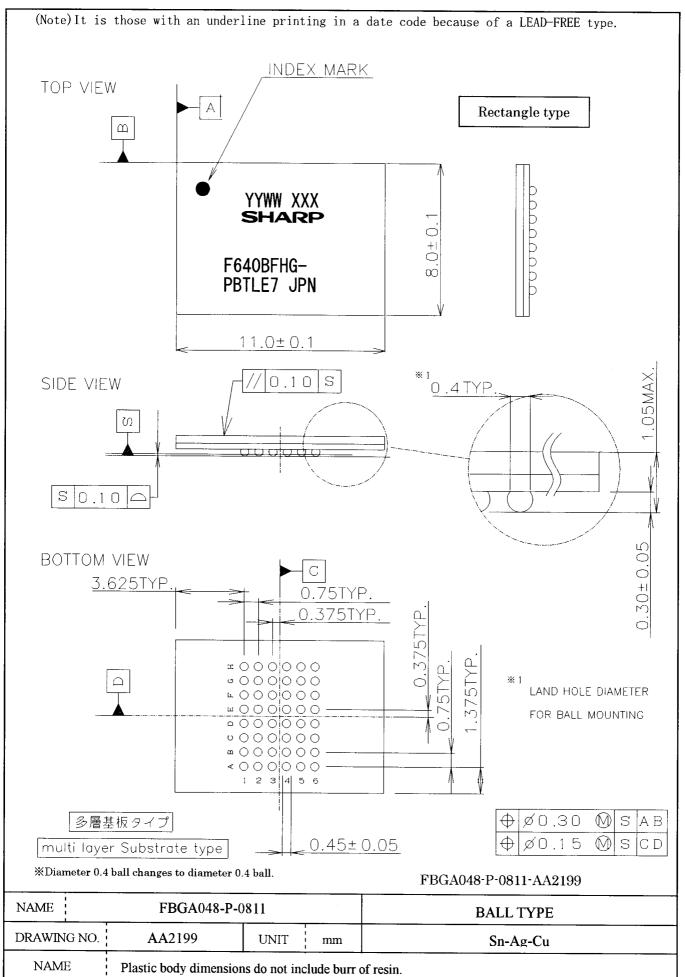
 Ultrasonic washing power : 25 watts / liter max.
 Washing time : Total 1 minute max.
 Solvent temperature : 15~40°C
 Package outline specification. Refer to the attached drawing. (Plastic body dimensions do not include burr of resin.) The contents of LEAD-FREE TYPE application of the specifications. (*2)
 Markings.
 Marking details. (The information on the package should be given as follows.) (1) Product name : F640BFHG-PBTLE7

(2) Company name : SHARP

(3) Date co	de	: (Example) YYWW XXX
YY	\rightarrow	Denotes the production year. (Last two digits of the year.)
WW	\rightarrow	Denotes the production week. $(01 \cdot 02 \cdot \sim \cdot 52 \cdot 53)$
XXX	\rightarrow	Denotes the production ref. code ($1 \sim 3$ digits).

(4) "JPN" indicates the country of origin.

6-2. Marking layout.


The layout is shown in the attached drawing.

(However, this layout does not specify the size of the marking character and marking position.)

*2 The contents of LEAD-FREE TYPE application of the specifications.

