Features

- Programmable DMUX Ratio:
 - 1:4: Data Rate Max = 1 Gsps
 - PD (8b/10b) < 4.3/4.7 W (ECL 50Ω output)
 - 1:8: Data Rate Max = 2 Gsps
 - PD (8b/10b) < 6/6.9 W (ECL 50Ω output)</p>
 - 1:16 with 1 TS8388B or 1 TS83102G0 and 2 DMUX
- Parallel Output Mode
- 8-/10-bit
- ECL Differential Input Data
- DataReady or DataReady/2 Input Clock
- Input Clock Sampling Delay Adjust
- Single-ended Output Data:
 - Adjustable Common Mode and Swing
 - Logic Threshold Reference Output
 - (ECL, PECL, TTL)
- Asynchronous Reset
- Synchronous Reset
- ADC + DMUX Multi-channel Applications:
 Stand-alone Delay Adjust Cell for ADCs Sampling Instant Alignment
- Differential Data Ready Output
- Built-in Self Test (BIST)
- Dual Power Supply $V_{EE} = -5V$, $V_{CC} = +5V$
- Radiation Tolerance Oriented Design (More than 100 Krad (Si) Expected)
- TBGA 240 (Cavity Down) Package

Screening

- Temperature Range:
 - − 0°C < Tc; Tj < 90°C</p>
 - − -40°C < Tc; Tj < 110°C</p>

Description

The TS81102G0 is a monolithic 10-bit high-speed (up to 2 GHz) demultiplexor.

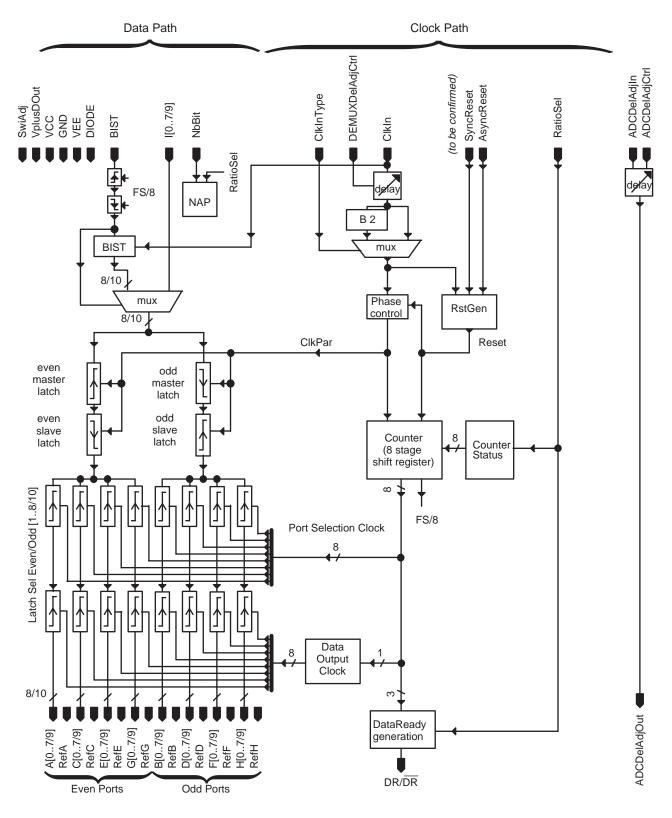
The DMUX is designed to run with all kinds of ADCs and more specifically, it fits perfectly with Atmel high-speed ADC 8-bit 1 Gsps TS8388B, ADC 10-bit 2 Gsps TS83102G0 and ADC 8-bit 4 Gsps TS83084G0.

The TS81102G0 uses an innovative architecture, including a sampling delay adjust and tunable output levels.

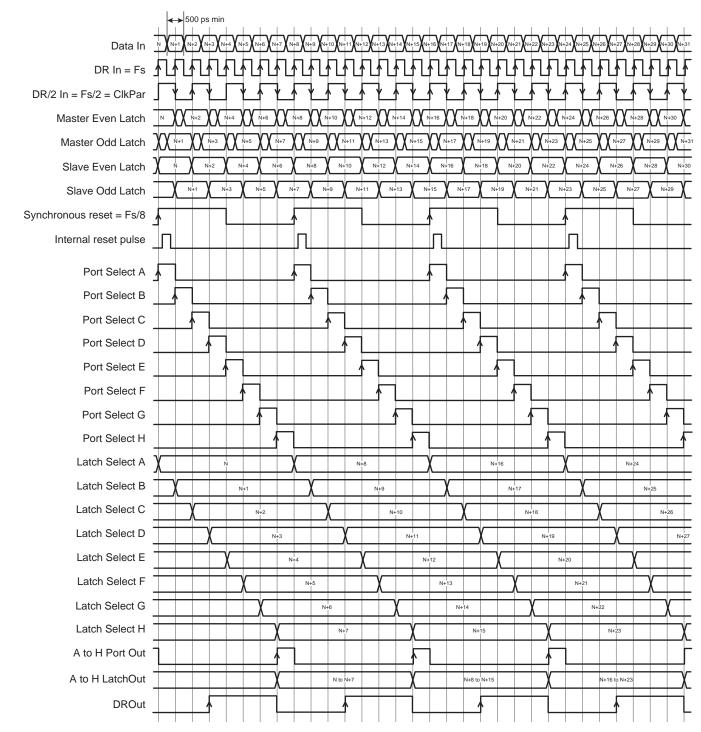
This DMUX allows users to process the high-speed output data stream down to processor speed. It uses the very high-speed bipolar technology (25 GHz NPN cut-off frequency).

DMUX 8-/10-bit 2 GHz 1:4/8

TS81102G0


Rev. 2105A-BDC-07/02

Block Diagram


Figure 1. Block Diagram

2

TS81102G0

Internal TimingThis diagram corresponds to an established operation of the DMUX with Synchronous Reset.Diagram

Figure 2. Internal Timing Diagram

Functional Description

The TS81102G0 is a demultiplexer based on an advanced high-speed bipolar technology featuring a cutoff frequency of 25 GHz.

Its role is to reduce the data rate so that the data could be processed at the DMUX output.

The TS81102G0 provides 2 programmable ratios: 1:4 and 1:8.

The maximum data rate is 1 Gsps for 1:4 ratio and 2 Gsps for 1:8 ratio.

The TS81102G0 is able to process 8 or 10 bits data flow.

The input clock can be ECL differential signal or single-ended DC coupled signal. Moreover it could be DataReady or DataReady/2 clock.

The input digital data must be ECL differential signals.

The output signals (Data Ready, digital data and Reference voltage) are adjustable with VplusD independent power supply. Typical output modes are ECL, PECL or TTL.

The Data Ready output is a differential signal.

The digital output data and Reference voltages are single-ended signals.

The TS81102G0 is started by an Asynchronous Reset. A Synchronous Reset enables the user to re-synchronize the output port selection and to minimize possible loss of data that could occur within the DMUX.

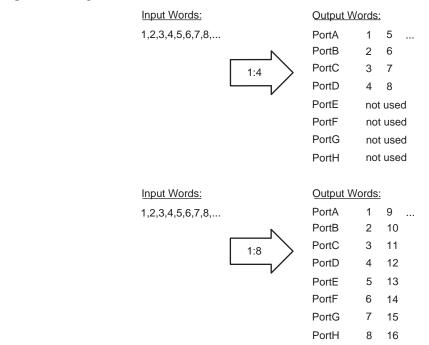
A delay adjust cell is available to ensure a good phase between input clock and input data of the DMUX.

Another delay adjust cell is available to control ADCs sampling instant alignment, in case of ADCs interleaving.

A 10 bits generator is implemented in the TS81102G0, the Built-In Self Test (BIST). This test sequence is very useful for testing the DMUX at first use.

A fine tuning of the output swing is also available.

The TS81102G0 can be used with the following Atmel ADCs:


- TS8388B(F/G), 8-bit 1 Gsps ADC
- TS83102G0, 10-bit 2 Gsps ADC
- TS83084G0, 8-bit 4 Gsps Dual Port ADC (1 DMUX per port).

4

Main Function Description

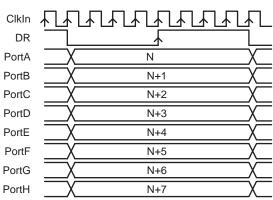
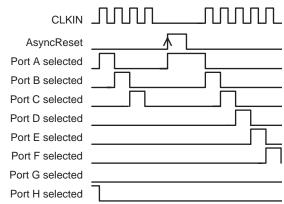

Programmable DMUX Ratio The conversion ratio is programmable: 1:4 or 1:8.

Figure 3. Programmable DMUX Ratio

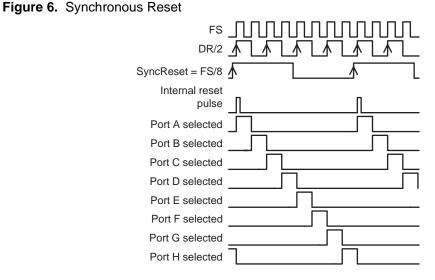
Parallel Output Mode

Figure 4. Parallel Mode

Input Clock Sampling Delay Adjust (DEMUXDELADJCTRL)


The input clock phase can be adjusted with an adjustable delay (from 250 ps to 750 ps). This is to ensure a proper phase between clock and input data of the DMUX.

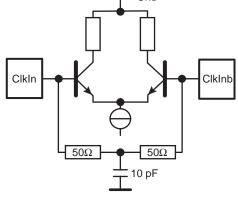
Asynchronous Reset (ASYNCRESET)


Figure 5. Asynchronous Reset

The Asynchronous Reset is a master reset of the port selection, which works on TTL levels. It is active on the high level. During an asynchronous reset, the clock must run. It is used to start the DMUX.

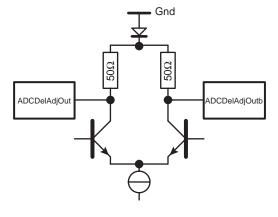
When it is active, it paralyzes the outputs (output clock and output data remain to the level they had, just before the asynchronous reset). When it comes back to its low level, the DMUX starts: the outputs are active and the first processed data is on the port A.

Synchronous Reset (SYNCRESET)



The DMUX can be synchronously reset to a programmable state depending on the conversion ratio. The clock must not be stopped during reset. The synchronization signal is a clock (SyncRest) which frequency is like FS/8*n where n is a integer (n = 1,2,3,...) in 1:8 mode and FS/4*n in 1:4 mode. The division factor is called N in next schematic. The front edge of this clock is synchronized with ClkIn inside the DMUX, and generates a 200 ps reset pulse. This reset pulse occurs during a fixed level of ClkIn.

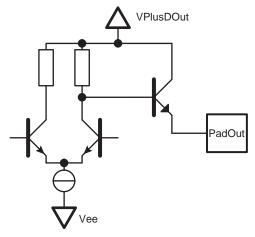
If the DMUX was synchronized with Syncreset previous to the reset, then the output data are immediately correct, no modification can be seen at the output of the DMUX, and no data are lost ("Internal Timing Diagram" on page 3).


If the DMUX was not synchronized with SyncReset, then the output data and data ready of the DMUX are changed. The output data are correct after a number of input clock corresponding to the pipeline delay ("Timing Diagrams with Synchronous Reset" on page 19).

Counter Programmable State	 When the counter is reset, its initial states depends on the conversion ratio: 1:8: counting on 8 bits, 1:4: counting on 4 bits. 				
Pipeline Delay	 The maximum pipeline delay depends on the conversion ratio: 1:8: pipeline delay = 7 1:4: pipeline delay = 3 				
8-/10-bit, with NAP Mode for the 2 Unused Bit	The DMUX is a 10-bit parallel device. The two last bit (bit 8 and 9) may not be used, and the corresponding functions are set in nap mode to reduce power consumption.				
ECL Differential	Input data are ECL compatible (Voh = -0.8V, Vol = -1.8V).				
Input Data	The minimum swing required is 100 mV differential.				
	All inputs have a 100Ω differential termination resistor. The middle point of these resistor is connected to ground through a 10 pF capacitor.				
	Figure 7. ECL Differential Input Data				

50Ω Differential
Output DataOutput clock for ADC is generated through 50Ω loaded long tailed. The 50Ω resistor is con-
nected to ground pad through a diode. The levels are (on 100Ω differential termination
resistor): Vol = -1.4V, Voh = -1.0V.

Figure 8. 50Ω Differential Output Data


Single-ended Output Data

To reduce the pin number of the DMUX, and the power consumption, the eight output ports are single-ended.

To reach the high frequency output (up to 250 MHz), with a reasonable power consumption, the swing must be limited to a maximum of \pm 500 mV. The common mode is adjustable from - 1.3V to +2V, with Vplus DOut pins. To ensure a better noise immunity, a reference level (common mode) is available (one by output port).

The output buffers are ECL type (open emitter – not a resistive adapted impedance). They are designed for 15 mA average output current, and may be used with a 50Ω termination impedance.

