

Typical Applications

The HMC291 is ideal for:

- Cellular
- PCS, ISM, MMDS
- WLL Handset & Base Station

Functional Diagram

Features

4 dB LSB Steps to 12 dB

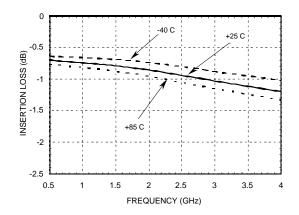
Single Positive Control Per BIT, 0/+3V

+/-0.2 dB Typical Bit Error

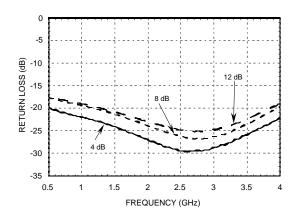
Miniature SOT 26 Package: 9 mm²

General Description

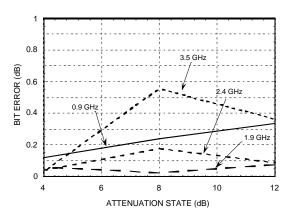
The HMC291 is a broadband 2 - bit positive control GaAs IC digital attenuator in a 6 lead SOT26 surface mount plastic package. Covering 0.7 to 4 GHz, the insertion loss is typically less than 0.7 to 1.3 dB. The attenuator bit values are 4 (LSB) and 8 dB for a total attenuation of 12 dB. Accuracy is excellent at \pm 0.2 dB typical with an IIP3 of up to +54 dBm. Two bit control voltage inputs, toggled between 0 and +3 to +5 volts, are used to select each attenuation state at less than 50 uA each. A single Vdd bias of +3 to +5 volts applied through an external 5K Ohm resistor is required.

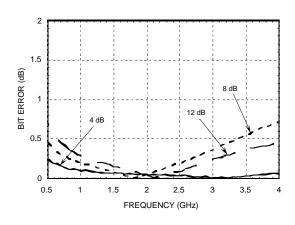

Electrical Specifications,

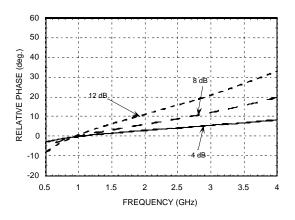
 $T_{\Delta} = +25^{\circ}$ C, Vdd = +3V to +5V & Vctl = 0/Vdd (Unless Otherwise Stated)


Parameter		Frequency	Min.	Typical	Max.	Units
Insertion Loss		0.7 - 1.4 GHz		0.7	1.0	dB
		1.4 - 2.3 GHz		0.9	1.3	dB
		2.3 - 2.7 GHz		1.0	1.4	dB
		2.7 - 4.0 GHz		1.1	1.6	dB
Attenuation Range		0.7 - 4.0 GHz		12		dB
Return Loss (RF1 & RF2, All Atten. States)		0.7 - 1.4 GHz	14	17		dB
•		1.4 - 4.0 GHz	16	22		dB
Attenuation Accuracy: (Referenced to Insertion Loss)						
All Attenuation States		0.7 - 1.4 GHz	± 0.3 + 3°	% of Atten. Se	tting Max	dB
All Attenuation States		1.4 - 2.3 GHz	± 0.2 + 2	% of Atten. Se	tting Max	dB
All Attenuation States		2.3 - 2.7 GHz	± 0.2 + 3°	% of Atten. Set	tting Max	dB
All Attenuation States		2.7 - 4.0 GHz	± 0.4 + 5	% of Atten. Se	tting Max	dB
Input Power for 0.1 dB Compression	5V	0.7 - 4.0 GHz		26		dBm
·	3V			22		dBm
Input Third Order Intercept Point	5V	0.7 - 4.0 GHz		54		dBm
(Two-tone Input Power = 0 dBm Each Tone)	3V			50		dBm
Switching Characteristics		0.7 - 4.0 GHz				
tRISE, tFALL (10/90% RF)				560		ns
tON, tOFF (50% CTL to 10/90% RF)				600		ns


Insertion Loss


Return Loss RF1, RF2


Normalized Attenuation

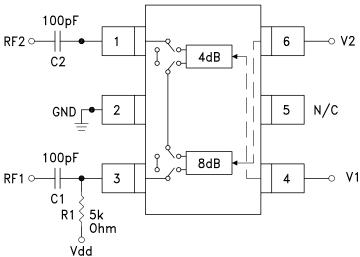

Absolute Bit Error vs. Attenuation State

Absolute Bit Error vs. Frequency

Relative Phase vs. Frequency

Note: All Data Typical Over Voltage (+3V to +5V) & Temperature (-40 to +85 deg. C.).

