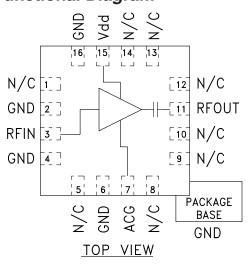


HMC356LP3


GaAs PHEMT MMIC LOW NOISE AMPLIFIER, 350 - 550 MHz

Typical Applications

The HMC356LP3 is ideal for basestation receivers:

- GSM 450 & GSM 480
- CDMA 450
- Private Land Mobile Radio

Functional Diagram

Features

Noise Figure: ≤1.0 dB +38 dBm Output IP3

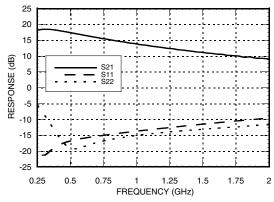
Gain: 17 dB

Very Stable Gain vs. Supply & Temperature

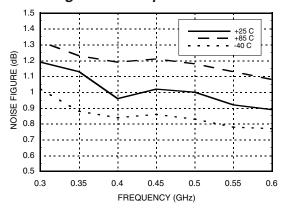
Single Supply: +5.0V @ 104 mA

50 Ohm Matched Output

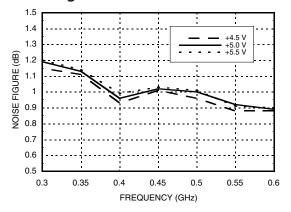
General Description

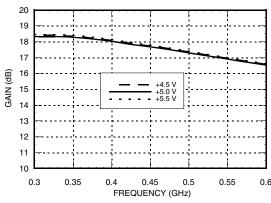

The HMC356LP3 high dynamic range GaAs PHEMT MMIC Low Noise Amplifier is ideal for GSM & CDMA cellular basestation and Mobile Radio front-end receivers operating between 350 and 550 MHz. This LNA has been optimized to provide 1.0 dB noise figure, 17 dB gain and +38 dBm output IP3 from a single supply of +5.0V @ 104 mA. Input and output return losses are 15 dB typical, with the LNA requiring only four external components to optimize the RF input match, RF ground and DC bias. The HMC356LP3 shares the same package and pinout with the HMC372LP3 high IP3 LNA. A low cost, leadless 3x3 mm (LP3) SMT QFN package houses the low noise amplifier.

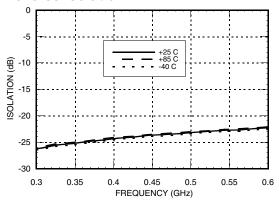
Electrical Specifications, $T_{\Delta} = +25^{\circ} C$, Vs = +5V


Parameter	Min.	Тур.	Max.	Units
Frequency Range	350 - 550		MHz	
Gain	15	17		dB
Gain Variation Over Temperature		0.0032	0.010	dB / °C
Noise Figure		1.0	1.4	dB
Input Return Loss		17		dB
Output Return Loss		12		dB
Reverse Isolation		24		dB
Output Power for 1dB Compression (P1dB)	17	21		dBm
Saturated Output Power (Psat)		22.5		dBm
Output Third Order Intercept (IP3) (-20 dBm Input Power per tone, 1 MHz tone spacing)	34	38		dBm
Supply Current (Idd)		104		mA