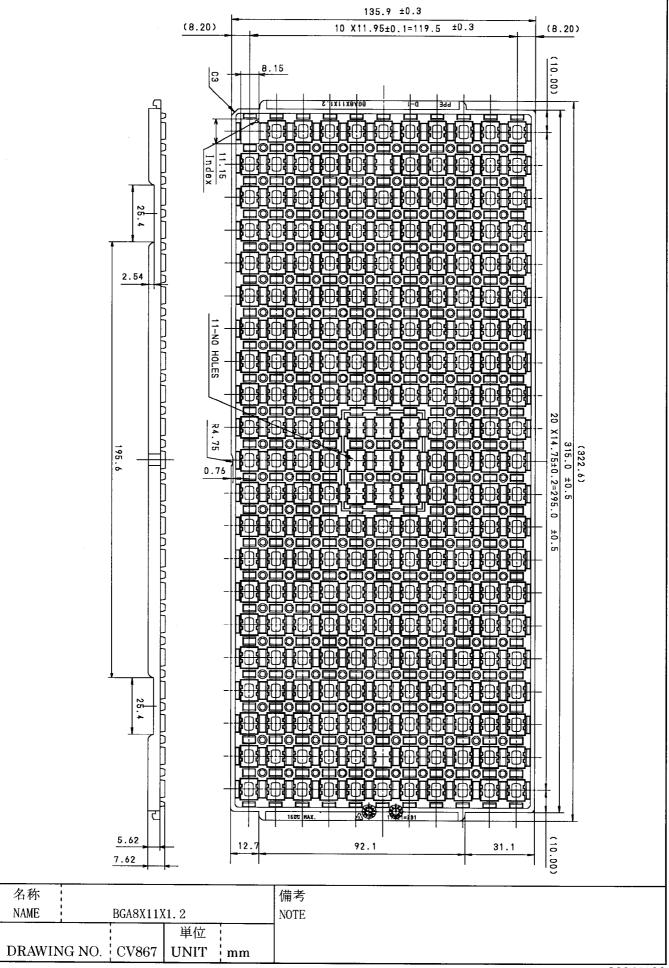
LEAD FINISH or BALL TYPE	LEAD-FREE TYPE (Sn-Ag-Cu)
DATE CODE	They are those with an underline.
The word of "LEAD FREE" is printed on the packing label	Printed

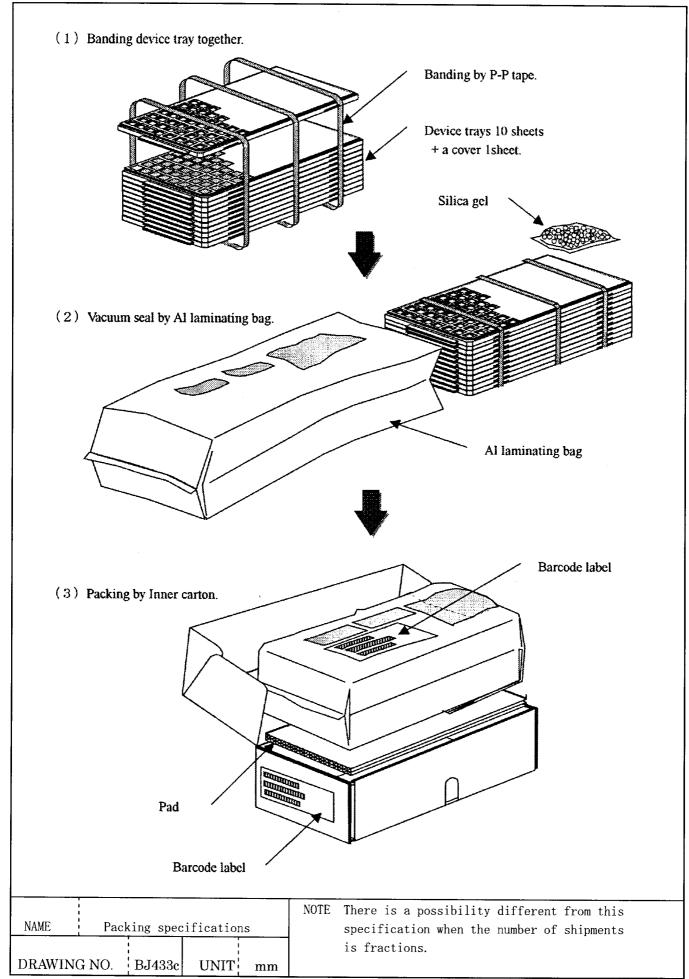
- 7. Packing Specifications (Dry packing for surface mount packages.)
 - 7-1. Packing materials.

Material name	Material specifications	Purpose
Inner carton	Cardboard (2310 devices / inner carton max.)	Packing the devices. (10 trays / inner carton)
Tray	Conductive plastic (231 devices / tray)	Securing the devices.
Upper cover tray	Conductive plastic (1 tray / inner carton)	Securing the devices.
Laminated aluminum bag	Aluminum polyethylene	Keeping the devices dry.
Desiccant	Silica gel	Keeping the devices dry.
Label	Paper	Indicates part number, quantity, and packed date.
PP band	Polypropylene (3 pcs. / inner carton)	Securing the devices.
Outer carton	Cardboard (9240 devices / outer carton max.)	Outer packing.