Figure 9. Single-ended Output Data

We give thereafter three examples of application of these buffers: ECL/PECL/TTL. Please note that it is possible to have any other odd output format as far as current (36 mA max) and voltage (Vplus Dout – $V_{EE} \leq 8.3V$) limits are not overridden. The maximum frequency in TTL output mode depends on the load to drive.

Parameter	ECL	PECL	TTL	Unit
VplusDout	0	3.3	3.3	V
Vtt	-2	1.3	0	V
Swing	±0.5	±0.5	±1	V
Reference	-1.3	2	1.5	V
Voh	-0.8	2.5	2.5	V
Vol	-1.8	1.5	0.5	V
Load	50	50	≥75	Ω
Average Output Current	14	14	15	mA
Output Data rate max.	250	250	250	Msps

Table 1. Examples of Application of Buffers

This corresponds to the "Adjustable Logic Single" in the pin-out description.

The "Adjustable Single" buffers for reference voltage are the same buffers. But the information available at the output of these buffers is more like analog than logic.

Note: The Max Output Data Rate is given for a typical $50\Omega/2$ pF load.

8

Differential Data Ready Output	The front Edge of the DataReady Output occurs when data is available on the corresponding port. The frequency of this clock depends on the conversion ratio (1:8 or 1:4), with a duty cycle of 50%.
	The definition is the same as for single-ended output data, but the buffers are differential.
	This corresponds to the "Adjustable Logic Differential" in the pin-out description.
Built-in Self Test (BIST)	A pseudo-random 10-bit generator is implemented in the DMUX. It generates a 10-bit signal in the output of the DMUX, with a period of 512 input clock. The probability of occurrence of codes is uniformly spread over the 1024 possible codes: 0 or 1/1024.
	Note that the 256 codes of bit 1 to 8 occur at least once. It starts with BIST command, in phase with FS/8 clock, on Port A. The logic output obtained on the A to H ports depends on the conversion ratio. The driving clock of BIST is ClkIn. The ClkInType must be set to '1' (DataReady ADC clock) to have a different 10-bit code on each output.
	The complete BIST sequence is available on request.

Specifications

Absolute Maximum Ratings

Table 2. Absolute Maximum Ratings

Parameter	Symbol	Comments	Value	Unit
Positive supply voltage	V _{cc}		GND to 6	V
Positive output buffer supply voltage	V _{PLUSD}		GND to 4	V
Negative supply voltage	V _{EE}		GND to -6	V
Analog input voltages	ADCDelAdjCtrl, ADCDelAdjCtrlb or DMUXDelAdjCtrl, DMUXDelAdjCtrlb or	Voltage range for each pad Differential voltage	-1 to +1	V
	SwiAdj	range	-1 (0 +1	
ECL 50Ω input voltage	ClkIn or ClkInb or I[09] or I[09]b or SyncReset or SyncResetb or ADCDelAdjIn or ADCDelAdjInb	Voltage range for each pad	-2.2 to +0.6	V
Maximum difference between ECL 50Ω input voltages	Clkln – Clklnb or I[09] - I[09]b or SyncReset –	Minimum differential swing	0.1	V
	Syncresetb or ADCDelAdjln - ADCDelAdjlnb	Maximum differential swing	2	

		78

Table 2. Absolute Maximum Ratings (Continued)

Parameter	Symbol	Comments	Value	Unit
Data output current	A[09] to H[09] or RefA to RefH or DR or DRb	Maximum current	36	mA
TTL input voltage	ClkIn Type RatioSel NbBit AsyncReset BIST		GND to V _{CC}	V
Maximum input voltage on diode for temperature measurement	DIODE		700	mV
Maximum input current on diode	DIODE		8	mA
Maximum junction temperature	T _j		135	°C
Storage temperature	T _{stg}		-65 to 150	°C

Note: Absolute maximum ratings are limiting values, to be applied individually, while other parameters are within specified operating conditions. Long exposure to maximum rating may affect device reliability. The use of a thermal heat sink is mandatory. See "Thermal and Moisture Characteristics" on page 25.

Recommended Operating Conditions

Table 3.	Recommended	Operating	Conditions
----------	-------------	-----------	------------

			Reco	mmended	Value	
Parameter	Symbol	Comments	Min	Тур	Max	Unit
Positive supply voltage	V _{CC}		4.45	5	5.25	V
Positive output buffer supply voltage	V _{PLUSD}	ECL output compatibility	-	0	_	V
Positive output buffer supply voltage	V _{PLUSD}	PECL output compatibility	-	3.3	_	V
Positive output buffer supply voltage	V _{PLUSD}	TTL output compatibility	_	3.3	-	V
Negative supply voltage	V _{EE}		-5.25	-5	-4.75	V
Operating temperature range	TJ	Commercial grade: "C" Industrial grade: "V"		< Tc; Tj < 9) < Tc; Tj < 7		°C

Electrical Operating Characteristics

Tj (typical) = 70°C. Full Scale differential: -40°C < Tc; Tj < 110°C.

(Guaranteed temperature range are depending on part number)

Table 4. Electrical Specifications

		Test		Value			
Parameter	Symbol	Level	Min	Тур	Мах	Unit	Note
Power Requirements							
Positive supply voltage							
V _{cc}	V _{CC}		4.75	5	5.25	V	
V _{PLUSDOUT}	_		_	-	-	-	
ECL	V _{PLUSD}	1	-0.25	0	0.25	V	
PECL	V _{PLUSD}		3.135	3.3	3.465	V	
TTL	V _{PLUSD}		3.135	3.3	3.465	V	
Negative supply voltage							
V _{EE}	V_{EE}	1	-5.25	-5	-4.75	V	
Supply Currents							(1)
ECL (50Ω) and PECL (50Ω)							
V _{CC} (for every configuration)	I _{cc}		_	31	-	mA	
1:8, 8 bits	I _{PLUSD}		540	1180	1820	mA	
	I _{EE}		_	719	-	mA	
1:8, 10 bits	I _{PLUSD}		640	1140	2240	mA	
	I _{EE}	1	_	790	-	mA	
1:4, 8 bits	I _{PLUSD}		270	590	910	mA	
	I _{EE}		_	592	-	mA	
1:4, 10 bits	I _{PLUSD}		320	720	1120	mA	
	I_{EE}		_	634	-	mA	
TTL (75Ω)							
V _{CC} (for every configuration)	I _{CC}		-	31	-	mA	
1:8, 8 bits	I _{PLUSD}		760	1610	2440	mA	
	I _{EE}		-	872	-	mA	
1:8, 10 bits	I _{PLUSD}		900	1770	3010	mA	
	I _{EE}	1	_	980	-	mA	
1:4, 8 bits	I _{PLUSD}		380	810	1220	mA	
	I _{EE}		-	670	_	mA	
1:4, 10 bits	I _{PLUSD}		450	880	1510	mA	
	I_{EE}		_	729	_	mA	
Nominal power dissipation							(1)
ECL (50Ω)							
1:8, 8 bits	PD		5.2	5.6	6	W	
1:8, 10 bits	PD	4	5.9	6.4	6.9	W	
1:4, 8 bits	PD	1	3.9	4.1	4.3	W	
1:4, 10 bits	PD		4.2	4.5	4.7	W	

Table 4. Electrical Specifications (Continued)

		Test		Value			
Parameter	Symbol	Level	Min	Тур	Мах	Unit	Note
PECL (50Ω)							
1:8, 8 bits	PD		5.8	6.2	6.6	W	
1:8, 10 bits	PD		6.6	7.1	7.6	W	
1:4, 8 bits	PD	1	4.2	4.4	4.6	W	
1:4, 10 bits	PD		4.6	4.8	5.1	W	
TTL (75Ω)							
1:8, 8 bits	PD		6.8	7.3	7.7	W	
1:8, 10 bits	PD		7.8	8.4	9	W	
1:4, 8 bits	PD	1	4.7	4.9	5.1	W	
1:4, 10 bits	PD		5.2	5.5	5.8	W	
Delay Adjust Control							
DMUXDelAdjCtrl differential voltage	DDAC		_	_	_		
250 ps			_	-0.5	_	V	
500 ps		_	_	0	_	V	
750 ps			_	0.5	_	V	
Input current	IDDAC		_	_	_	mA	
ADCDelAdjCtrl differential voltage	ADAC		_	_	_		
250 ps			_	-0.5	_	V	
500 ps		_	_	0	_	V	
750 ps			_	0.5	_	V	
Input current	IADAC		_	_	_	mA	
Digital Outputs							
ECL Output							
(assuming $V_{PLUSD} = 0V$, SWIADJ = 0V, 50 Ω							
termination resistor on board)							
Logic "0" voltage	V _{OL}	1	_	-2.12	_	V	
Logic "1" voltage	V _{OH}		_	-1.16	_	V	
Reference voltage	V _{REF}		_	-1.40	_	V	
PECL Output							
(assuming V_{PLUSD} = 3.3V, SWIADJ = 0V, 50 Ω							
termination resistor on board)							
Logic "0" voltage	V _{OL}	1	_	1.27	_	V	
Logic "1" voltage	V _{OL}		_	2.44	_	v	
Reference voltage	V _{REF}		_	1.83	_	v	
TTL Output	KEF					-	
(assuming $V_{PLUSD} = 3.3V$, SWIADJ = 0V, 75 Ω termination resistor on board)							
Logic "0" voltage	V	4		0.10		1/	
Logic "1" voltage	V _{OL}	1	_	0.19	_	V V	
Reference voltage	V _{OH}		_	2.31 1.2	_	V	
-	V _{REF}		-	1.2	_	V	
Output level drift with temperature (data and DR	_	_	_	-1.3	_	mV/°C	

Table 4. Electrical Specifications (Continued)

		Test		Value			
Parameter	Symbol	Level	Min	Тур	Max	Unit	Note
Output level drift with temperature (reference outputs)	_	1	_	-0.9	_	mV/°C	
Digital Inputs							
ECL Input Voltages							
Logic "0" voltage	V _{IL}	1	-	_	-1.4	V	
Logic "1" voltage	V _{IH}	1	-1.1	_	_	V	
TTL Input Voltages							
Logic "0" voltage	V _{IL}	1	-	_	0.8	V	
Logic "1" voltage	V _{IH}		2.0	_	-	V	

Note: 1. The supply current I_{PLUSD} and the power dissipation depend on the state of the output buffers:

- the minimum values are corresponding to all the output buffers at low level,

- the maximum values are corresponding to all the output buffers at high level,

- the typical values are corresponding to an equal sharing out of the output buffers between high and low level.

Switching	50% clock duty cycle (CLKIN, CLKINB). Tj (typical) = 70°C.
Performance and	Full Scale differential: -40°C < Tc; Tj < 110°C.
Characteristics	(Guaranteed temperature ranges depend on part number)

See Timing Diagrams Figure 10 on page 16 to Figure 19 on page 20.

Table 5. Switching Performances

		Test	Value				
Parameter	Symbol	Level	Min	Тур	Мах	Unit	Note
Input Clock							
Maximum clock frequency							
1:8 ratio	FMAX	-	2	_	2.2	GHz	
1:4 ratio			1	-	1.1		
Clock pulse width (high)	TC1	-	100	_	_	ps	
Clock pulse width (low)	TC2	_	100	_	_	ps	
Clock Path pipeline delay							
DR input clock	TCPD	-	_	981	_	ps	(1)
DR/2 input clock	TCPD		-	1084	-	ps	(2)
Clock rise/fall time	TRCKIN TFCKIN	_	_	100	_	ps	
Asynchronous Reset							
Asynchronous Reset pulse width	PWAR	-	1000	-	_	ps	
Setup time from Asynchronous to ClkIn	TSAR	-	_	1500	-	ps	
Rise/fall time for (10% – 90%)	TRAR TFAR	_	1000	_	_	ps	

Table 5. Switching Performances (Continued)

		Test	Value				
Parameter	Symbol	Level	Min	Тур	Мах	Unit	Note
Synchronous Reset							
Setup time from SyncReset to ClkIn							
DR input clock	TSSR	_	_	-580	_	ps	(3)
DR/2 input clock			_	-477	-	ps	(4)
Hold time from ClkIn to SyncReset							
DR input clock	THSR	—	-	780	-	ps	(5)
DR/2 input clock			_	677	-	ps	(6)
Rise/fall for (10% – 90%)	TSRR/TFSR	-	100	-	-	ps	
Input Data							
Setup time from I[09] to ClkIn							
DR input clock	TSCKIN	_	-	-794	-	ps	(7)
DR/2 input clock			_	-691	-	ps	(8)
Hold time from ClkIn to I[09]							
DR input clock	THCKIN	—	_	994	-	ps	(9)
DR/2 input clock			-	891	-	ps	(10)
Rise/fall for (10% – 90%)	TRDI/TFDI	_	100	-	_	ps	
Output Data							
Data output delay							
DR input clock	TOD	_	-	1820	-	ps	(11)
DR/2 input clock			_	1717	_	ps	(12)
Data pipeline delay							
DR input clock, 1:4 ratio			-	3	-	Number	(10)
DR input clock, 1:8 ratio	TPD	—	-	7	-	of input	(13)
DR/2 input clock, 1:4 ratio			-	3/2	-	clock	
DR/2 input clock, 1:8 ratio			_	7/2	_		(1.0)
Rise/fall for (10% – 90%)	TROD/tfod	-	-	497/484	-	ps	(14)
Data Ready							
Data ready Falling edge							(45)
DR input clock	TDRF	—	-	1856	-	ps	(15) (16)
DR/2 input clock			—	1753	-	ps	(10)
Data ready Rising edge							(17)
DR input clock	TDRR	-	-	1828	-	ps	(17)
DR/2 input clock			-	1725	-	ps	
Asynchr; Reset to DataReady delay	TARDR	-	_	1918	-	ps	(19)
Synchr. Reset to DataReady delay	TSRDR	-	-	1037	_	ps	(20)
Rise/fall for (10% – 90%)	TRDR/TFDR	-	_	450	-	ps	(21)
Rising edge uncertainty	JITTER	-	_	62	_	ps	
Built-In Self Test							

