
Serial Input PLL with 2.5-GHz Prescaler

Features

- Operating voltage 2.7V to 5.5V
- Operating frequency: up to 2.5 GHz with prescaler ratios of 32/33 and 64/65
- Lock detect feature
- Power-down mode
- 20-pin TSSOP (Thin Shrink Small Outline Package)

Applications

- Wireless LAN
- · Wireless communication handsets
- Base Stations
- Microcells

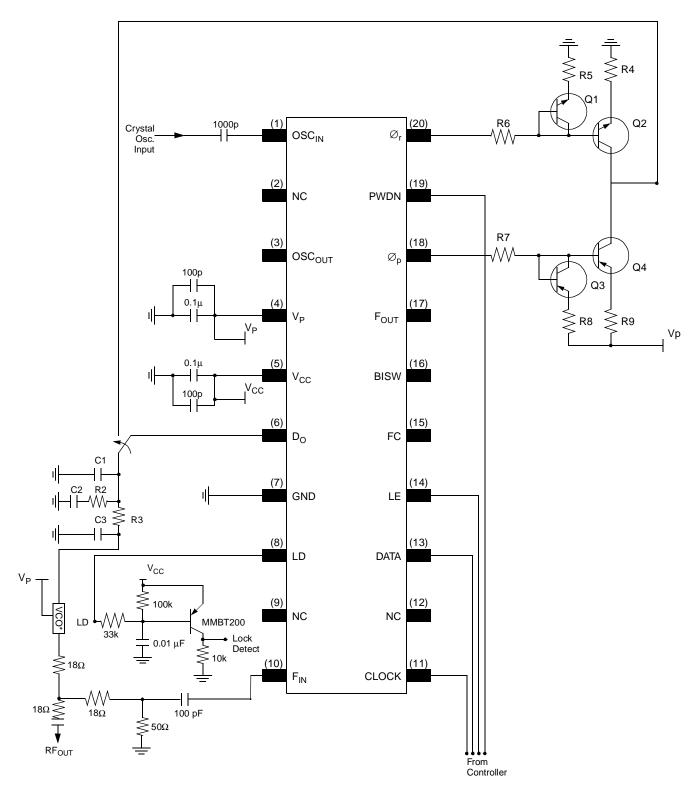


Figure 1. Application Diagram Example - WB1225 2.5-GHz PLL

Pin Definitions

Pin Name	Pin No.	Pin Type	Pin Description					
OSC_IN	1	I	Oscillator Input: This input has a $V_{CC}/2$ threshold and CMOS logic level sensitivity.					
NC	2		No Connect					
OSC_OUT	3	0	Oscillator Output					
V _P	4	Р	Charge Pump Rail Voltage: This supply for charge pump. Must be > V _{CC} .					
V _{CC}	5	Р	Power Supply Connection for PLL: When power is removed from V_{CC} all latched data is lost.					
D _O	6	0	<i>harge Pump Output:</i> The phase detector gain is $I_P/2\pi$. Sense polarity can be re- ersed by setting FC LOW (pin 15).					
GND	7	G	Analog and Digital Ground Connection: This pin must be grounded.					
LD	8	0	Lock Detect Pin: This output is HIGH with narrow LOW pulses when the loop is locked.					
NC	9		No Connect					
F _{IN}	10	I	Input to Prescaler: Maximum frequency 2.5 GHz.					
CLOCK	11	I	Data Clock Input: One bit of data is loaded into the Shift Register on the rising edge of this signal.					
NC	12		No Connect					
DATA	13	I	Serial Data Input					
LE	14	I	Load Enable: On the rising edge of this signal, the data stored in the Shift Register is latched into the counters and configuration controls.					
F _C	15	I	Phase Sense Control for Phase Detector with Internal Pull-up: When pulled LOW, the polarity of the Phase Detector is reversed.					
BISW	16	0	Analog Switch Output: Connects to output of charge pump when LE is HIGH.					
F _{OUT}	17	0	Monitor Point for Phase Detector Input					
Ø _P	18	0	External Charge Pump Output: Open drain N-Channel FET, pull-up resistor required.					
PWDN	19	I	Power Down Pin with Internal Pull-up: When pin is HIGH, device is in normal state. When pin is LOW, device is in power-down mode. When device enters power-down mode the charge pump is in the three-state condition.					
Ø _R	20	0	External Change Pump: (CMOS logic output).					

