DOUBLE CHANNEL HIGH SIDE SMART POWER SOLID STATE RELAY

TYPE	Voss	$R_{\text {ds(on) }}$	$\left.\mathbf{I n}^{(*}\right)$	$\mathbf{V c c}_{\text {c }}$
VND10B	40 V	0.1Ω	3.4 A	26 V

- OUTPUT CURRENT (CONTINUOUS):
$14 \mathrm{~A} @ \mathrm{~T}_{\mathrm{c}}=85^{\circ} \mathrm{C}$ PER CHANNEL
- 5V LOGIC LEVEL COMPATIBLE INPUT
- THERMAL SHUT-DOWN
- UNDER VOLTAGE PROTECTION
- OPEN DRAIN DIAGNOSTIC OUTPUT
- INDUCTIVE LOAD FAST DEMAGNETIZATION
- VERY LOW STAND-BY POWER DISSIPATION

DESCRIPTION

The VND10B is a monolithic device made using SGS-THOMSON Vertical Intelligent Power Technology, intended for driving resistive or inductive loads with one side grounded. This device has two channels, and a common diagnostic. Built-in thermal shut-down protects the chip from over temperature and short circuit. The status output provides an indication of open load in on state, open load in off state, overtemperature conditions and stuck-on to V_{Cc}.

BLOCK DIAGRAM

(*) In= Nominal current according to ISO definition for high side automotive switch (see note 1)

ABSOLUTE MAXIMUM RATING

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {(BR)DSS }}$	Drain-Source Breakdown Voltage	40	V
Iout	Output Current (cont.) at $\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$	14	A
Iout(RMS)	RMS Output Current at $\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$ and $\mathrm{f}>1 \mathrm{~Hz}$	14	A
I_{R}	Reverse Output Current at $\mathrm{T}_{\mathrm{C}}=85^{\circ} \mathrm{C}$	-14	A
I_{N}	Input Current	± 10	mA
$-\mathrm{V}_{\mathrm{CC}}$	Reverse Supply Voltage	-4	V
$\mathrm{I}_{\text {STAT }}$	Status Current	± 10	mA
$\mathrm{~V}_{\text {ESD }}$	Electrostatic Discharge $(1.5 \mathrm{k} \Omega, 100 \mathrm{pF})$	2000	V
$\mathrm{P}_{\text {tot }}$	Power Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	75	W
$\mathrm{~T}_{\mathrm{j}}$	Junction Operating Temperature	-40 to 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {Stg }}$	Storage Temperature	-55 to 150	${ }^{\circ} \mathrm{C}$

CONNECTION DIAGRAM

CURRENT AND VOLTAGE CONVENTIONS

THERMAL DATA

$\mathrm{R}_{\text {thj-case }}$	Thermal Resistance Junction-case	Max	1.65	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\text {thj-amb }}$	Thermal	Resistance Junction-ambient	Max	60

ELECTRICAL CHARACTERISTICS $\left(8<\mathrm{V}_{\mathrm{CC}}<16 \mathrm{~V} ;-40 \leq \mathrm{T}_{\mathrm{j}} \leq 125^{\circ} \mathrm{C}\right.$ unless otherwise specified) POWER

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
Vcc	Supply Voltage		6	13	26	V
$\ln \left({ }^{*}\right)$	Nominal Current	$\mathrm{T}_{\mathrm{c}}=85{ }^{\circ} \mathrm{C} \quad \mathrm{V}_{\mathrm{DS} \text { (on) }} \leq 0.5 \quad \mathrm{~V}_{\mathrm{CC}}=13 \mathrm{~V}$	3.4		5.2	A
$\mathrm{R}_{\text {on }}$	On State Resistance	Iout $=\mathrm{In}_{\mathrm{n}} \mathrm{V}_{\text {CC }}=13 \mathrm{~V} \quad \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	0.065		0.1	Ω
Is	Supply Current	Off State $\quad \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \quad \mathrm{V}_{\text {cc }}=13 \mathrm{~V}$		35	100	$\mu \mathrm{A}$
$\mathrm{V}_{\text {DS(MAX) }}$	Maximum Voltage Drop	Iout $=13 \mathrm{~A} \quad \mathrm{~T}_{\mathrm{j}}=85^{\circ} \mathrm{C} \quad \mathrm{V}_{\text {CC }}=13 \mathrm{~V}$	1.2		2	V
R_{i}	Output to GND internal Impedance	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	5	10	20	$\mathrm{K} \Omega$