Table 5. Switching Performances (Continued)

		Test		Value			
Parameter	Symbol	Level	Min	Тур	Max	Unit	Note
Setup time from Bist to ClkIn	TSBIST	-	_	1000	_	ps	
Rise/fall time for (10% – 90%)	TRBIST/ TFBIST	_	1000	_	_	ps	
ADC Delay Adjust		1					
Input frequency	FMADA	-	2	_	2.2	GHz	
Input pulse width (high)	TC1ADA	_	90	_	-	ps	
Input pulse width (low)	TC2ADA	-	90	_	_	ps	
Input rise/fall time	TRIADA/ TFIADA	_	100 100	150 150	_	ps	
Output rise/fall time	TROADA/ TFOADA	_		145 104	_	ps	(23)
Data output delay (typical delay adjust setting)	TADA	_		784 896	_	ps	(24) (25)
Output delay drift with temperature	TADAT	-	-	2.5	_	ps/°C	
Output delay uncertainly	JITADA	-	_	(TBD)	_	ps	

Notes: 1. TCPD is tuned with DMUXDelAdjCtrl: TCPD = 981 ± 250 ps.

2. TCPD is tuned with DMUXDeIAdjCtrl: TCPD = 1084 ± 250 ps.

3. TSSR depends on DMUXDelAdjCtrl: TSSR = -580 ± 250 ps. TSSR < 0 because of Clock Path internal delay.

4. TSSR depends on DMUXDelAdjCtrl: TSSR = -477 ± 250 ps. TSSR < 0 because of Clock Path internal delay.

5. THSR depends on DMUXDelAdjCtrl: THSR = 780 ± 250 ps.

6. THSR depends on DMUXDelAdjCtrl: THSR = 677 ± 250 ps.

7. TSCKIN depends on DMUXDelAdjCtrl: TSCKIN = -794 ± 250 ps. TSCKIN < 0 because of Clock Path internal delay.

8. TSCKIN depends on DMUXDelAdjCtrl: TSCKIN = -691 ± 250 ps. TSCKIN < 0 because of Clock Path internal delay.

9. THCKIN depends on DMUXDelAdjCtrl: THCKIN = 994 ± 250 ps.

10. THCKIN depends on DMUXDelAdjCtrl: THCKIN = 891 ± 250 ps.

11. TOD depends on DMUXDelAdjCtrl: TOD = 1820 ± 250 ps. TOD is given for ECL $50\Omega/2$ pFoutput load.

12. TOD depends on DMUXDelAdjCtrl: TOD = 1717 \pm 250 ps. TOD is given for ECL 50 $\Omega/2$ pFoutput load.

- 13. TPD is the number of ClkIn clock cycle from selection of Port A to selection of Port H in 1.8 conversion mode, and from selection of Port A to selection of Port D in 1.4 conversion mode. It is the maximum number of ClkIn clock cycle, or pipeline delay, that a data has to stay in the DMUX before being sorted out. This maximum delay occurs for the data sent to Port A. For instance, the data sent to Port H goes directly from the input to the Port H, and its pipeline is 0. But even for this data, there is an additional delay due to physical propagation time in the DMUX.
- 14. TROD and TFOD are given for ECL 50Ω/2 pF output load. In TTL mode, the TROD and TFOD are twice the ones for ECL. (For other termination topology, apply proper derating value 50 ps/pF in ECL, 100 ps/pF in TTL mode.)

15. TDRF depends on DMUXDelAdjCtrl: TDRF = 1856 ± 250 ps. It is given for ECL $50\Omega/2$ pF output load.

16. TDRF depends on DMUXDelAdjCtrl: TDRF = 1753 ± 250 ps. It is given for ECL $50\Omega/2$ pF output load.

17. TDRR depends on DMUXDelAdjCtrl: TDRR = 1858 ± 250 ps. It is given for ECL $50\Omega/2$ pF output load.

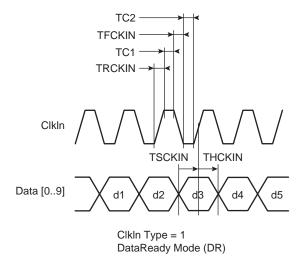
18. TDRR depends on DMUXDelAdjCtrl: TDRR = 1725 ± 250 ps. It is given for ECL 50Ω/2 pF output load.

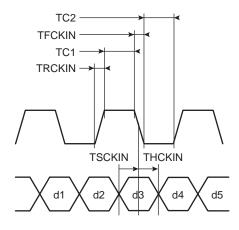
19. TARDR is given for ECL $50\Omega/2$ pF output load.

20. TSRDR is given for ECL 50Ω/2 pF output load. It is minimum value since RstSync clock is synchronized with ClkIn clock.

- 21. TRDR and TFDR are given for ECL 50 $\Omega/2$ pF output load.
- 22. THBIST depends on the configuration of the DMUX. There must be enough ClkIn clock cycles to have all the 512 codes, (see different Timing Diagrams).
- 23. With transmission line (ZO = 50Ω) and output load R = 50Ω ; C = 2 pF.

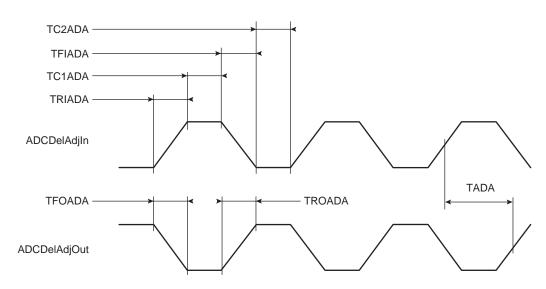
24. Without output load.


25. With transmission line (ZO = 50Ω) and output load R = 50Ω ; C = 2 pF.



Input Clock Timings

Figure 10. Input Clock



ClkIn Type = 0 DataReady/2 Mode (DR/2)

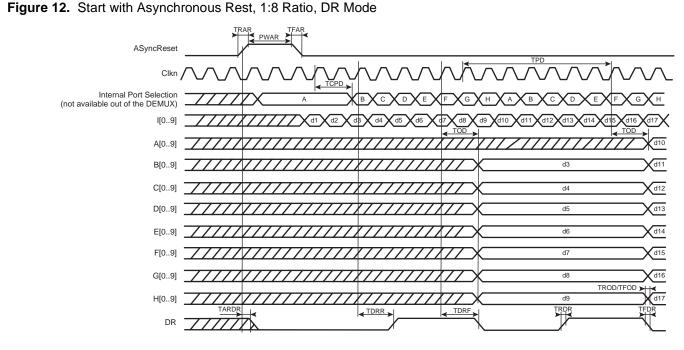
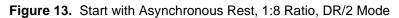
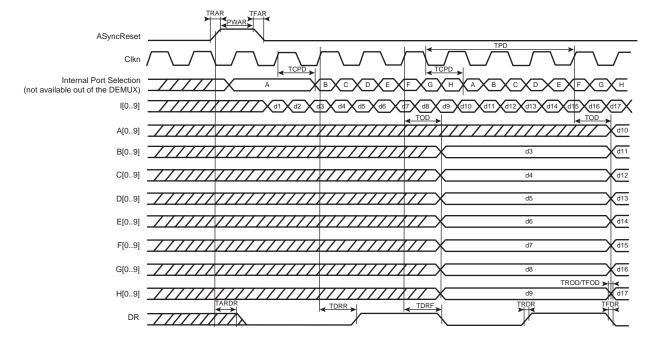

ADC Delay Adjust Timing Diagram

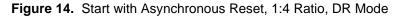
Figure 11. ADC Delay Adjust Timing Diagram

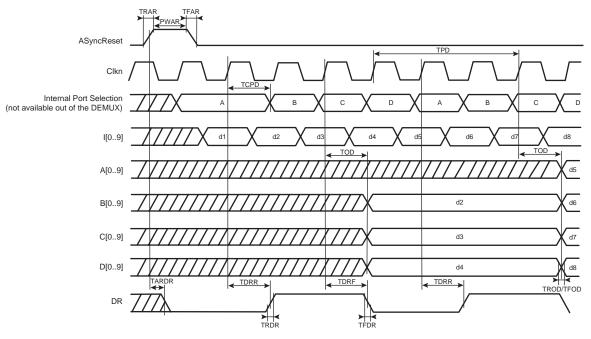


Timing Diagrams with Asynchronous Reset

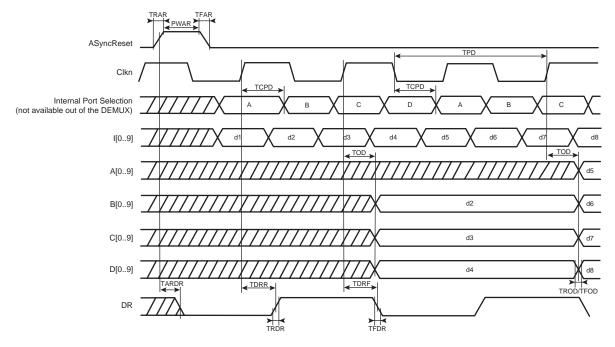

With a nominal tuning of DMUXDelAdj at a frequency of 2 GHz, d1 and d2 data are lost because of internal clock path propagation delay TCPD. TCPD is tuned with DMUXDelAdjCtrl pins to have good setup and hold times between ClkIn and Data.

With a nominal tuning of DMUXDelAdj at 2 GHz, d1 and d2 data are lost because of internal clock path propagation delay TCPD. TCPD is tuned with DMUXDelAdjCtrl pins to have good setup and hold times between ClkIn and input data. This timing diagram does not change with


the opposite phase of ClkIn.






With a nominal tuning of DMUXDelAdj, at 1 GHz (1:4 mode) d1 data is lost because of internal clock path propagation delay TCPD. TCPD is tuned with DMUXDelAdjCtrl pins and is used to have good setup and hold times between ClkIn and input data.

With a nominal tuning of DMUXDelAdj, at 1 GHz (1:4 mode) d1 data is lost because of internal clock path propagation delay TCPD. TCPD is tuned with DMUXDelAdjCtrl pins and is used to have good setup and hold times between ClkIn and input data. This timing diagram does not change with the opposite phase of ClkIn.

TS81102G0

Timing Diagrams with Synchronous Reset

Example of Synchronous Reset usefulness in case of de-synchronization of DMUX output port selection. The de-synchronization event happens after the selection of Port D.

DMUXDelAdjCtrl value is nominal. TSSR < 0 because of ClkIn internal propagation delay TCPD. After selection of Port C, instead of selecting Port D, the de-synchronization makes the port selection to restart on Port A. Since Port H was not selected, the data are not output to the ports but the last data (d1 to d8) are latched till next selection of Port H. d9 to d16 are lost. The synchronous Reset ensures a re-synchronization of the port selection.

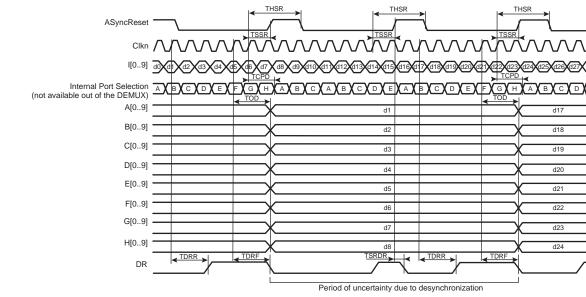
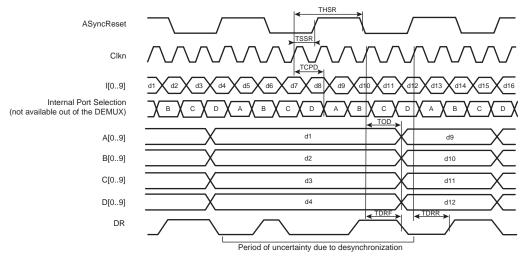
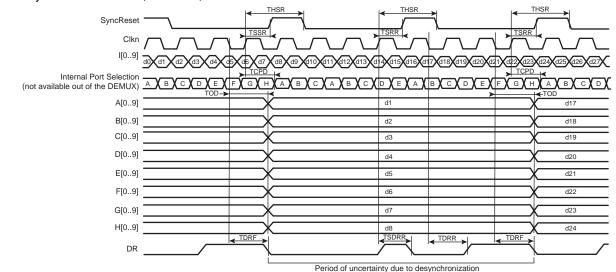



Figure 16. Synchronous Reset, 1:8 Ratio, DR Mode

Example of Synchronous Reset usefulness in case of de-synchronization of DMUX output port selection. The de-synchronization event happens after the selection of Port D.