(Devices must be placed on the tray in the same direction.)

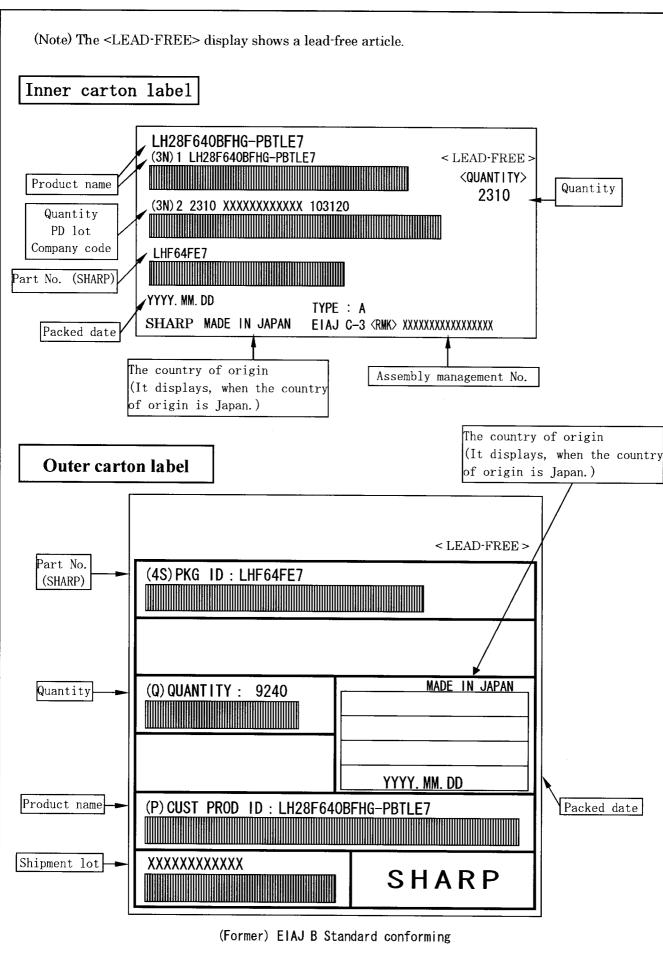
7-2.Outline dimension of tray.


Refer to the attached drawing.


7-3. Outline dimension of carton.

Refer to the attached drawing.

8. Precautions for use.


- (1) Opening must be done on an anti-ESD treated workbench. All workers must also have undergone anti-ESD treatment.
- (2) The trays have undergone either conductive or anti-ESD treatment. If another tray is used, make sure it has also undergone conductive or anti-ESD treatment.
- (3) The devices should be mounted within one year of the date of delivery.

37

A-1 RECOMMENDED OPERATING CONDITIONS

A-1.1 At Device Power-Up

AC timing illustrated in Figure A-1 is recommended for the supply voltages and the control signals at device power-up. If the timing in the figure is ignored, the device may not operate correctly.

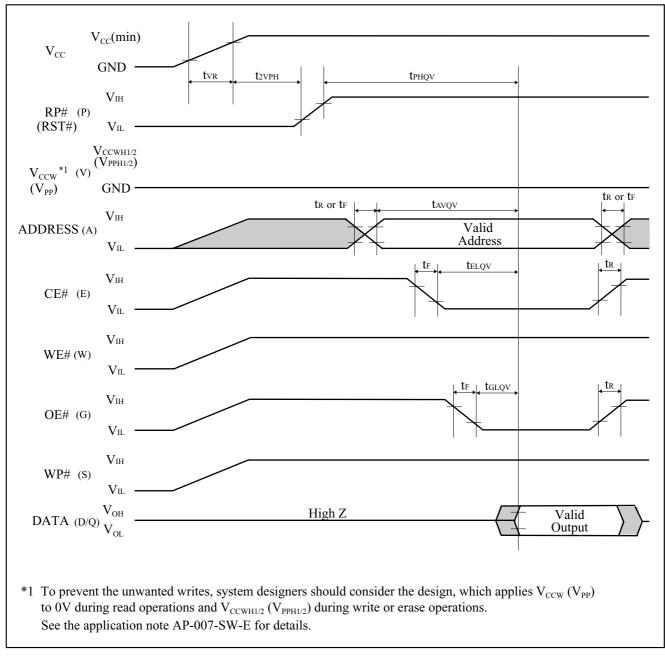


Figure A-1. AC Timing at Device Power-Up

For the AC specifications t_{VR} , t_R , t_F in the figure, refer to the next page. See the "ELECTRICAL SPECIFICATIONS" described in specifications for the supply voltage range, the operating temperature and the AC specifications not shown in the next page.