SWITCHING

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{t}_{\mathrm{d}(\mathrm{on})}(\wedge)$	Turn-on Delay Time Of Output Current	$\mathrm{R}_{\text {out }}=2.7 \Omega$	5	35	200	$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{r}}(\wedge)$	Rise Time Of Output Current	$\mathrm{R}_{\text {out }}=2.7 \Omega$	10	140	500	$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{d}(\mathrm{off})}(\wedge)$	Turn-off Delay Time Of Output Current	$\mathrm{R}_{\text {out }}=2.7 \Omega$	28	75	360	$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{f}}(\wedge)$	Fall Time Of Output Current	$\mathrm{R}_{\text {out }}=2.7 \Omega$	0.003		0.1	$\mathrm{~A} / \mu \mathrm{s}$
$(\mathrm{di} / \mathrm{dt})$ on	Turn-on Current Slope	$\mathrm{R}_{\text {out }}=2.7 \Omega$	0.005		0.1	$\mathrm{~A} / \mu \mathrm{s}$
$(\mathrm{di} / \mathrm{dt})_{\text {off }}$	Turn-off Current Slope	$\mathrm{R}_{\text {out }}=2.7 \Omega$				

LOGIC INPUT

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{IL}	Input Low Level Voltage				1.5	V
$\mathrm{~V}_{\mathrm{IH}}$	Input High Level Voltage		0.5		(\bullet)	V
$\mathrm{V}_{\text {I(hyst. })}$	Input Hysteresis Voltage		0.9	1.5	V	
I_{IN}	Input Current	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V} \mathrm{~T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	5	6 -0.7	7	V
$\mathrm{~V}_{\mathrm{ICL}}$	Input Clamp Voltage	$\mathrm{I}_{\mathrm{IN}}=10 \mathrm{~mA}$ $\mathrm{I}_{\mathrm{IN}}=-10 \mathrm{~mA}$	V			

ELECTRICAL CHARACTERISTICS (continued) PROTECTION AND DIAGNOSTICS

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$V_{\text {Stat }}$	Status Voltage Output Low	$\mathrm{I}_{\text {STAT }}=1.6 \mathrm{~mA}$			0.4	V
Vusd	Under Voltage Shut Down		3.5	4.5	6	V
V SCL	Status Clamp Voltage	$\begin{aligned} & \text { ISTAT }=10 \mathrm{~mA} \\ & \text { ISTAT }=-10 \mathrm{~mA} \end{aligned}$	5	$\begin{gathered} 6 \\ -0.7 \end{gathered}$	7	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
TTSD	Thermal Shut-down Temperature		140	160	180	${ }^{\circ} \mathrm{C}$
TSD(hyst.)	Thermal Shut-down Hysteresis				50	${ }^{\circ} \mathrm{C}$
TR	Reset Temperature		125			${ }^{\circ} \mathrm{C}$
Vol	Open Voltage Level	Off-State (note 2)	2.5	4	5	V
IoL	Open Load Current Level	On-State	0.6	0.9	1.4	A
$t_{\text {povl }}$	Status Delay	(note 3)		5	10	$\mu \mathrm{s}$
$t_{\text {pol }}$	Status Delay	(note 3)	50	500	2500	$\mu \mathrm{s}$

(*) In= Nominal current according to ISO definition for high side automotive switch (see note 1)
(^) See switching time waveform
(•) The $\mathrm{V}_{1 H}$ is internally clamped at 6 V about. It is possible to connect this pin to an higher voltage via an external resistor calculated to not exceed 10 mA at the input pin.
note 1: The Nominal Current is the current at $\mathrm{T}_{\mathrm{c}}=85^{\circ} \mathrm{C}$ for battery voltage of 13 V which produces a voltage drop of 0.5 V
note 2: $\operatorname{loL}($ off $)=\left(\mathrm{V}_{\mathrm{cc}}-\mathrm{Vol}_{\mathrm{ol}}\right) /$ RoL
note 3: $\mathrm{t}_{\text {povl }} \mathrm{t}_{\text {pol }}$: ISO definition

Note 2 Relevant Figure

Note 3 Relevant Figure

Switching Time Waveforms

FUNCTIONAL DESCRIPTION

The device has a common diagnostic output for both channels which indicates open load in on-state, open load in off-state, over temperature conditions and stuck-on to V_{Cc}.
From the falling edge of the input signal, the status output, initially low to signal a fault condition (overtemperature or open load on-state), will go back to a high state with a different delay in case of overtemperature (tpovl) and in case of open open load (tpol) respectively. This feature allows to discriminate the nature of the detected fault. To protect the device against short circuit and over current condition, the thermal protection turns the integrated Power MOS off at a minimum junction temperature of $140{ }^{\circ} \mathrm{C}$. When this temperature returns to $125^{\circ} \mathrm{C}$ the switch is automatically turned on again. In short circuit the protection reacts with virtually no delay, the sensor (one for each channel) being located inside each of the two Power MOS areas. This positioning allows the device to operate with one channel in automatic thermal cycling and the other one on a normal load. An internal function of the devices ensures the fast demagnetization of inductive loads with a typical voltage ($V_{\text {demag }}$) of -18 V . This function allows to greatly reduces the power dissipation according to the formula:
$P_{\text {dem }}=0.5 \bullet L_{\text {load }} \bullet\left(l_{\text {load }}\right)^{2} \bullet\left[\left(V_{C C}+V_{\text {demag }}\right) / V_{\text {demag }}\right] \bullet f$ where $f=$ switching frequency and
$\mathrm{V}_{\text {demag }}=$ demagnetization voltage.