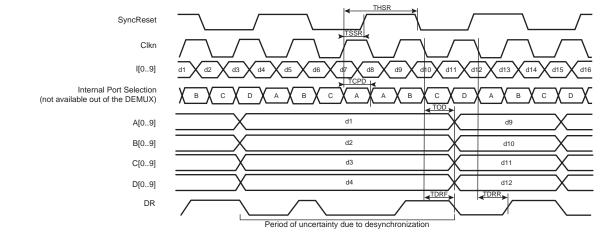
DMUXDelAdjCtrl value is nominal. TSSR < 0 because of ClkIn internal propagation delay TCPD. After selection of Port C, instead of selecting Port D, the de-synchronization makes the port selection to restart on Port A. Since Port H was not selected, the data are not output to the ports but the last data (d1 to d4) are latched till next selection of Port H. d5 to d8 are lost. The synchronous Reset ensures a re-synchronization of the port selection.

Figure 17. Synchronous Reset, 1:4 Ratio, DR Mode



Example of Synchronous Reset usefulness in case of de-synchronization of DMUX output port selection. The de-synchronization event happens after the selection of Port D.

DMUXDelAdjCtrl value is nominal. TSSR < 0 because of ClkIn internal propagation delay TCPD. After selection of Port C, instead of selecting Port D, the de-synchronization makes the port selection to restart on Port A. Since Port H was not selected, the data are not output to the ports but the last data (d1 to d8) are latched till next selection of Port H. d9 to d16 are lost. The synchronous Reset ensures a re-synchronization of the port selection.



Example of Synchronous Reset usefulness in case of de-synchronization of DMUX output port selection. The de-synchronization event happens after the selection of Port D.

DMUXDelAdjCtrl value is nominal. TSSR < 0 because of ClkIn internal propagation delay TCPD. After selection of Port C, instead of selecting Port D, the de-synchronization makes the port selection to restart on Port A. Since Port H was not selected, the data are not output to the ports but the last data (d1 to d4) are latched till next selection of Port H. d5 to d8 are lost. The synchronous Reset ensures a re-synchronization of the port selection.

Note: In case of low clock frequency and start with asynchronous reset, only the first data is lost and the first data to be processed is the second one. This data goes out of the DMUX by the port B.

Explanation of Test Levels

Table 6. Explanation of Test Levels

Num	Characteristics
1	100% production tested at +25°C. ⁽¹⁾
2	100% production tested at +25°C, and sample tested at specified temperatures. ⁽¹⁾
3	Sample tested only at specified temperatures.
4	Parameter is guaranteed by design and characterization testing (thermal steady-state conditions at specified temperature).
5	Parameter is a typical value only.

Notes: 1. The level 1 and 2 tests are performed at 50 MHz.

2. Only MIN and MAX values are guaranteed (typical values are issuing from characterization results).

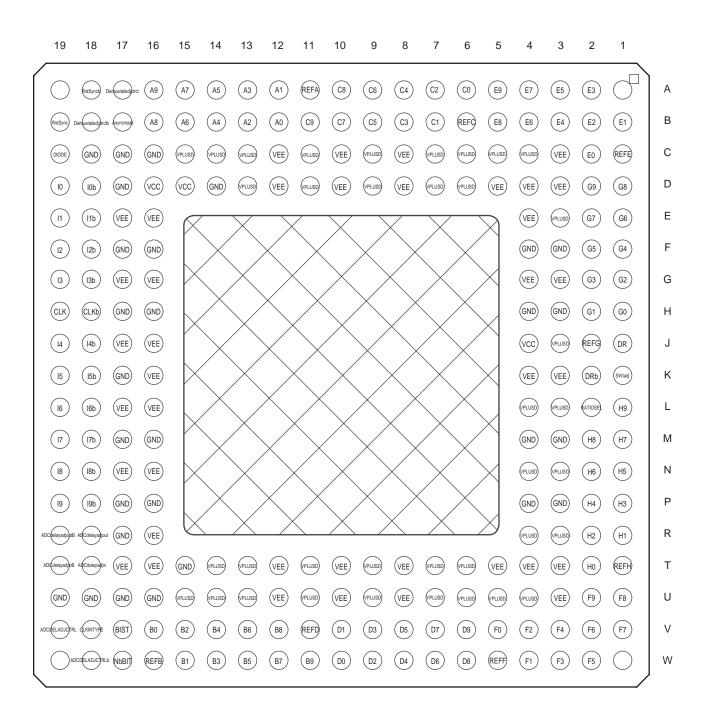
Package Description

Pin Description

 Table 7.
 TS81102G0 Pin Description

Туре	Name	Levels	Comments
Digital Inputs	I[09]	Differential ECL	Data input. On-chip 100Ω differential termination resistor.
	ClkIn	Differential ECL	Clock input (Data Ready ADC). On-chip 100Ω differential termination resistor.
Outputs	A[09] → H[09]	Adjustable Logic Single	Data ready for port A to H. Common mode is adjusted with VplusDOut. Swing is adjusted with SwiAdj. 50Ω termination possible.
	DR	Adjustable Logic Differential	Data ready for channel A to H. Common mode is adjusted with VplusDOut. Swing is adjusted with SwiAdj. 50Ω termination possible.
	$RefA \rightarrow RefH$	Adjustable Single	Reference voltage for output channels A to H. Common mode is adjustable with VplusDOut. 50Ω termination possible.
Control Signals	ClkInType	TTL	DataReady or Dataready/2: logic 1: Data Ready.
	RatioSel	TTL	DMUX ratio; logic 1: 1:4
	Bist	TTL	Reset and Switch of built-in Self Test (BIST): logic 0: BIST active.
	SwiAdj	0V ± 0.5V	Swing fine adjustment of output buffers.
	Diode	Analog	Diode for chip temperature measurement.
	NbBit	TTL	Number of bit 8 or 10: logic 1: 10-bit.
Synchronization	AsyncReset	TTL	Asynchronous reset: logic 1: reset on.
	SyncReset	Differential ECL	Synchronous reset: active on rising edge.
	DMUXDelAdjCtrl	Differential analog input of ±0.5V around 0V common mode	Control of the delay line of DataReady input: differential input = -0.5V: delay = 250 ps differential input = 0V: delay = 500 ps differential input = 0.5V: delay = 750 ps
	ADCDelAdjCtrl	Differential analog input of ±0.5V around 0V common mode	Control of the delay line for ADC: differential input = - 0.5V: delay = 250 ps differential input = 0V: delay = 500 ps differential input = 0.5V: delay = 750 ps
	ADCDelAdjln	Differential ECL	Stand-alone delay adjust input for ADC. Differential termination of 100Ω inside the buffer.
	ADCDelAdjOut	50Ω differential output	Stand-alone delay adjust output for ADC.
Power Supplies	GND	Ground 0V	Common ground.
	V _{EE}	Power -5V	Digital negative power supply.
	V _{PlusDOut}	Adjustable power from 0V to +3.3V	Common mode adjustment of output buffers.
	V _{cc}	Power +5V	Digital positive power supply.

TS81102G0


TBGA 240 Package – Pinout

A 1 NC D 4 VEC K 16 VELS T VELS T VELS A 3 E6 D 6 VELSOUTT K 18 ISB T 19 ACCELADJINB A 4 E7 D 6 VELSOUTT K 18 ISB U 1 19 U 1 19 OCCELADJINB A 6 CO D 8 VELSOUT L 1 19 U 1 VELSOUT A 8 C6 D 13 VELSOUT L 4 VELSOUT U 3 VELSOUT A 10 CB A 10 VELSOUT L 17 VELSOUT U 18 VELSOUT A 14 A 15 VELSOUT L 17 VEE VELSOUT A 14 NCA 14 VELSOUT L	Row	Col	Name	Row	Col	Name	Row	Col	Name	Row	Col	Name
A 3 E6 b 6 VFLUSDOUT K 18 B6B T 19 ACCELADINB A 5 E97 D 8 VEE L 1 H9 U U 1 F8 A 6 CO D 9 VFLUSDOUT L 2 RATOSEL U 3 VEESOUT A 7 C2 D 10 VEE L 14 VFLUSDOUT U 4 VFLUSDOUT A 9 C6A D 11 VFLUSDOUT L 14 VFLUSDOUT U 4 VFLUSDOUT A 10 C6B D 13 VFLUSDOUT L 16 VEE U 7 VFLUSDOUT A 13 A13 D 14 GADOT L 18 16B U 9 10 10 VFLUSDOUT A 13 A31 D 14 GADOT M 1 17 VFLUSDOUT A 14 A51 A7 D 14 GADOT M 3 GADOT 10 10 10 A 15 A7 D 16	А	1	NC	D	4		к	16	VEE	Т	17	VEE
A 4 E7 D 7 VPLUSDOUT K 19 5 U 1 F8 A 6 CO D 9 VPLUSDOUT L 2 RATOSEL U 3 VEE A 6 CO D 10 VPLUSDOUT L 2 RATOSEL U 3 VELUSDOUT A 8 C4 D 11 VPLUSDOUT L 4 VPLUSDOUT U 4 VPLUSDOUT A 10 CS D 13 VPLUSDOUT L 4 VPLUSDOUT U 5 VPLUSDOUT A 11 REFA D 14 GAD L 17 VEE U 10 7 VPLUSDOUT A 13 A3 D 16 VCC M 1 17 U 10 9 VPLUSDOUT A 14 A3 D 16 VCC M 1 17 10 10 10 10 A 14 A3 PL 10 10 10 10 10 10 10 10 10 A 16 REFA 10 </td <td>Α</td> <td>2</td> <td>E3</td> <td>D</td> <td>5</td> <td>VEE</td> <td>K</td> <td>17</td> <td>GND</td> <td>Т</td> <td>18</td> <td></td>	Α	2	E3	D	5	VEE	K	17	GND	Т	18	
A 6 E9 D 8 VEE L 1 H9 U 2 F9 A 7 C2 D 10 VEE L 3 VPLUSDOUT U 4 VPLUSDOUT A 8 C4 D 11 VPLUSDOUT L 4 VPLUSDOUT U 5 VPLUSDOUT A 10 C3 D 13 VPLUSDOUT L 16 VEE U 7 VPLUSDOUT A 13 A3 D 14 GND L 18 168 U 9 10 VPLUSDOUT A 13 A3 D 15 VCC L 18 168 U 11 17 U 10 VPLUSDOUT A 14 A55 D 15 VCC M 18 18 10 14 VPLUSDOUT 14 VPLUSDOUT A 15 A7 D 18 168 MB 3 3 MPUSDOUT 14 SUPUSDOUT	Α	3		D	6	VPLUSDOUT	K	18	I5B	Т	19	ADCDELADJINB
A 6 CO D 9 VPLUSDOUT L 2 RATOSEL U 3 VEE A 8 C4 D 11 VPLUSDOUT L 4 VPLUSDOUT U 4 VPLUSDOUT A 9 C6 D 11 VPLUSDOUT L 4 VPLUSDOUT U 5 VPLUSDOUT A 10 C8 D 13 VPLUSDOUT L 17 VEE U 6 VPLUSDOUT A 11 REFA D 14 GND L 17 VEE U 8 VEE A 12 A1 A3 D 15 VCC L 11 17 U 10 10 VEE A 14 A5 D 17 GND M 2 H8 U 13 VPLUSDOUT A 16 A3 A3 D 16 VCC M 1 17 ND 10 13 VPLUSDOUT A 16 A57 D 18 10 13 VPLUSDOUT M 16 KB 10 13 VPLUSDOUT A	Α	4		D	7	VPLUSDOUT	K	19		U	1	-
A 7 C2 D 10 VEE L 3 VPLUSDOUT U 4 VPLUSDOUT A 9 C6 D 11 VPLUSDOUT L 4 VPLUSDOUT U 5 VPLUSDOUT A 10 C6 D 13 VPLUSDOUT L 16 VEE U 7 VELUSDOUT A 12 CA1 D 15 VPLUSDOUT L 18 B6B U 9 VPLUSDOUT A 13 A3 D 16 VCC L 18 B6B U 11 VPLUSDOUT A 15 A7 D 18 108 M 3 GND U 13 VPLUSDOUT A 16 A5 7 D 18 16 6ND U 13 VPLUSDOUT A 18 S5 E 1 6G M 16 6ND <	Α	5	E9	D	8	VEE	L	1	H9	U	2	F9
A 8 C4 D 11 VPLUSDOUT L 4 VPLUSDOUT U 5 VPLUSDOUT A 10 C8 D 13 VPLUSDOUT L 17 VEE U 7 VPLUSDOUT A 11 REFA D 14 GND L 17 VEE U 9 VPLUSDOUT A 13 A3 D 16 VCC L 19 16 U 13 VPLUSDOUT A 13 A3 D 16 VCC L 19 16 U 11 VPLUSDOUT A 15 A7 D 18 180 M 2 H8 U 13 VPLUSDOUT A 16 A9 D 19 10 M 4 6ND U 14 VPLUSDOUT A 18 RSTSWCB E 2 3 7 CMD 8 17 CMD 6 6ND B 1 E1 4 VEE M 19 17 U 13 14 VPLUSDOUT A 1 PST 1 14 14 14	Α	6		D	9	VPLUSDOUT	L	2	RATIOSEL	U	3	VEE
A 9 C6 D 12 VEE L 16 VEE U 6 VPLUSDOUT A 110 REFA D 14 OND L 18 186 U 9 VPLUSDOUT A 12 A1 D 15 VCC L 18 166 U 9 VPLUSDOUT A 13 A3 D 16 VCC M 1 H7 U 10 VEE A 16 A7 D 18 106 M 3 GMD U 12 VEE A 16 A9 D 19 10 M 4 GMD U 13 VPLUSDOUT A 19 NC E 3 VPLUSDOUT M 18 77 GMD U 14 VPLUSDOUT A 19 NC E 16 VEE N 19 17 GMD 11 10 14 VPLUSDOUT A 19 NC	Α	7	C2	D	10	VEE	L	3	VPLUSDOUT	U	4	VPLUSDOUT
A 110 C8 D 13 VPLUSDOUT L 17 VFE U 7 VPLUSDOUT A 112 A1 D 15 VCC L 19 16 U 9 VPLUSDOUT A 13 A3 D 16 VCC L 19 16 U 10 VFLUSDOUT A 14 A5 D 17 GND M 2 H8 U 11 VPLUSDOUT A 16 A9 D 19 10 M 4 GND U 13 VPLUSDOUT A 16 A9 D 19 10 M 4 GND U 14 VPLUSDOUT A 18 RSTSWOB E 2 G7 M 17 GND U 16 GND B 1 E1 E 4 VEE M 19 17 U 17 GND B 1 E1 14 VEE N 1 H5 U 16 GND B 1 E1 14 VEE N 1 H5 U 16 GND	Α	8	C4	D	11	VPLUSDOUT	L	4	VPLUSDOUT	U	5	VPLUSDOUT
A 11 REFA D 14 MND L 18 BBB U 8 VEE A 12 A1 D 15 VCC M 1 H7 U 10 VEE A 14 A5 D 17 GND M 2 H8 U 11 VELSOUT A 16 A7 D 18 MBB M 3 GND <u< td=""> U 12 VELSOUT A 16 A9 D 16 GG M 4 GND<u< td=""> U 14 VELSOUT A 19 NC E 2 GG M 16 NDD<u< td=""> U 16 GND A 19 NC E 1 GG M 18 17 GND U 16 GND A 12 FG E 18 16 VEE N 1 17</u<></u<></u<>	Α	9	C6	D	12	VEE	L	16	VEE	U	6	VPLUSDOUT
A 12 A1 A3 D 15 VCC L 19 16 U 9 PPLUSDOUT A 14 A5 D 17 GND M 2 H8 U 11 VPLUSDOUT A 16 A7 D 18 IAB M 3 GND U 12 VEE A 16 A9 D 19 IO M 4 GND U 13 VPLUSDOUT A 18 RSTSYNCE E 2 G7 M 17 GND U 15 VPLUSDOUT A 19 NC E 3 VPLUSDOUT M 16 GND U 16 GND B 14 E6 E 18 VELUSDOUT M 16 GND U 16 GND B 5 E8 E 19 II N 3 VPLUSDOUT V 1 F GND N 18 IB IS IS IS </td <td>Α</td> <td>10</td> <td>C8</td> <td>D</td> <td>13</td> <td>VPLUSDOUT</td> <td>L</td> <td>17</td> <td>VEE</td> <td>U</td> <td>7</td> <td>VPLUSDOUT</td>	Α	10	C8	D	13	VPLUSDOUT	L	17	VEE	U	7	VPLUSDOUT
A 14 A3 D 16 VCC M 1 H7 U 10 VEE A 14 A5 D 18 IOB M 3 GND U 12 VEE A 16 A7 D 18 IOB M 3 GND U 12 VELSDOUT A 16 A9 D 16 GR M 4 GND U 13 VPLUSDOUT A 18 RSTSYNCB E 2 G6 M 16 GND U 15 VPLUSDOUT B 1 E1 E 4 VEE M 19 17 U 17 GND B 3 E4 E 17 VEE M 1 H6 U 19 GND 18 18 18 18 18 18 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14	Α	11	REFA	D	14	GND	L	18	16B	U	8	VEE
A 14 A5 D 17 ND M 2 H8 U 11 VPLUSDOUT A 16 A9 D 19 10 M 4 GND U 13 VPLUSDOUT A 170 DeMUXDELADJCTRL E 2 G7 M 17 GND U 15 VPLUSDOUT A 18 RSTSYNCB E 2 G7 M 17 GND U 15 VPLUSDOUT A 19 NC E 4 VEUSDOUT M 17 GND U 16 GND B 1 E1 E 4 VEUSDOUT M 17 GND U 17 GND B 4 E6 E 16 VEE N 1 H5 U 17 GND B 5 E6 E 18 IB N 3 VPLUSDOUT V 1 F7 GND B 5 C1 F 1 G4 N 16 VELUSOUT V 1 F2 B 10 C7 F 16 GND N 18	Α	12	A1	D	15	VCC	L	19	16	U	9	VPLUSDOUT
A 15 A7 D 18 10B M 3 GND U 12 VEE A 16 A OD 18 IOD M 4 GND U 13 VPLUSDOUT A 18 RSTSYNCB E 2 G7 M 17 GND U 16 GND U 16 GND B 1 E1 E 4 VEE M 18 I77 U 16 GND B 2 E2 E 16 VEE N 2 H6 U 18 GND 11 GND B 3 E4 E6 E 18 11 N 4 VPLUSDOUT V 2 F6 B 6 C REFC F 1 G4 N 13 VPLUSDOUT V 2 F6 B 17 C G G G G M 18 IBB M M M VPLUSDOUT	Α	13		D	16		М	1		U	10	VEE
A 16 A9 D 19 10 M 4 SND U 13 VPLUSDOUT A 18 RSTSYNCB E 2 G7 M 17 GND U 14 VPLUSDOUT A 19 NC E 2 G7 M 17 GND U 15 VPLUSDOUT B 1 E1 E 4 VEE M 18 I7B U 17 GND U 16 GND B 2 E2 E2 E 16 VEE N 1 H5 U 18 GND B 4 E6 E 18 IB N 3 VPLUSDOUT V 2 F6 B 6 REFC F 1 G4 N 14 VPLUSDOUT V 2 F6 B 10 C1 IP 2 G5 N 15 IS IS IS IS IS IS IS IS IS<	Α	14		D	17	GND	М	2	H8	U	11	VPLUSDOUT
A 17 DEMUXDELADJCTRL E 1 G6 M 16 GND U U 14 VPLUSDOUT A 18 NSTSYNCB E 2 G7 M 17 GND U 16 GND B 1 E1 E 4 VEE M 18 I7B U U 16 GND B 2 E2 E2 E 16 VEE N 2 H6 U 19 GND B 3 E4 E6 E 18 I1B N 2 VPLUSDOUT V 1 F7 B 5 E8 6 REFC F 1 G4 N 14 VPLUSDOUT V 2 F6 B 9 C5 F 1 G4 N 17 VEE V 4 F2 F6 B 10 C7 F 16 GND N 19 18 20 50 50 B <td>Α</td> <td>15</td> <td>A7</td> <td>D</td> <td>18</td> <td>IOB</td> <td>М</td> <td>3</td> <td>GND</td> <td>U</td> <td>12</td> <td>VEE</td>	Α	15	A7	D	18	IOB	М	3	GND	U	12	VEE
A 18 RSTSYNCB E 2 G7 M 17 NON U 15 VPLUSDOUT A 19 NC E 3 VPLUSDOUT M 18 IB U 16 GND B 2 E2 E2 E 16 VEE N 1 H5 U 18 GND B 3 E4 E 17 VEE N 2 H6 U 18 GND B 4 E6 E3 E4 E 19 I1 N 4 VPLUSDOUT V 1 F7 B 6 REFC F 1 G4 N 16 VEE V 3 F4 B 7 7 3 GAD N 18 I8B V 5 F0 B 10 C7 F 16 GAD P 1 H3 7 7 7 7 B 10 C3 GE 17 GND	Α	16	A9	D	19	10	Μ	4	GND	U	13	VPLUSDOUT
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Α	17	DEMUXDELADJCTRL	E	1	G6	М	16	GND	U	14	VPLUSDOUT
B 1 E1 E 4 VEE M 19 I7 U 17 GND B 3 E4 E 16 VEE N 2 H6 U 18 GND B 4 E6 E 18 IB N 2 H6 U 18 GND B 4 E6 E 18 IB N 3 VPLUSDOUT V 1 F7 B 6 REFC F 1 GA N 16 VEE V 3 F4 B 17 C1 F 1 GA N 17 VEE V 3 F4 B 10 C7 F 16 GND P 1 H3 VEE VE 3 GAD B 13 A2 F 18 I2B O GND V 18 DS <td>Α</td> <td>18</td> <td>RSTSYNCB</td> <td></td> <td>2</td> <td>G7</td> <td>Μ</td> <td>17</td> <td>GND</td> <td>U</td> <td>15</td> <td>VPLUSDOUT</td>	Α	18	RSTSYNCB		2	G7	Μ	17	GND	U	15	VPLUSDOUT
B 2 E2 E2 E 16 VEE N 1 H5 U 18 GMD B 3 E4 E6 E 17 VEE N 2 H6 U 19 GMD B 5 E8 E 19 I1 N 4 VPLUSDOUT V 2 F6 B 7 C1 F 1 G4 N 16 VEE V 3 F4 B 7 C1 F 2 G5 N 17 VEE V 4 F2 B 9 C5 F 4 GND N 18 88 V 6 D9 B 10 C7 F 16 GND P 1 H3 CMD V 9 03 B 13 A2 F 18 I28 P 14 GMD V 10 D1 B 14 A4 G 1 G2 P 16 GND V 11 REfPC B 15 A6 G 2 G3 VEE P 18 IMD	Α	19	NC	E	3	VPLUSDOUT	Μ	18	I7B	U	16	GND
B 3 E4 E 1 VEE N 2 H6 U 19 GND B 5 E8 E 18 N 3 VPLUSDOUT V 1 F7 B 6 REFC F 1 G4 N 3 VPLUSDOUT V 2 F6 B 6 REFC F 1 G4 N 16 VEE V 3 F4 B 6 REFC F 1 G4 N 18 B8 V 5 F0 B 10 C7 F 16 GND P 1 H3 K8 V 3 B5 11 C9 F 18 I28 P 2 GND V 9 D3 B 14 A4 G 1 G2 P 4 GND V 10 D1 B 15 A6 G 1 G2 G3 GND V 12 B	В	1	E1	E	4	VEE	Μ	19	17	U	17	GND
B 4 E6 E 18 IB N 3 VPLUSDOUT V 1 F7 B 5 E8 E8 E 19 I1 N 4 VPLUSDOUT V 2 F6 B 7 C1 F 1 G4 N 16 VEE V 4 F2 B 7 C1 F 2 G5 N 17 VEE V 4 F2 B 9 C5 F 4 GND N 19 18 VEE V 6 D9 B 11 C9 F 17 GND P 2 H4 V 8 D5 B 13 A2 F 18 I2B P 3 GND V 11 REFD 18 I8 I8 I8 A4 C D1 D1 <t< td=""><td>В</td><td>2</td><td>E2</td><td>E</td><td>16</td><td>VEE</td><td>Ν</td><td>1</td><td>H5</td><td>U</td><td>18</td><td>GND</td></t<>	В	2	E2	E	16	VEE	Ν	1	H5	U	18	GND
B 5 E8 E 19 I1 N 4 VPLUSDOUT V 2 F6 B 6 REFC F 1 G4 N 16 VEE V 3 F4 B 7 C1 F 2 G55 N 18 I8B V 5 F0 B 9 C5 F 4 GND N 18 I8B V 6 D9 B 10 C7 F 16 GND P 1 H3 V 7 D7 B 11 C9 F 17 GND P 2 H4 V 8 D5 B 13 A2 F 19 I2B P 16 GND V 10 D1 D1 B 13 A2 CE F 18 I8D GND V 13 B6 B 15 A6 G 16 VEE P 18 I9B	В	3	E4	E	17	VEE	Ν	2	H6	U	19	GND
B 6 REFC F 1 C4 N 16 VEE V 3 F4 B 7 C1 F 2 G55 N 17 VEE V 4 F2 B 9 C5 F 3 GND N 19 8 V 6 D9 B 10 C7 F 16 GND P 1 H3 V 6 D9 B 11 C9 F 17 GND P 2 H4 V 8 D5 D7 B 13 A2 F 19 I2 P 2 GND V 10 D1 D1 D1 D1 D1 D1 D1 D1 D2 D3 D3 D3 D3 D3 D2 D3 D3 D3 D4 D4 D4 D4 D4 D4 D3 D4 D3 D4 D3 D4 D3 D4 D3 D4 <thd3< th=""> <thd3< th=""> <thd3< th=""></thd3<></thd3<></thd3<>	В	4	E6	E	18	I1B	Ν	3	VPLUSDOUT	V	1	F7
B 7 C1 F 2 G5 N 17 VEE V 4 F2 B 8 C3 F 3 GND N 18 I8B V 5 F0 B 10 C7 F 16 GND P 1 H3 V 6 D9 B 11 C9 F 17 GND P 2 H4 V 8 D5 B 13 A2 F 18 I2B P 3 GND V 10 D1 B 14 A4 G 1 G2 GND V 11 REP B 15 A6 G G 16 VEE P 19 19 V V 14 B4 B 18 DEMUXDELADJCTRLB G 16 VEE R 1 <h< th=""> 17 ORD V 14</h<>	В	5	E8	Е	19	11	Ν	4	VPLUSDOUT	V	2	F6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	В	6	REFC	F	1	G4	Ν	16	VEE	V	3	F4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	В	7	C1	F	2	G5	Ν	17	VEE	V	4	F2
B 10 C7 F 16 GND P 1 H3 V 7 D7 B 11 C9 F 17 GND P 2 H4 V 8 D5 B 12 AO F 18 I2B P 3 GND V 9 D3 B 13 A2 F 19 I2 P 4 GND V 10 D1 B 14 A4 G G 1 G2 C3 P 16 GND V 14 B4 B 16 A6 G 2 G3 VEE P 18 IBB V 14 B4 B 19 RSTSVNC G 16 VEE R 2 H2 V 16 B0 C 3 VEE H 1 GO R 17 SND <t< td=""><td>В</td><td>8</td><td>C3</td><td>F</td><td>3</td><td>GND</td><td>Ν</td><td>18</td><td>18B</td><td>V</td><td>5</td><td>F0</td></t<>	В	8	C3	F	3	GND	Ν	18	18B	V	5	F0
B 11 C9 F 17 GND P 2 H4 V 8 D5 B 12 A0 F 18 I2B P 3 GND V 9 D3 B 13 A2 F 19 I2 P 4 GND V 10 D1 B 14 A4 G G 1 G2 P 16 GND V 11 REFD B 16 A8 G 3 VEE P 18 B8 V 13 B6 B 17 ASYNCRESET G 16 VEE R 1 H1 V 15 B2 B 18 DEMUXDELADJCTRLB G 16 VEE R 2 H2 V 16 B0 C 2 6 18 B8 R 3 VPLUSDOUT V 17	В	9	C5	F	4	GND	Ν	19	18	V	6	D9
B 12 A0 F 18 I2B P 3 GND V 9 D3 B 13 A2 F 19 I2 P 4 GND V 10 D1 B 14 A4 G G 2 G3 P P 16 GND V 11 REFD B 15 A6 G G VEE P 18 I9B V 13 B6 B 17 ASYNCRESET G 4 VEE P 18 I9B V 14 B4 B 18 DEMUXDELADJCTRLB G 16 VEE R 1 H1 V 15 B2 C 1 REFE G 18 B3B R 2 H2 VPLUSDOUT V 18 CLKINTYPE C 3 VEE H 1 GO R 18<	В	10	C7	F	16	GND	Р	1	H3	V	7	D7
B 13 A2 F 19 I2 P 4 GND V 10 D1 B 14 A4 G I G2 P 16 GND V 11 REFD B 15 A6 G 3 VEE P 18 I9B V 13 B6 B 17 ASYNCRESET G 4 VEE P 18 I9B V 14 B4 B 18 DEMUXDELADJCRLB G 17 VEE R 2 H2 V 16 B0 C 1 REFE G 18 I3B R 2 H2 V 18 CIKINTYPE C 2 E0 G 14 GO R 16 VELUSDOUT V 18 CIKINTYPE C 3 VEE H 1 GO R 18 ADCDELADJOUT V	В	11	C9	F	17	GND	Р	2	H4	V	8	D5
B 14 A4 G 1 G2 P 16 GND V 11 REFD B 15 A6 G 2 G3 P 17 GND V 12 B8 B 16 A8 G 3 VEE P 18 I9B V 13 B6 B 17 ASYNCRESET G 16 VEE P 19 I9 V 14 B4 B 18 DEMUXDELADJCTRLB G 16 VEE R 1 H1 V 15 B2 B 19 RSTSYNC G 17 VEE R 2 H2 V V 16 B0 C 2 E0 G 19 I3 R R 3 VPLUSDOUT V 18 CLKINTYPE C 3 VEE H 1 GO1 R 19	В	12	A0	F	18	I2B	Р	3	GND	V	9	D3
B 15 A6 G 2 G3 P 17 GND V 12 B8 B 16 A8 G 3 VEE P 18 I9B V 13 B6 B 17 ASYNCRESET G 4 VEE P 18 I9B V 14 B4 B 18 DEMUXDELADJCTRLB G 16 VEE R 1 H1 V 15 B2 B 19 RSTSYNC G 17 VEE R 2 H2 V 16 B0 C 2 E0 G 19 I3 R 3 VPLUSDOUT V 17 BINTYPE C 3 VEE H 1 GO R 18 ADCDELADJOUT V 18 F3 C 4 VPLUSDOUT H 4 GND T 1 REFH W	В	13	A2	F	19	12	Р	4	GND	V	10	D1
B 16 A8 G 3 VEE P 18 I9B V 13 B6 B 17 ASYNCRESET G 4 VEE P 19 I9 V 14 B4 B 18 DEMUXDELADJCTRLB G 16 VEE R 1 H1 V 15 B2 C 1 REFE G 18 I3B R 2 H2 V 16 B0 C 2 E0 G 19 I3 R 4 VPLUSDUT V 17 BIST C 3 VEE H 1 GO R 18 ADCDELADJOUT V 18 CLKINTYPE C 4 VPLUSDOUT H 2 G1 R 17 GND W 1 NC C 4 VPLUSDOUT H 3 GND T 1 REFH W </td <td>В</td> <td>14</td> <td>A4</td> <td>G</td> <td>1</td> <td>G2</td> <td>Р</td> <td>16</td> <td>GND</td> <td>V</td> <td>11</td> <td>REFD</td>	В	14	A4	G	1	G2	Р	16	GND	V	11	REFD
B 17 ASYNCRESET G 4 VEE P 19 19 V 14 B4 B 18 DEMUXDELAJJCTRLB G 16 VEE R 1 H1 V 15 B2 B 19 RSTSYNC G 17 VEE R 2 H2 V 16 B0 C 1 REFE G 18 I3B R 3 VPLUSDOUT V 18 CLKINTYPE C 2 E0 G 19 I3 R 4 VPLUSDOUT V 18 CLKINTYPE C 3 VEE H 1 GO R 16 VEE V 19 ADCDELADJOUT V 18 CLKINTYPE C 6 VPLUSDOUT H 2 G1 R 17 ADCDELADJOUT V 18 F3 C 6 VPLUSDOUT H 16	В	15	A6	G	2	G3	Р	17	GND	V	12	B8
B 18 DEMUXDELADJCTRLB G 16 VEE R 1 H1 V 15 B2 B 19 RSTSYNC G 17 VEE R 2 H2 V 16 B0 C 1 REFE G 18 I3B R 3 VPLUSDOUT V 16 B0 C 2 E0 G 19 I3B R 4 VPLUSDOUT V 18 CLKINTYPE C 3 VEE H 1 GO R 16 VEE V 19 ADCDELADJCTRL C 5 VPLUSDUT H 2 G1 R 18 ADCDELADJOUT W 1 NC C 6 VPLUSDUT H 4 GND T 1 REFH W 4 F1 C 7 VPLUSDUT H 16 GND T 2 HO	В	16	A8	G	3	VEE	Р	18	19B	V	13	B6
B 19 RSTSYNC G 17 VEE R 2 H2 V 16 B0 C 1 REFE G 18 I3B R 3 VPLUSDOUT V 17 BIST C 2 E0 G 19 I3 R 4 VPLUSDOUT V 18 CLKINTYPE C 3 VEE H 1 GO R 16 VEE V 19 ADCDELADJCTRL C 4 VPLUSDOUT H 2 G1 R 18 ADCDELADJOUT W 2 F5 C 6 VPLUSDOUT H 4 GND T 1 REFH W 4 F1 C 8 VEE H 17 GND T 2 HO W 5 REFF C 9 VPLUSDOUT H 18 CLKIN T 3 VEE	В	17	ASYNCRESET	G	4	VEE	Р	19	19	V	14	B4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	В	18	DEMUXDELADJCTRLB	G	16	VEE	R	1	H1	V	15	B2
C2E0G19I3R4VPLUSDOUTV18CLKINTYPEC3VEEH1GOR16VEEV19ADCDELADJCTRLC4VPLUSDOUTH2G1R17GNDW1NCC5VPLUSDOUTH3GNDR18ADCDELADJOUTW2F5C6VPLUSDOUTH4GNDR19ADCDELADJOUTBW3F3C7VPLUSDOUTH16GNDT1REFHW4F1C8VEEH17GNDT2H0W5REFFC9VPLUSDOUTH18CLKINBT3VEEW6D8C11VPLUSDOUTH18CLKINBT4VEEW6D8C11VPLUSDOUTJ1DRT5VEEW8D4C12VEEJ2REFGT6VPLUSDOUTW10D0C13VPLUSDOUTJ1DRT79VPLUSDOUTW18B9C13VPLUSDOUTJ14VCCT8VEEW13B5C14VPLUSDOUTJ18I4BT11VPLUSDOUTW <td< td=""><td>В</td><td>19</td><td>RSTSYNC</td><td>G</td><td>17</td><td>VEE</td><td>R</td><td>2</td><td>H2</td><td>V</td><td>16</td><td>B0</td></td<>	В	19	RSTSYNC	G	17	VEE	R	2	H2	V	16	B0
C3VEEH1G0R16VEEV19ADCDELADJCTRLC4VPLUSDOUTH2G1R17GNDW1NCC5VPLUSDOUTH3GNDR18ADCDELADJOUTW2F5C6VPLUSDOUTH4GNDT1REFHW3F3C7VPLUSDOUTH16GNDT1REFHW4F1C8VEEH17GNDT2H0W5REFFC9VPLUSDOUTH18CLKINBT3VEEW6D8C10VEEH19CLKINT4VEEW7D6C11VPLUSDOUTJ1DRT5VEEW8D4C12VEEJ2REFGT6VPLUSDOUTW9D2C13VPLUSDOUTJ3VPLUSDOUTT7VPLUSDOUTW10D0C14VPLUSDOUTJ4VCCT8VEEW11B9C15VPLUSDOUTJ16VEET9VPLUSDOUTW12B7C16GNDJ17VEET10VEEW13B5	С	1	REFE	G	18	I3B	R	3	VPLUSDOUT	V	17	BIST
C4VPLUSDOUTH2G1R17GNDW1NCC5VPLUSDOUTH3GNDR18ADCDELADJOUTW2F5C6VPLUSDOUTH4GNDR19ADCDELADJOUTBW3F3C7VPLUSDOUTH16GNDT1REFHW4F1C8VEEH17GNDT2H0W5REFFC9VPLUSDOUTH18CLKINBT3VEEW6D8C10VEEH19CLKINT4VEEW7D6C11VPLUSDOUTJ1DRT5VEEW8D4C12VEEJ2REFGT6VPLUSDOUTW9D2C13VPLUSDOUTJ3VPLUSDOUTT7VPLUSDOUTW10D0C14VPLUSDOUTJ4VCCT8VEEW11B9C15VPLUSDOUTJ16VEET9VPLUSDOUTW12B7C16GNDJ17VEET10VEEW13B5C15VPLUSDOUTJ18I4BT11VPLUSDOUTW14B3 <td>С</td> <td>2</td> <td>EO</td> <td>G</td> <td>19</td> <td>13</td> <td>R</td> <td>4</td> <td>VPLUSDOUT</td> <td>V</td> <td>18</td> <td>CLKINTYPE</td>	С	2	EO	G	19	13	R	4	VPLUSDOUT	V	18	CLKINTYPE
C5VPLUSDOUTH3GNDR18ADCDELADJOUTW2F5C6VPLUSDOUTH4GNDR19ADCDELADJOUTBW3F3C7VPLUSDOUTH16GNDT1REFHW4F1C8VEEH17GNDT2H0W5REFFC9VPLUSDOUTH18CLKINBT3VEEW6D8C10VEEH19CLKINT4VEEW7D6C11VPLUSDOUTJ1DRT5VEEW8D4C12VEEJ2REFGT6VPLUSDOUTW9D2C13VPLUSDOUTJ3VPLUSDOUTT7VPLUSDOUTW10D0C14VPLUSDOUTJ4VCCT8VEEW11B9C15VPLUSDOUTJ16VEET9VPLUSDOUTW12B7C16GNDJ17VEET10VEEW13B5C15VPLUSDOUTJ18I4BT11VPLUSDOUTW14B3C16GNDJ19I4T12VEEW15B1 </td <td>С</td> <td>3</td> <td>VEE</td> <td>н</td> <td>1</td> <td>G0</td> <td>R</td> <td>16</td> <td>VEE</td> <td>V</td> <td>19</td> <td>ADCDELADJCTRL</td>	С	3	VEE	н	1	G0	R	16	VEE	V	19	ADCDELADJCTRL
C6VPLUSDOUTH4GNDR19ADCDELADJOUTBW3F3C7VPLUSDOUTH16GNDT1REFHW4F1C8VEEH17GNDT2H0W5REFFC9VPLUSDOUTH18CLKINBT3VEEW6D8C10VEEH19CLKINT4VEEW7D6C11VPLUSDOUTJ1DRT5VEEW8D4C12VEEJ2REFGT6VPLUSDOUTW9D2C13VPLUSDOUTJ3VPLUSDOUTT7VPLUSDOUTW10D0C14VPLUSDOUTJ4VCCT8VEEW11B9C15VPLUSDOUTJ16VEET10VEEW13B5C16GNDJ17VEET10VEEW15B1C18GNDJ18IABT11VPLUSDOUTW14B3C18GNDJ19IAT13VPLUSDOUTW14B3C18GNDJ19IAT13VPLUSDOUTW16REFB <td< td=""><td>С</td><td>4</td><td>VPLUSDOUT</td><td>н</td><td>2</td><td>G1</td><td>R</td><td>17</td><td>GND</td><td>W</td><td>1</td><td>NC</td></td<>	С	4	VPLUSDOUT	н	2	G1	R	17	GND	W	1	NC
C7VPLUSDOUTH16GNDT1REFHW4F1C8VEEH17GNDT2H0W5REFFC9VPLUSDOUTH18CLKINBT3VEEW6D8C10VEEH19CLKINT4VEEW7D6C11VPLUSDOUTJ1DRT5VEEW8D4C12VEEJ2REFGT6VPLUSDOUTW9D2C13VPLUSDOUTJ3VPLUSDOUTT7VPLUSDOUTW10D0C14VPLUSDOUTJ4VCCT8VEEW11B9C15VPLUSDOUTJ16VEET9VPLUSDOUTW12B7C16GNDJ17VEET10VEEW13B5C16GNDJ18I4BT11VPLUSDOUTW14B3C19DIODEK1SWIADJT13VPLUSDOUTW16REFBD1G8K2DRBT14VPLUSDOUTW16REFBD2G9K3VEET15GNDW18ADCDELADJCTRLB<	С	5	VPLUSDOUT	н	3	GND	R	18	ADCDELADJOUT	W	2	
C8VEEH17GNDT2H0W5REFFC9VPLUSDOUTH18CLKINBT3VEEW6D8C10VEEH19CLKINT4VEEW7D6C11VPLUSDOUTJ1DRT5VEEW8D4C12VEEJ2REFGT6VPLUSDOUTW9D2C13VPLUSDOUTJ3VPLUSDOUTT7VPLUSDOUTW10D0C14VPLUSDOUTJ4VCCT8VEEW11B9C15VPLUSDOUTJ16VEET9VPLUSDOUTW12B7C16GNDJ17VEET10VEEW13B5C17GNDJ18I4BT11VPLUSDOUTW14B3C18GNDJ19I4T12VEEW15B1C19DIODEK1SWIADJT13VPLUSDOUTW16REFBD1G8K2DRBT14VPLUSDOUTW16REFBD2G9K3VEET15GNDW18ADCDELADJCTRLB <td>С</td> <td>6</td> <td>VPLUSDOUT</td> <td>н</td> <td>4</td> <td>GND</td> <td>R</td> <td>19</td> <td>ADCDELADJOUTB</td> <td>W</td> <td>3</td> <td>F3</td>	С	6	VPLUSDOUT	н	4	GND	R	19	ADCDELADJOUTB	W	3	F3
C9VPLUSDOUTH18CLKINBT3VEEW6D8C10VEEH19CLKINT4VEEW7D6C11VPLUSDOUTJ1DRT5VEEW8D4C12VEEJ2REFGT6VPLUSDOUTW9D2C13VPLUSDOUTJ3VPLUSDOUTT7VPLUSDOUTW10D0C14VPLUSDOUTJ4VCCT8VEEW11B9C15VPLUSDOUTJ16VEET9VPLUSDOUTW12B7C16GNDJ17VEET10VEEW13B5C17GNDJ18I4BT11VPLUSDOUTW14B3C18GNDJ19I4T12VEEW15B1C19DIODEK1SWIADJT13VPLUSDOUTW16REFBD1G8K2DRBT14VPLUSDOUTW16ADCDELADJCTRLBD2G9K3VEET15GNDW18ADCDELADJCTRLB	С	7	VPLUSDOUT	н	16	GND	Т	1	REFH	W	4	F1
C10VEEH19CLKINT4VEEW7D6C11VPLUSDOUTJ1DRT5VEEW8D4C12VEEJ2REFGT6VPLUSDOUTW9D2C13VPLUSDOUTJ3VPLUSDOUTT7VPLUSDOUTW10D0C14VPLUSDOUTJ4VCCT8VEEW11B9C15VPLUSDOUTJ16VEET9VPLUSDOUTW12B7C16GNDJ17VEET10VEEW13B5C17GNDJ18I4BT11VPLUSDOUTW14B3C18GNDJ19I4T12VEEW15B1C19DIODEK1SWIADJT13VPLUSDOUTW16REFBD1G8K2DRBT14VPLUSDOUTW17NBBITD2G9K3VEET15GNDW18ADCDELADJCTRLB	С	8	VEE	н	17	GND	Т	2	H0	W	5	REFF
C11VPLUSDOUTJ1DRT5VEEW8D4C12VEEJ2REFGT6VPLUSDOUTW9D2C13VPLUSDOUTJ3VPLUSDOUTT7VPLUSDOUTW10D0C14VPLUSDOUTJ4VCCT8VEEW11B9C15VPLUSDOUTJ16VEET9VPLUSDOUTW12B7C16GNDJ17VEET10VEEW13B5C17GNDJ18I4BT11VPLUSDOUTW14B3C18GNDJ19I4T12VEEW15B1C19DIODEK1SWIADJT13VPLUSDOUTW16REFBD1G8K2DRBT14VPLUSDOUTW17NBBITD2G9K3VEET15GNDW18ADCDELADJCTRLB	С	9	VPLUSDOUT	н	18	CLKINB	Т	3	VEE	W	6	D8
C12VEEJ2REFGT6VPLUSDOUTW9D2C13VPLUSDOUTJ3VPLUSDOUTT7VPLUSDOUTW10D0C14VPLUSDOUTJ4VCCT8VEEW11B9C15VPLUSDOUTJ16VEET9VPLUSDOUTW12B7C16GNDJ17VEET10VEEW13B5C17GNDJ18I4BT11VPLUSDOUTW14B3C18GNDJ19I4T12VEEW15B1C19DIODEK1SWIADJT13VPLUSDOUTW16REFBD1G8K2DRBT14VPLUSDOUTW17NBBITD2G9K3VEET15GNDW18ADCDELADJCTRLB	С	10	VEE	н	19	CLKIN	Т	4	VEE	W	7	D6
C12VEEJ2REFGT6VPLUSDOUTW9D2C13VPLUSDOUTJ3VPLUSDOUTT7VPLUSDOUTW10D0C14VPLUSDOUTJ4VCCT8VEEW11B9C15VPLUSDOUTJ16VEET9VPLUSDOUTW12B7C16GNDJ17VEET10VEEW13B5C17GNDJ18I4BT11VPLUSDOUTW14B3C18GNDJ19I4T12VEEW15B1C19DIODEK1SWIADJT13VPLUSDOUTW16REFBD1G8K2DRBT14VPLUSDOUTW17NBBITD2G9K3VEET15GNDW18ADCDELADJCTRLB	С	11	VPLUSDOUT	J	1	DR	Т	5	VEE	W	8	D4
C13VPLUSDOUTJ3VPLUSDOUTT7VPLUSDOUTW10D0C14VPLUSDOUTJ4VCCT8VEEW11B9C15VPLUSDOUTJ16VEET9VPLUSDOUTW12B7C16GNDJ17VEET10VEEW13B5C17GNDJ18I4BT11VPLUSDOUTW14B3C18GNDJ19I4T12VEEW15B1C19DIODEK1SWIADJT13VPLUSDOUTW16REFBD1G8K2DRBT14VPLUSDOUTW17NBBITD2G9K3VEET15GNDW18ADCDELADJCTRLB		12	VEE		2	REFG		6	VPLUSDOUT	W	9	D2
C 14 VPLUSDOUT J 4 VCC T 8 VEE W 11 B9 C 15 VPLUSDOUT J 16 VEE T 9 VPLUSDOUT W 12 B7 C 16 GND J 17 VEE T 10 VEE W 13 B5 C 17 GND J 18 I4B T 11 VPLUSDOUT W 14 B3 C 18 GND J 19 I4 T 12 VEE W 15 B1 C 19 DIODE K 1 SWIADJ T 13 VPLUSDOUT W 16 REFB D 1 G8 K 2 DRB T 14 VPLUSDOUT W 16 REFB D 2 G9 K 3 VEE T 15 GND W 18 ADCDELADJCTRLB		13	VPLUSDOUT		3	VPLUSDOUT	Т	7	VPLUSDOUT	W	10	D0
C 15 VPLUSDOUT J 16 VEE T 9 VPLUSDOUT W 12 B7 C 16 GND J 17 VEE T 10 VEE W 13 B5 C 17 GND J 18 I4B T 11 VPLUSDOUT W 14 B3 C 18 GND J 19 I4 T 12 VEE W 15 B1 C 19 DIODE K 1 SWIADJ T 13 VPLUSDOUT W 16 REFB D 1 G8 K 2 DRB T 14 VPLUSDOUT W 16 REFB D 2 G9 K 3 VEE T 15 GND W 18 ADCDELADJCTRLB		14	VPLUSDOUT		4	VCC	Т	8	VEE	W	11	B9
C 16 GND J 17 VEE T 10 VEE W 13 B5 C 17 GND J 18 I4B T 11 VPLUSDOUT W 14 B3 C 18 GND J 19 I4 T 12 VEE W 15 B1 C 19 DIODE K 1 SWIADJ T 13 VPLUSDOUT W 16 REFB D 1 G8 K 2 DRB T 14 VPLUSDOUT W 17 NBBIT D 2 G9 K 3 VEE T 15 GND W 18 ADCDELADJCTRLB		15			16			9	VPLUSDOUT	W	12	
C 17 GND J 18 I4B T 11 VPLUSDOUT W 14 B3 C 18 GND J 19 I4 T 12 VEE W 15 B1 C 19 DIODE K 1 SWIADJ T 13 VPLUSDOUT W 16 REFB D 1 G8 K 2 DRB T 14 VPLUSDOUT W 17 NBBIT D 2 G9 K 3 VEE T 15 GND W 18 ADCDELADJCTRLB		16			17	VEE	Т	10		W	13	
C 18 GND J 19 14 T 12 VEE W 15 B1 C 19 DIODE K 1 SWIADJ T 13 VPLUSDOUT W 16 REFB D 1 G8 K 2 DRB T 14 VPLUSDOUT W 17 NBBIT D 2 G9 K 3 VEE T 15 GND W 18 ADCDELADJCTRLB		17			18	I4B		11	VPLUSDOUT	W	14	
C 19 DIODE K 1 SWIADJ T 13 VPLUSDOUT W 16 REFB D 1 G8 K 2 DRB T 14 VPLUSDOUT W 17 NBBIT D 2 G9 K 3 VEE T 15 GND W 18 ADCDELADJCTRLB		18			19	14		12		W	15	
D 1 G8 K 2 DRB T 14 VPLUSDOUT W 17 NBBIT D 2 G9 K 3 VEE T 15 GND W 17 ADCDELADJCTRLB					1	SWIADJ				W	16	
D 2 G9 K 3 VEE T 15 GND W 18 ADCDELADJCTRLB	D	1	G8	K	2	DRB	Т	14	VPLUSDOUT	W	17	NBBIT
	D	2	G9	K	3	VEE	Т	15	GND	W	18	ADCDELADJCTRLB
	D	3	VEE		4	VEE	Т	16	VEE	W	19	NC

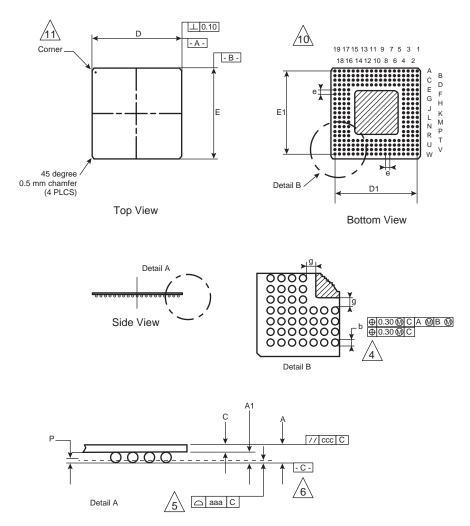


Figure 20. TBGA 240 Package: Bottom View

Outline Dimensions

Figure 21. Package Dimension – 240 Tape Ball Grid Array

	Dimensional References					
Ref.	Min.	Nom.	Max.			
А	1.30	1.50	1.70			
A1	0.50	0.60	0.70			
D	24.80	25.00	25.20			
D1		22.86 (BSC.)				
E	24.80	25.00	25.20			
E1		22.86 (BSC.)				
b	0.60	0.75	0.90			
С	0.80	0.80 0.90			0.80 0.90	
Μ		19.00				
N		240.00				
aaa	-	-	0.15			
CCC	-	-	0.25			
е		1.27 TYP.				
g	0.35	0.35				
Р	0.15					

Notes: 1. All dimensions are in millimeters.