Absolute Maximum Ratings

Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress rating only. Operation of the device at these or any other conditions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability.

Parameter	Description	Rating	Unit		
V _{CC} or V _P	Power Supply Voltage	-0.5 to +6.5	V		
V _{OUT}	Output Voltage	–0.5 to V _{CC} +0.5	V		
I _{OUT}	Output Current	±15	mA		
TL	Lead Temperature	+260	°C		
T _{STG}	Storage Temperature	–55 to +150	°C		

Handling Precautions

Devices should be transported and stored in antistatic containers.

These devices are static sensitive. Ensure that equipment and personnel contacting the devices are properly grounded.

Cover workbenches with grounded conductive mats.

Always turn off power before adding or removing devices from system.

Protect leads with a conductive sheet when handling or transporting PC boards with devices.

If devices are removed from the moisture protective bags for more than 36 hours, they should be baked at 85°C in a moisture free environment for 24 hours prior to assembly in less than 24 hours.

Recommended Operating Conditions

Parameter	Description	Test Condition	Rating	Unit
V _{CC}	Power Supply Voltage		2.7 to 5.5	V
V _P	Charge Pump Voltage		V _{CC} to +5.5	V
T _A	Operating Temperature	Ambient air at 0 CFM flow	-40 to +85	°C

Parameter	Description	Test Condition	Pin	Min.	Тур.	Max.	Unit
I _{CC}	Power Supply Current		V _{CC}		8		mA
I _{PD}	Power-down Current	Power-down, $V_{CC} = 3.0V$	V _{CC}		6	100	μA
F _{IN}	Maximum Operating Frequency		F _{IN}	2.5			GHz
F _{OSC}	Oscillator Input Frequency	No load on OSC_OUT	OSC_IN	2		60	MHz
		With OSC_OUT loaded		2		25	MHz
Fφ	Maximum Phase Detector Frequency			10			MHz
PF _{IN}	Input Sensitivity	$V_{CC} = 2.7V$	F _{IN}	-15		4	dBm
		$V_{CC} = 5.5V$		-10		4	dBm
V _{OSC}	Oscillator Input Sensitivity		OSC_IN	0.5			V_{P-P}
I _{IH} , I _{IL}	Oscillator Input Current			-100		100	μA
V _{IH}	High Level Input Voltage	$V_{CC} = 5.0V$	DATA,	V _{CC} * 0.8			V
V _{IL}	Low Level Input Voltage		CLOCK, LE			V _{CC} * 0.3	V
I _{IH}	High Level Input Current			-10	1	10	μA
IIL	Low Level Input Current			-10	1	10	μA
V _{OH}	High Level Output Voltage		F _O /LD	2.2			V
V _{OL}	Low Level Output Voltage					0.4	V
ID _{O(SO)}	ID _O , Source Current	$V_{P} = 3.0V, VD_{O} = V_{P}/2$	D _O		-3.2		mA
		$V_{P} = 5.0V, VD_{O} = V_{P}/2$			-3.8		mA
ID _{OH(SI)}	ID _O High, Sink Current	$V_{P} = 3.0V, VD_{O} = V_{P}/2$	D _O		3.2		mA
		$V_{P} = 5.0V, VD_{O} = V_{P}/2$			3.8		mA
ΔID_O	ID _O Charge Pump Sink and Source Mismatch	$\begin{array}{l} VD_O = V_P / 2 \\ [IID_{O(SI)}I - IID_{O(SO)}I] / \\ [1/2^* \{IID_{O(SI)}]I + IID_{O(SO)}I\}]^* 100\% \end{array}$			5		%
ID _O vs T	Charge Pump Current Variation vs. Temperature	$-40^{\circ}\text{C} < \text{T} < 85^{\circ}\text{C}, \text{ V}_{\text{DO}} = \text{V}_{\text{P}}/2^{[1]}$			5		%
ID _{O-tri}	Charge Pump High- Impedance Leakage Current				±2		nA