The maximum inductance which causes the chip temperature to reach the shut-down temperature in a specified thermal environment is a function of the load current for a fixed Vcc, Vdemag and f according to the above formula. In this device if the GND pin is disconnected, with $V_{c c}$ not exceeding 16 V , both channel will switch off.

PROTECTING THE DEVICE AGAINST REVERSE BATTERY

The simplest way to protect the device against a continuous reverse battery voltage (-26 V) is to insert a Schottky diode between pin 2 (GND) and ground, as shown in the typical application circuit (fig. 2).
The consequences of the voltage drop across this diode are as follows:

- If the input is pulled to power GND, a negative voltage of $-\mathrm{V}_{\mathrm{f}}$ is seen by the device. (Vil, Vih thresholds and Vstat are increased by Vf with respect to power GND).
- The undervoltage shutdown level is increased by Vf.
If there is no need for the control unit to handle external analog signals referred to the power GND, the best approach is to connect the reference potential of the control unit to the device ground (see application circuit in fig. 3), which becomes the common signal GND for the whole control board avoiding shift of V_{ih}, $\mathrm{V}_{\text {il }}$ and $V_{\text {stat. }}$ This solution allows the use of a standard diode.

TRUTH TABLE

		INPUT 1	INPUT 2	OUTPUT 1	OUTPUT 2	DIAGNOSTIC
Normal Operation		$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{~L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \\ & \mathrm{H} \end{aligned}$
Under-voltage		X	X	L	L	H
Thermal Shutdown	Channel 1	H	X	L	X	L
	Channel 2	X	H	X	L	L
Open Load	Channel 1	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\underset{\mathrm{L}\left({ }^{* *}\right)}{\mathrm{L}}$
	Channel 2	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\underset{\mathrm{L}\left({ }^{* *}\right)}{\mathrm{L}}$
Output Shorted to VCc	Channel 1	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$
	Channel 2	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{X} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$

Figure 1: Waveforms

Figure 2: Typical Application Circuit With A Schottky Diode For Reverse Supply Protection

Figure 3: Typical Application Circuit With Separate Signal Ground

Heptawatt (vertical) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			4.8			0.189
C			1.37			0.054
D	2.4		2.8	0.094		0.110
D1	1.2		1.35	0.047		0.053
E	0.35		0.55	0.014		0.022
F	0.6		0.8	0.024		0.031
F1			0.9			0.035
G	2.41	2.54	2.67	0.095	0.100	0.105
G1	4.91	5.08	5.21	0.193	0.200	0.205
G2	7.49	7.62	7.8	0.295	0.300	0.307
H2			10.4			0.409
H3	10.05		10.4	0.396		0.409
L		16.97			0.668	
L1		14.92			0.587	
L2		21.54				0.848
L3		22.62		3	0.102	
L5	2.6			15.8	0.594	
L6	15.1		6.6	0.236		
L7	6					0.110
M						0.200
M1						

Heptawatt (horizontal) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			4.8			0.189
C			1.37			0.054
D	2.4		2.8	0.094		0.110
D1	1.2		1.35	0.047		0.053
E	0.35		0.55	0.014		0.022
F	0.6		0.8	0.024		0.031
F1			0.9			0.035
G	2.41	2.54	2.67	0.095	0.100	0.105
G1	4.91	5.08	5.21	0.193	0.200	0.205
G2	7.49	7.62	7.8	0.295	0.300	0.307
H2			10.4			0.409
H3	10.05		10.4	0.396		0.409
L		14.2			0.559	
L1		4.4			0.173	
L2		15.8				0.622
L3		5.1		3	0.102	
L5	2.6			15.8	0.594	
L6	15.1		6.6	0.236		
L7	6					0.175
L9		4.44		0.144		0.118
Dia	3.65					0.152

Heptawatt (In-Line) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			4.8			0.189
C			1.37			0.054
D	2.4		2.8	0.094		0.110
D1	1.2		1.35	0.047		0.053
E	0.35		0.55	0.014		0.022
F	0.6		0.8	0.024		0.031
F1			0.9		0.100	0.105
G	2.41	2.54	2.67	0.095	0.200	0.205
G1	4.91	5.08	5.21	0.193	0.300	0.307
G2	7.49	7.62	7.8	0.295		0.409
H2			10.4			0.409
H3	10.05		10.4	0.396		0.902
L2	22.4		22.9	0.882		1.024
L3	25.4		26	1.000		0.118
L5	2.6		3	0.102		0.622
L6	15.1		15.8	0.594		0.260
L7	6		6.6	0.236		0.152
Dia	3.65		3.85	0.144		

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life supportdevices or systems without express written approval of SGS-THOMSON Microelectonics.