- "e" represents the basic solder ball grid pitch.
 "M" represents the basic solder ball matrix size,
- and symbol "N" is the maximum allowable number of balls after depopulating.
- 4 "b" is measured at the maximum solder ball diameter parallel to primary datum -C -
- 5 Dimension "aaa" is measured parallel to primary datum C -
- A Primary datum C and seatin plane are defined by the spherical crowns of the solder balls.
- 7. Package surface shall be black oxide.
- 8. Cavity depth various with die thickness.
- 9. Substrate material base is copper.

 $\underline{/0}$ Bilateral tolerance zone is applied to each side of package body.

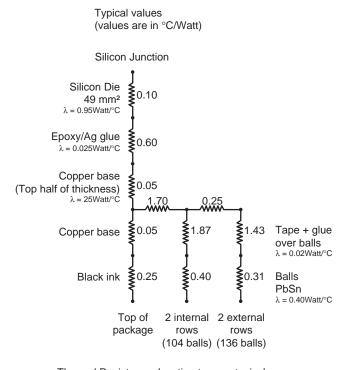
45 deg. 0.5 mm chamfer corner and white dot for pin 1 identification.

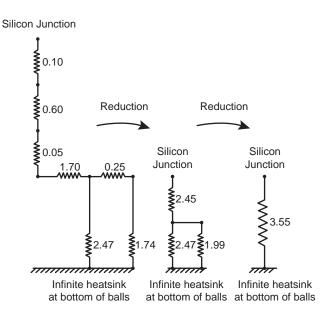
Thermal and Moisture Characteristics

Thermal Resistance from Junction to Case: RTHJC The Rth from junction to case for the TBGA package is estimated at $1.05^{\circ}C/W$ which can be decomposed in:

- Silicon: 0.1°C/W
- Die attach epoxy: 0.5°C/W (thickness # 50 μm)
- Copper block (back side of the package): 0.1°C/W
- Black Ink: 0.251°C/W.

Thermal Resistance from Junction to Ambient: RTHJA	A pin-fin type heatsink, size 40 mm x 40 mm x 8 mm can be used to reduce thermal resis- tance. This heatsink should not be glued on top of the package as Atmel cannot guarantee the attachment on the board in such a configuration. The heatsink could be clipped or screwed on the board.
	With such a heatsink the Rthj-a is about 6°C/W. (If we take 10°C/W for Rth from junction to air through package and heat sink in parallel with 15°C/W from junction to board through package body, through balls and through board copper).
	Without heatsink, the Rth junction to air for a package reported on-board can be estimated from 13 to 20°C/W (depending on the board used).
	The worst value 20°C/W is given for 1-layer board (13°C for 4-layer board).
Thermal Resistance from Junction to Bottom of Balls	The thermal resistance from junction to the Bottom of the balls of the package corresponds to the total Thermal resistance to be considered from the Silicon Die junction to the interface with a board. This thermal resistance is estimated to be 4.8°C/W max.
	The following scheme points out how the previous thermal resistances were calculated for this


Figure 22. Thermal Resistance from Junction to Bottom of Balls

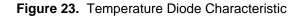

packaged device.

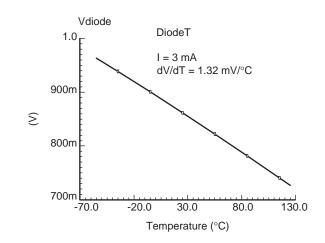
DEMUX – Axpproximative Model for 240 TBGA

Assumptions:

Square die 7.0 x 7.0 = 49 mm², 75 μ m thick Epoxy/Ag glue, 0.40 mm copper thickness under die, Sn60Pb40 columns diameter 0.76 mm, 23 x 23 mm TBGA

Case were all Bottom of Balls are connected to infinite heatsink


(values are in °C/Watt)


Thermal Resistance Junction to bottom of balls = 4.8° C/W Max

Thermal Resistance Junction to case typical = $0.10 + 0.60 + 0.05 + 0.05 + 0.25 = 1.05^{\circ}C/W$

Thermal Resistance Junction to case Max = $1.40^{\circ}C/W$

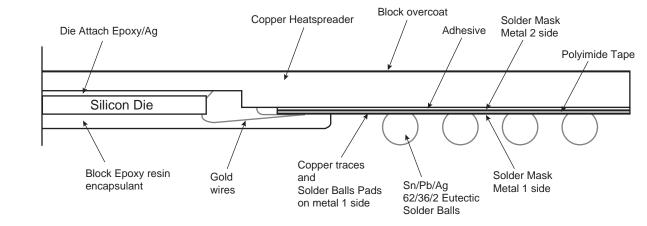
Temperature Diode Characteristic The theoretical characteristic of the diode, in function of the temperature when I = 3 mA is depicted below.

Moisture	This device is sensitive to the moisture (MSL3 according JEDEC standard).
Characteristic	Shelf life in sealed bag: 12 months at < 40° C and < 90% relative humidity (RH).

After this bag is opened, devices that will be subjected to infrared reflow, vapor-phase reflow, or equivalent processing (peak package body temperature 220°C) must be:

- mounted within 168 hours at factory conditions of \leq 30°C/60% RH, or
- stored at \leq 20% RH.

Devices require baking, before mounting, if Humidity Indicator is > 20% when read at 23°C \pm 5°C.

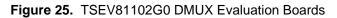

If baking is required, devices may be baked for:

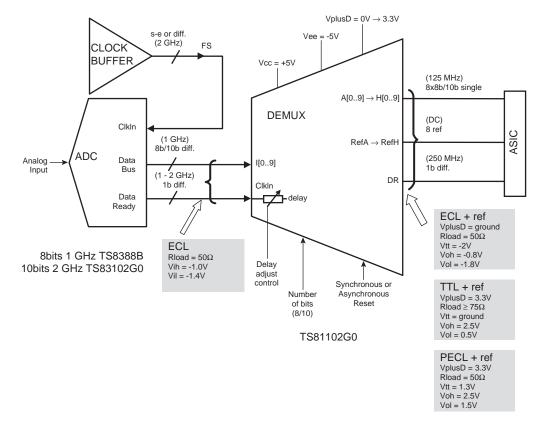
- 192 hours at 40°C + 5°C/-0°C and < 5% RH for low temperature device containers, or
- 24 hours at 125°C ± 5°C for high-temperature device containers.

Detailled CrossHere is the detailed cross section of the DMUX TBGA package.Section

Figure 24. TBGA 240: 1/2 Cross Section

In the DMUX package (see Figure 24), the die backside is attached to the copper heatspreader so the copper heatspreader is at -5V.


It is necessary to use a heatsink which will be tied to the copper heatspeader.


Moreover, there is only a little layer of painting over the copper heatspreader; this is not isolating it.

So it is recommended either to isolate the heatsink from the other components of the board or to isolate electrically the copper heatspreader from the heatsink. In this second case, use adequate low Rth electrical isolation.

Applying the TS81102G0 DMUX

TSEV81102G0 DMUX evaluation board is designed to be connected with TSEV8388G and TSEV83102G0 ADC evaluation boards.

Please refer to the "ADC and DMUX Application Note" for more information.

ADC to DMUX Connections

The DMUX inputs configuration has been optimized to be connected to the TS8388B ADC.

The die in the TBGA package is up. For the ADC, different types of packages can be used such as CBGA with die up or the CQFP68 down. The DMUX device being completely symmetrical, both ADC packages can be connected to the TBGA package of the DMUX crisscrossing the lines (see Table 8).

ADC Digital Outputs CQFP68 Package	DMUX Data Inputs TBGA Package	ADC Digital Outputs CBGA Package	DMUX Data Inputs TBGA Package
D0	17	D0	10
D1	16	D1	l1
D2	15	D2	12
D3	14	D3	13
D4	13	D4	14
D5	12	D5	15
D6	l1	D6	16
D7	10	D7	17
-	18 not connected	-	18 not connected
-	19 not connected	-	19 not connected

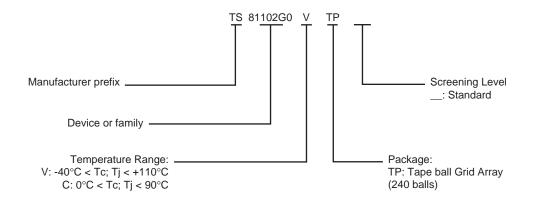
Table 8. ADC to DMUX Connections

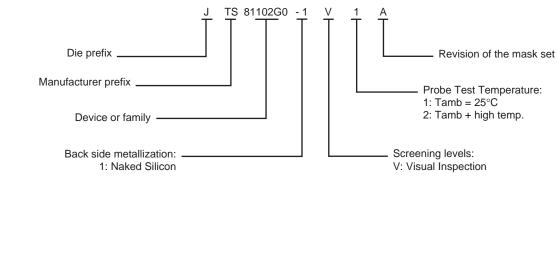
Note: The connection between the ADC evaluation board and the DMUX evaluation board requires a 4-pin shift to make the D0 pin match either the I7 or I0 pin of the DMUX evaluation board.

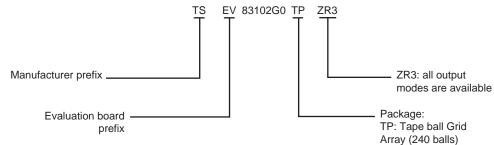
TSEV81102G0TP: Device Evaluation Board

General Description The TSEV81102G0TP DMUX Evaluation Board (EB) is designed to simplify the characterization and the evaluation of the TS81102G0 device (2 Gsps DMUX). The DMUX EB enables the test of all the functions of the DMUX: Synchronous and Asynchronous reset functions, selection of the DMUX ratio (1:4 or 1:8), selection of the number of bits (8 or 10), output data common mode and swing adjustment, die junction temperature measurements over military temperature range, etc.

The DMUX EB has been designed to enable an easy connection with Atmel ADC Evaluation Boards (i.e. TSEV8388BG or TSEV83102G0GL) for an extended functionality evaluation (ADC+DMUX multi-channels applications).


The DMUX EB comes fully assembled and tested, with a TS81102G0 device implemented on board and an heatsink assembled on the device.


Ordering Information


Package Device

Die Form

Evaluation Board

³² **TS81102G0**

Datasheet Status Description

Table 9. Datasheet Status

Datasheet Status		Validity			
Objective specification	This datasheet contains target and goal specifications for discussion with customer and application validation.	Before design phase			
Target specification	This datasheet contains target or goal specifications for product development.	Valid during the design phase			
Preliminary specification α -site	This datasheet contains preliminary data. Additional data may be published later; could include simulation results.	Valid before characterization phase			
Preliminary specification β-site	This datasheet contains also characterization results.	Valid before the industrialization phase			
Product specification	This datasheet contains final product specification.	Valid for production purposes			
Limiting Values		•			
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.					
Application Information					
Where application information	on is given, it is advisory and does not fo	orm part of the specification.			

Life Support Applications

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Atmel customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Atmel for any damages resulting from such improper use or sale.

Atmel Headquarters

Corporate Headquarters

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

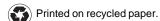
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail

literature@atmel.com


Web Site http://www.atmel.com

© Atmel Corporation 2002.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

ATMEL® is the registered trademark of Atmel.

Other terms and product names may be the trademark of others.