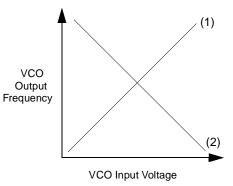
Electrical Characteristics: V_{CC} = 3.0V, V_{P} = 3.0V, T_{A} = -40 °C to +85 °C, Unless otherwise specified

Note:

ID_OVS T; Charge pump current variation vs. temperature. [IID_{O(SI)@T}I − IID_{O(SI)@25° C}I]/IID_{O(SI)@25°C}I * 100% and [IID_{O(SO)@T}I − IID_{O(SO)@25°C}I]/IID_{O(SO)@25°C}I * 100%.

Timing Waveforms

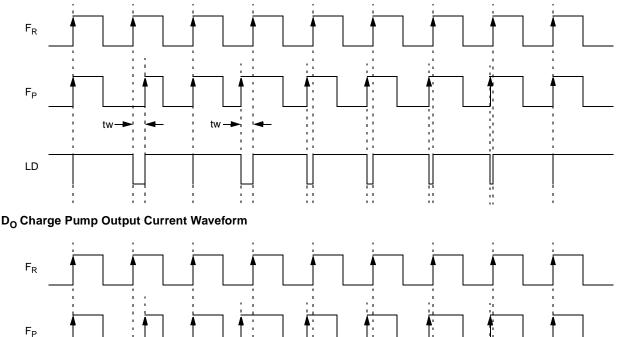
Phase Characteristics


For normal operation, the FC pin is used to select the output polarity of the phase detector. Both the internal and any external charge pump are affected.

Depending upon VCO characteristics, FC pin should be set accordingly:

When VCO characteristics are like (1), FC should be set HIGH or OPEN CIRCUIT:

When VCO characteristics are like (2), FC should be set LOW.


When FC is set HIGH or OPEN CIRCUIT, F_{out} pin is set to the reference divider output, F_r When FC is set LOW, F_{out} pin is set to the programmable divider output F_p .

Phase Comparator Sense

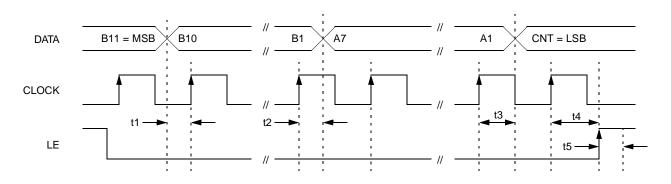
••••• ۰,

Three-state

Phase Detector Output Waveform

tw

tw


 D_0

IDo

11

Timing Waveforms (continued) Serial Data Input Timing Waveform^[2, 3, 4, 5]

Serial Data Input

Data is input serially using the DATA, CLOCK, and LE pins. Two control bits direct data into the locations given in Table 1.

Table 1. Control Configuration

CNT	Function
1	Reference Counter: R = 3 to 16383, set prescaler ratio PRE =0:64/65, PRE=1:32/33
0	Program Counter: A = 0 to 63, B = 3 to 2047

Table 2. Shift Register Configuration^[6]

		•		0														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Refer	Reference Counter and Configuration Bits																	
CNT	R1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	PRE			
Progr	Programmable Counter Bits																	
CNT	A1	A2	A3	A4	A5	A6	A7	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11
Bit(s)	Name)	Func	tion														
CNT			Cont	rol Bit:	Direct	s progi	rammir	ng data	to refe	erence	or prog	gramma	able co	unters				
R1–R	14		Refer	rence (Counte	er Setti	ing Bit	s: 14 b	its, R =	= 3 to 1	6383. [[]	7]						
PRE			Preso	caler D	ivide E	Bit: LO	W = 64	l/65 an	d HIGI	H = 32/	33.							
A1–A	7		Swall	Swallow Counter Divide Ratio: A = 0 to 63.														
B1–B	11		Prog	Programmable Counter Divide Ratio: B = 3 to 2047. ^[7]														

Notes:

The SE low count ratios and violate frequency limits of the second seco 2. 3. 4. 5. 6. 7.

Table 3. 7-Bit Swallow Counter (A) Truth Table^[8]

Divide Ratio A	A7	A6	A5	A4	A3	A2	A1
0	Х	0	0	0	0	0	0
1	Х	0	0	0	0	0	1
:::	Х	:::	:::	:::	:::	:::	:::
62	Х	1	1	1	1	1	0
63	Х	1	1	1	1	1	1

Table 4. 11-Bit Programmable Counter (B) Truth Table^[9]

Divide Ratio B	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1
3	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	1	0	0
:::	:::	:::	:::	:::	:::	:::	:::	:::			:::
2046	1	1	1	1	1	1	1	1	1	1	0
2047	1	1	1	1	1	1	1	1	1	1	1

Table 5. 14-Bit Programmable Reference Counter Truth Table^[9]

Divide Ratio R	R14	R13	R12	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1
3	0	0	0	0	0	0	0	0	0	0	0	0	1	1
4	0	0	0	0	0	0	0	0	0	0	0	1	0	0
:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::	:::
16382	1	1	1	1	1	1	1	1	1	1	1	1	1	0
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Ordering Information^[10]

Ordering Code	Package Name	Package Type	TR
WB1225	Х	20-pin TSSOP (0.173" wide)	Tape and Reel Option

Notes: 8. 9.

B is greater than or equal to A. Divide ratio less than 3 is prohibited. The divide ratio can be calculated using the following equation:

fvco = {(P * B) + A} * fosc / R where (A \leq B)

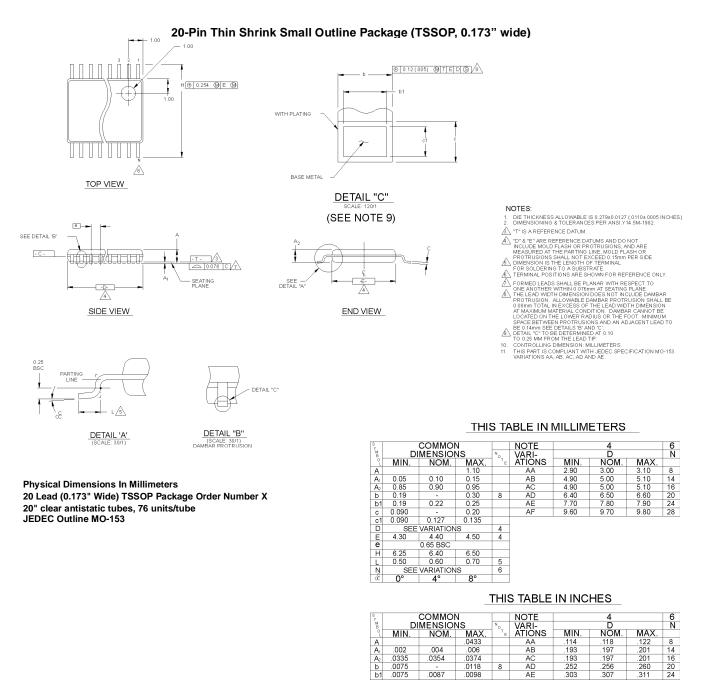
fvco: Output frequency of the external VCO. fosc: The crystal reference oscillator frequency.

A: Preset divide ratio of the 7-bit swallow counter.

B: Preset ratio of the 11-bit programmable counter (3 to 2047).

P: Preset divide ratio of the dual modulus prescaler.

R: Preset ratio of the 15-bit programmable reference counter (3 to 16383).


The divide ratio N = (P * B) + A.

10. Operating temperature range: -40°C to +85°C.

Document #: 38-00866-A

Package Diagram

0035

.169

246

.020

0°

c C .0035

E e

Н

Ņ

0079

0053

177

256

.028

8

4

4

5 6

.0050

173

0256 BSC

.252 .024

SEE VARIATIONS

4 *VARIATION AF IS DESIGNED BUT NOT TOOLED*

SEE VARIATIONS

AF

.378

382

386 28