Truth Table

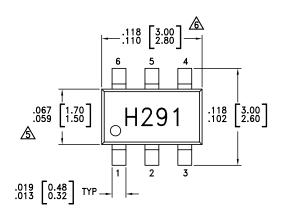

Control Voltage Input		Attenuation	
V1 8 dB	V2 4 dB	Setting RF1 - RF2	
High	High	Reference I.L.	
High	Low	4 dB	
Low	High	8 dB	
Low	Low	12 dB Max. Atten.	
Low	Low	12 dB	

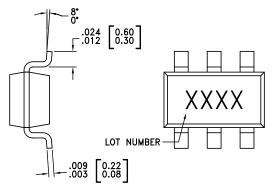
Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.

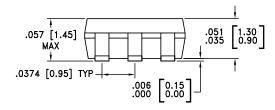
Control & Bias Voltages

State	Bias Condition	
Low	0 to +0.2V @ 20 uA Max.	
High	Vdd ± 0.2V @ 50 uA Max.	
Note: $Vdd = +3V$ to $5V \pm 0.2V$		

Application Circuit

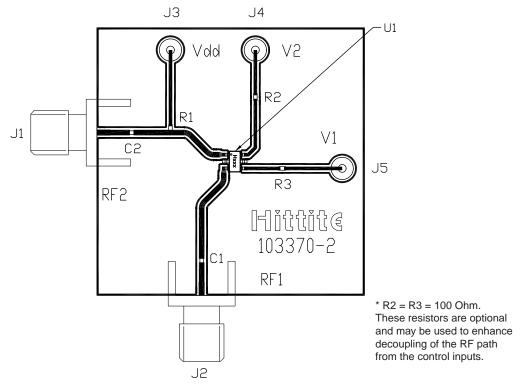

DC blocking capacitors C1 & C2 are required on RF1 & RF2. Choose C1 = $C2 = 100 \sim 300$ pF to allow lowest customer specific frequency to pass with minimal loss. R1 = 5K Ohm is required to supply voltage to the circuit throught either PIN 3 or PIN 1.




Absolute Maximum Ratings

Control Voltage (V1, V2)	Vdd + 0.5 Vdc
Bias Voltage (Vdd)	+8.0 Vdc
Storage Temperature	-65 to +150 °C
Operating Temperature	-40 to +85 °C
RF Input Power (0.7 - 4 GHz)	+28 dBm

Outline Drawing



NOTES:

- PACKAGE BODY MATERIAL: LOW STRESS INJECTION MOLDED PLASTIC SILICA AND SILICON IMPREGNATED.
- 2. LEADFRAME MATERIAL: COPPER ALLOY
- 3. LEADFRAME PLATING: Sn/Pb SOLDER
- 4. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE.
- 6 DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 7. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.

Evaluation Circuit Board

The circuit board used in the final application should use RF circuit design techniques. Signal lines should have 50 ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. A sufficient number of VIA holes should be used to connect the top and bottom ground planes. The evaluation circuit board as shown is available from Hittite Microwave Corporation upon request.

List of Material

Item	Description	
J1 - J2	PC Mount SMA Connector	
J3 - J6	DC Pin	
R1	5k Ohm Resistor, 0402 Chip	
R2, R3	100 Ohm Resistor, 0402 Chip	
C1, C2	0402 Chip Capacitor, Select for Lowest Frequency of Operation	
U1	HMC291 Digital Attenuator	
PCB*	103370 Evaluation PCB 1.5" x 1.5"	
*Circuit Board Material Rogers 4350		

Notes: