

SuperSOT[™]-3

В

NPN Low Saturation Transistor

These devices are designed with high current gain and low saturation voltage with collector currents up to 3A continuous. Sourced from Process NC.

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

Symbol	Parameter	FSB649	Units
VCEO	Collector-Emitter Voltage	25	V
V _{CBO}	Collector-Base Voltage	35	V
V _{EBO}	Emitter-Base Voltage	5	V
Ic	Collector Current - Continuous	3	Α
T _{J,} T _{stg}	Operating and Storage Junction Temperature Range	-55 to +150	°C

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

NOTES:

1) These ratings are based on a maximum junction temperature of 150°C.

2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

$\label{eq:TA} Thermal Characteristics \qquad T_{A=25^\circ C \text{ unless otherwise noted}}$

Symbol	Characteristic	Мах	Units
		FSB649	
PD	Total Device Dissipation	500	mW
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	250	°C/W

© 1999 Fairchild Semiconductor Corporation

Parameter	Test Conditions	Min	Max	Units
RACTERISTICS				
Collector-Emitter Breakdown Voltage	I _C = 10 mA	25		V
Collector-Base Breakdown Voltage	I _C = 100 μA	35		V
Emitter-Base Breakdown Voltage		5		V
Collector Cutoff Current	$V_{CB} = 30 V$ $V_{CB} = 30 V$, $T_{A} = 100^{\circ}C$		100 10	nA uA
Emitter Cutoff Current	V _{EB} = 4V		100	nA
				1
DC Current Gain	$I_{C} = 50 \text{ mA}, V_{CE} = 2 \text{ V}$ $I_{C} = 1 \text{ A}, V_{CE} = 2 \text{ V}$ $I_{C} = 2 \text{ A}, V_{CE} = 2 \text{ V}$ $I_{C} = 6 \text{ A}, V_{CE} = 2 \text{ V}$	70 100 75 15	300	-
Collector-Emitter Saturation Voltage	$I_{C} = 1 \text{ A}, I_{B} = 100 \text{ mA}$ $I_{C} = 3 \text{ A}, I_{B} = 300 \text{ mA}$		300 600	mV
Base-Emitter Saturation Voltage	I _C = 1 A, I _B = 100 mA		1.25	V
Base-Emitter On Voltage	I _C = 1 A, V _{CE} = 2 V		1	V
Output Capacitance	VcB = 10 V. IF = 0, f = 1MHz		50	pF
Transition Frequency		150		-
	ACTERISTICS Collector-Emitter Breakdown Voltage Collector-Base Breakdown Voltage Emitter-Base Breakdown Voltage Collector Cutoff Current Emitter Cutoff Current ACTERISTICS* DC Current Gain Collector-Emitter Saturation Voltage Base-Emitter On Voltage Base-Emitter On Voltage GNAL CHARACTERISTICS Output Capacitance	RACTERISTICSCollector-Emitter Breakdown Voltage $I_{C} = 10 \text{ mA}$ Collector-Base Breakdown Voltage $I_{C} = 100 \mu$ AEmitter-Base Breakdown Voltage $I_{E} = 100 \mu$ ACollector Cutoff Current $V_{CB} = 30 \text{ V}$ VCB = 30 V, T_A=100°CVEmitter Cutoff Current $V_{EB} = 4V$ ACTERISTICS*DC Current Gain $I_{C} = 50 \text{ mA}, V_{CE} = 2 \text{ V}$ $I_{C} = 1 \text{ A}, V_{CE} = 2 \text{ V}$ $I_{C} = 6 \text{ A}, V_{CE} = 2 \text{ V}$ $I_{C} = 6 \text{ A}, V_{CE} = 2 \text{ V}$ $I_{C} = 6 \text{ A}, V_{CE} = 2 \text{ V}$ Collector-Emitter Saturation Voltage $I_{C} = 1 \text{ A}, I_{B} = 100 \text{ mA}$ $I_{C} = 3 \text{ A}, I_{B} = 300 \text{ mA}$ $I_{C} = 1 \text{ A}, I_{B} = 100 \text{ mA}$ $I_{C} = 1 \text{ A}, V_{CE} = 2 \text{ V}$ $I_{C} = 1 \text{ A}, I_{B} = 100 \text{ mA}$ $I_{C} = 3 \text{ Collector-Emitter Saturation Voltage}$ $I_{C} = 1 \text{ A}, I_{B} = 100 \text{ mA}$ $I_{C} = 1 \text{ A}, I_{B} = 100 \text{ mA}$ $I_{C} = 1 \text{ A}, I_{B} = 100 \text{ mA}$ $I_{C} = 1 \text{ A}, V_{CE} = 2 \text{ V}$ $I_{C} = 1 \text{ A}, I_{C} = 2 \text{ V}$ GNAL CHARACTERISTICS $V_{CB} = 10 \text{ V}, I_{E} = 0, f = 1 \text{ MHz}$	RACTERISTICSCollector-Emitter Breakdown Voltage $I_C = 10 \text{ mA}$ 25Collector-Base Breakdown Voltage $I_C = 100 \text{ µA}$ 35Emitter-Base Breakdown Voltage $I_E = 100 \text{ µA}$ 5Collector Cutoff Current $V_{CB} = 30 \text{ V}$ $V_{CB} = 30 \text{ V}, T_A = 100 ^{\circ}\text{C}$ 70Emitter Cutoff Current $V_{EB} = 4V$ 70ACTERISTICS* $I_C = 50 \text{ mA}, V_{CE} = 2 \text{ V}$ $I_C = 1 \text{ A}, V_{CE} = 2 \text{ V}$ $I_C = 6 \text{ A}, V_{CE} = 2 \text{ V}$ $I_C = 6 \text{ A}, V_{CE} = 2 \text{ V}$ $I_C = 3 \text{ A}, I_B = 100 \text{ mA}$ $I_C = 3 \text{ A}, I_B = 300 \text{ mA}$ 75Collector-Emitter Saturation Voltage $I_C = 1 \text{ A}, I_B = 100 \text{ mA}$ $I_C = 1 \text{ A}, I_B = 100 \text{ mA}$ $I_C = 1 \text{ A}, V_{CE} = 2 \text{ V}$ 75Base-Emitter Saturation Voltage $I_C = 1 \text{ A}, I_B = 100 \text{ mA}$ $I_C = 1 \text{ A}, V_{CE} = 2 \text{ V}$ 75Base-Emitter Saturation Voltage $I_C = 1 \text{ A}, I_B = 100 \text{ mA}$ $I_C = 1 \text{ A}, V_{CE} = 2 \text{ V}$ 75Output Capacitance $V_{CB} = 10 \text{ V}, I_E = 0, f = 1 \text{ MHz}$ 75	CACTERISTICSCollector-Emitter Breakdown Voltage $I_C = 10 \text{ mA}$ 25Collector-Base Breakdown Voltage $I_C = 100 \mu A$ 35Emitter-Base Breakdown Voltage $I_E = 100 \mu A$ 5Collector Cutoff Current $V_{CB} = 30 V$ 100VcB = 30 V, V_B = 30 V, T_A = 100°C10Emitter Cutoff Current $V_{CB} = 4V$ 100ACTERISTICS*DC Current Gain $I_C = 50 \text{ mA}, V_{CE} = 2 V$ 70 $I_C = 1 A, V_{CE} = 2 V$ 100300 $I_C = 6 A, V_{CE} = 2 V$ 1515Collector-Emitter Saturation Voltage $I_C = 1 A, I_B = 100 \text{ mA}$ 300Base-Emitter Saturation Voltage $I_C = 1 A, I_B = 100 \text{ mA}$ 1.25Base-Emitter On Voltage $I_C = 1 A, I_B = 100 \text{ mA}$ 1.25Base-Emitter On Voltage $I_C = 1 A, V_{CE} = 2 V$ 1Collector-Emitter Saturation Voltage $I_C = 1 A, I_B = 100 \text{ mA}$ 1.25Base-Emitter On Voltage $I_C = 1 A, V_{CE} = 2 V$ 1Collector-Emitter Saturation Voltage $I_C = 1 A, V_{CE} = 2 V$ 1Collector-Emitter Saturation Voltage $I_C = 1 A, V_{CE} = 2 V$ 1Collector-Emitter Saturation Voltage $I_C = 1 A, V_{CE} = 2 V$ 1Collector-Emitter Saturation Voltage $I_C = 1 A, V_{CE} = 2 V$ 1Collector-Emitter Saturation Voltage $I_C = 1 A, V_CE = 2 V$ 1Collector CapacitanceV_CB = 1

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx[™] Bottomless[™] CoolFET[™] *CROSSVOLT*[™] DenseTrench[™] DOME[™] EcoSPARK[™] E²CMOS[™] EnSigna[™] FACT[™] FACT Quiet Series[™] FAST[®] FASTr[™] FRFET[™] GlobalOptoisolator[™] GTO[™] HiSeC[™] ISOPLANAR[™] LittleFET[™] MicroFET[™] MICROWIRE[™] OPTOLOGIC[™] OPTOPLANAR[™] PACMAN[™] POP[™] Power247[™] PowerTrench[®] QFET[™] QS[™] QT Optoelectronics[™] Quiet Series[™] SILENT SWITCHER[®] SMART START[™] STAR*POWER™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET[®] VCX™

STAR*POWER is used under license

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.
		Rev. H3