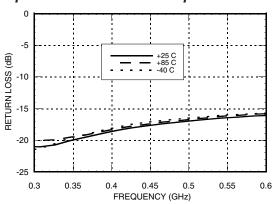
Broadband Gain & Return Loss


Noise Figure vs. Temperature

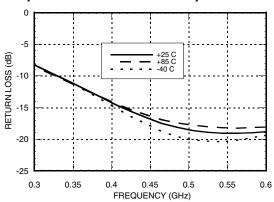

Gain vs. Temperature

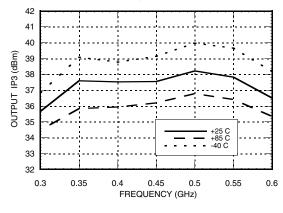

Noise Figure vs. Vdd

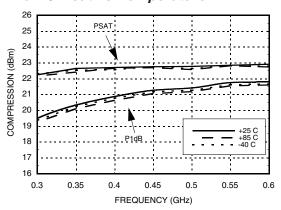
Gain vs. Vdd

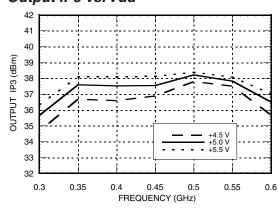


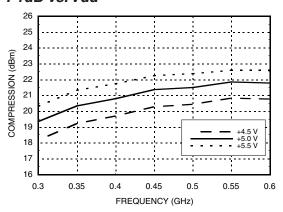
Reverse Isolation




Input Return Loss vs. Temperature

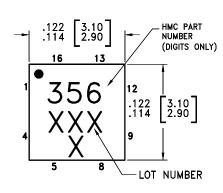

Output Return Loss vs. Temperature


Output IP3 vs. Temperature


P1dB & Psat vs. Temperature

Output IP3 vs. Vdd

P1dB vs. Vdd


Absolute Maximum Ratings

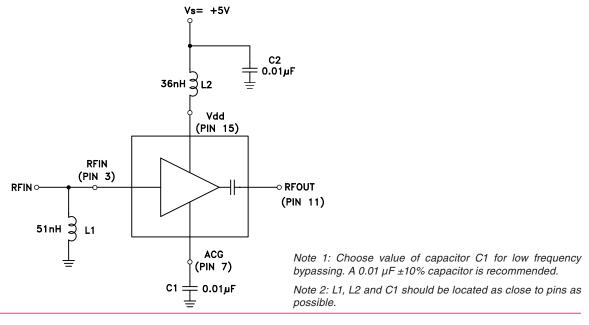
Drain Bias Voltage (Vdd)	+8.0 Vdc	
RF Input Power (RFin)(Vdd = +5.0 Vdc)	+15 dBm	
Channel Temperature	150 °C	
Continuous Pdiss (T = 85 °C) (derate 14 mW/°C above 85 °C)	0.910 W	
Thermal Resistance (channel to ground paddle)	71.4 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	

Typical Supply Current vs. Vdd

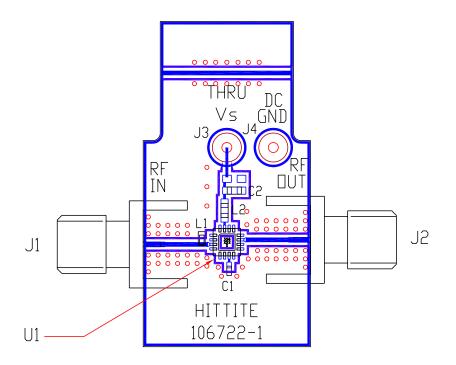
Vdd (Vdc)	Idd (mA)
+4.5	103
+5.0	104
+5.5	105

Outline Drawing

NOTES:


- MATERIAL PACKAGE BODY: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEAD AND GROUND PADDLE MATERIAL: COPPER ALLOY
- 3. LEAD AND GROUND PADDLE PLATING: Sn/Pb SOLDER
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 5. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
 PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 7. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 8. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED PCB LAND PATTERN.

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 5, 8, 9,10,12,13,14	N/C	No connection necessary. These pins may be connected to RF/DC ground.	
2, 4, 6,16	GND	These pins and package ground paddle must be connected to RF/DC ground.	<u> </u>
3	RF IN	This pin is matched to 50 Ohms with a 51 nH inductor to ground. See Application Circuit.	RFIN O
7	ACG	AC Ground - An external capacitor of 0.01µF to ground is required for low frequency bypassing. See Application Circuit for further details.	Vdd O ACG
11	RF OUT	This pin is AC coupled and matched to 50 Ohms.	—— —— RFOUT
15	Vdd	Power supply voltage. Choke inductor and bypass capacitor are required. See application circuit.	Vdd O ACG

Application & Evaluation PCB Circuit

Evaluation PCB

List of Material

Item	Description	
J1 - J2	PC Mount SMA RF Connector	
J3 - J4	DC Pin	
C1	10,000 pF Capacitor, 0402 Pkg.	
C2	10,000 pF Capacitor, 0603 Pkg.	
L1	51 nH Inductor, 0402 Pkg.	
L2	36 nH Inductor, 0603 Pkg.	
U1	HMC356LP3 Amplifier	
PCB*	106722 Eval Board	
* Circuit Board Material: Rogers 4350		

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of VIA holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.