A-1.1.1 Rise and Fall Time

Symbol	Parameter		Min.	Max.	Unit
t _{VR}	V _{CC} Rise Time	1	0.5	30000	∞s/V
t _R	Input Signal Rise Time	1, 2		1	∞s/V
t _F	Input Signal Fall Time	1, 2		1	∞s/V

NOTES:

Sampled, not 100% tested.
 This specification is applied for not only the device power-up but also the normal operations.

A-1.2 Glitch Noises

Do not input the glitch noises which are below V_{IH} (Min.) or above V_{IL} (Max.) on address, data, reset, and control signals, as shown in Figure A-2 (b). The acceptable glitch noises are illustrated in Figure A-2 (a).

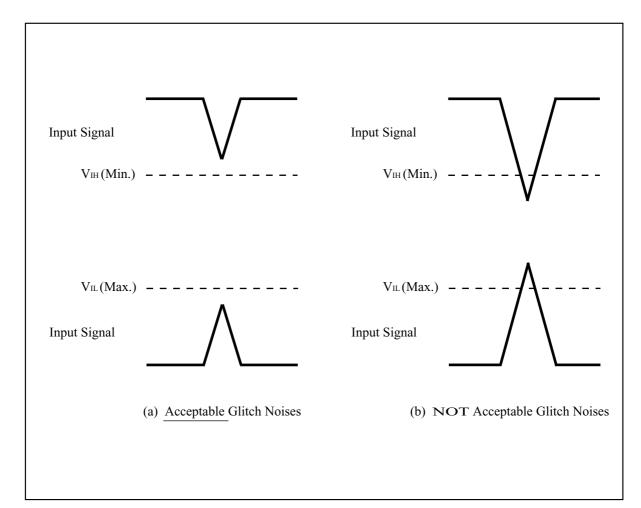


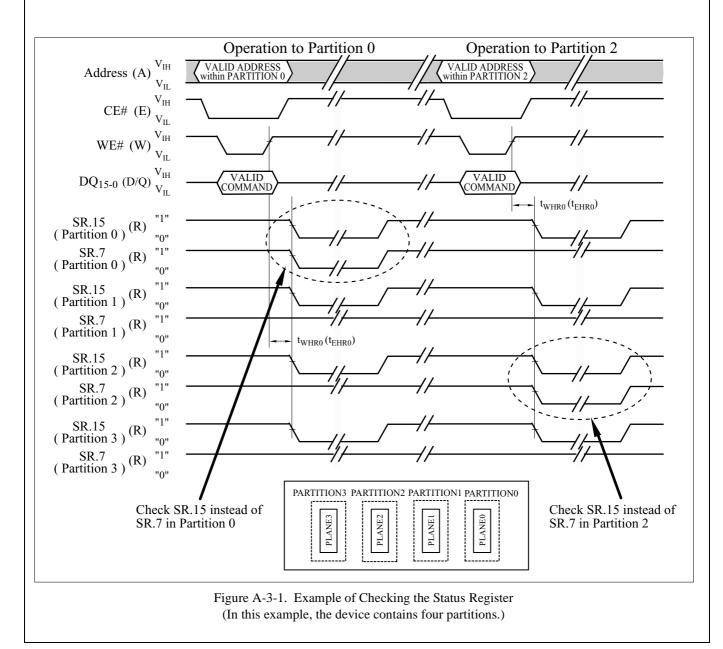
Figure A-2. Waveform for Glitch Noises

See the "DC CHARACTERISTICS" described in specifications for V_{IH} (Min.) and V_{IL} (Max.).

A-2 RELATED DOCUMENT INFORMATION⁽¹⁾

Document No.	Document Name	
AP-001-SD-E	Flash Memory Family Software Drivers	
АР-006-РТ-Е	Data Protection Method of SHARP Flash Memory	
AP-007-SW-E	RP#, V _{PP} Electric Potential Switching Circuit	

NOTE:


1. International customers should contact their local SHARP or distribution sales office.

A-3 STATUS REGISTER READ OPERATIONS

If AC timing for reading the status register described in specifications is not satisfied, a system processor can check the status register bit SR.15 instead of SR.7 to determine when the erase or program operation has been completed.

	NOTES:
SR.15 = WRITE STATE MACHINE STATUS: (DQ ₁₅) 1 = Ready in All Partitions 0 = Busy in Any Partition	SR.15 indicates the status of WSM (Write State Machine). If SR.15="0", erase or program operation is in progress in any partition.
 SR.7 = WRITE STATE MACHINE STATUS FOR EACH PARTITION: (DQ₇) 1 = Ready in the Addressed Partition 0 = Busy in the Addressed Partition 	SR.7 indicates the status of the partition. If SR.7="0", erase or program operation is in progress in the addressed partition. Even if the SR.7 is "1", the WSM may be occupied by the other partition.

Table A-3-1. Status Register Definition (SR.15 and SR.7)

SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.

Suggested applications (if any) are for standard use; See Important Restrictions for limitations on special applications. See Limited Warranty for SHARP's product warranty. The Limited Warranty is in lieu, and exclusive of, all other warranties, express or implied. ALL EXPRESS AND IMPLIED WARRANTIES, INCLUDING THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR USE AND FITNESS FOR A PARTICULAR PURPOSE, ARE SPECIFICALLY EXCLUDED. In no event will SHARP be liable, or in any way responsible, for any incidental or consequential economic or property damage.

SHARP®

NORTH AMERICA

SHARP Microelectronics of the Americas 5700 NW Pacific Rim Blvd. Camas, WA 98607, U.S.A. Phone: (1) 360-834-2500 Fax: (1) 360-834-8903 Fast Info: (1) 800-833-9437 www.sharpsma.com

TAIWAN

SHARP Electronic Components (Taiwan) Corporation 8F-A, No. 16, Sec. 4, Nanking E. Rd. Taipei, Taiwan, Republic of China Phone: (886) 2-2577-7341 Fax: (886) 2-2577-7326/2-2577-7328

CHINA

SHARP Microelectronics of China (Shanghai) Co., Ltd. 28 Xin Jin Qiao Road King Tower 16F Pudong Shanghai, 201206 P.R. China Phone: (86) 21-5854-7710/21-5834-6056 Fax: (86) 21-5854-4340/21-5834-6057 Head Office:

No. 360, Bashen Road,

Xin Development Bldg. 22 Waigaoqiao Free Trade Zone Shanghai 200131 P.R. China Email: smc@china.global.sharp.co.jp

EUROPE

SHARP Microelectronics Europe Division of Sharp Electronics (Europe) GmbH Sonninstrasse 3 20097 Hamburg, Germany Phone: (49) 40-2376-2286 Fax: (49) 40-2376-2232 www.sharpsme.com

SINGAPORE

SHARP Electronics (Singapore) PTE., Ltd. 438A, Alexandra Road, #05-01/02 Alexandra Technopark, Singapore 119967 Phone: (65) 271-3566 Fax: (65) 271-3855

HONG KONG

SHARP-ROXY (Hong Kong) Ltd. 3rd Business Division, 17/F, Admiralty Centre, Tower 1 18 Harcourt Road, Hong Kong Phone: (852) 28229311 Fax: (852) 28660779 www.sharp.com.hk **Shenzhen Representative Office:** Room 13B1, Tower C, Electronics Science & Technology Building Shen Nan Zhong Road Shenzhen, P.R. China Phone: (86) 755-3273731 Fax: (86) 755-3273735

JAPAN

SHARP Corporation Electronic Components & Devices 22-22 Nagaike-cho, Abeno-Ku Osaka 545-8522, Japan Phone: (81) 6-6621-1221 Fax: (81) 6117-725300/6117-725301 www.sharp-world.com

KOREA

SHARP Electronic Components (Korea) Corporation RM 501 Geosung B/D, 541 Dohwa-dong, Mapo-ku Seoul 121-701, Korea Phone: (82) 2-711-5813 ~ 8 Fax: (82) 2-711-5819