High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Abstract

General Description The MAX1533/MAX1537 are dual step-down, switchmode power-supply (SMPS) controllers with synchronous rectification, intended for main $5 \mathrm{~V} / 3.3 \mathrm{~V}$ power generation in battery-powered systems. Fixed-frequency operation with optimal interleaving minimizes input ripple current from the lowest input voltages up to the 26 V maximum input. Optimal 40/60 interleaving allows the input voltage to go down to 8.3 V before duty-cycle overlap occurs, compared to 180° out-of-phase regulators where the duty-cycle overlap occurs when the input drops below 10V. Output current sensing provides accurate current limit using a sense resistor. Alternatively, power dissipation can be reduced using lossless inductor current sensing. Internal 5V and 3.3V linear regulators power the MAX1533/MAX1537 and their gate drivers, as well as external keep-alive loads, up to a total of 100 mA . When the main PWM regulators are in regulation, automatic bootstrap switches bypass the internal linear regulators, providing currents up to 200 mA from each linear output. An additional 5 V to 23 V adjustable internal 150 mA linear regulator is typically used with a secondary winding to provide a 12 V supply The MAX1533/MAX1537 include on-board power-up sequencing, a power-good (PGOOD) output, digital soft-start, and internal soft-shutdown output discharge that prevents negative voltages on shutdown. The MAX1533 is available in a 32-pin $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ thin QFN package, and the MAX1537 is available in a 36-pin $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ thin QFN package. The exposed backside pad improves thermal characteristics for demanding linear keep-alive applications.

Applications
2 to $4 \mathrm{Li}+$ Cells Battery-Powered Devices Notebook and Subnotebook Computers PDAs and Mobile Communicators

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX1533ETJ	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 Thin QFN $5 \mathrm{~mm} \times 5 \mathrm{~mm}$
MAX1533ETJ+	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	32 Thin QFN $5 \mathrm{~mm} \times 5 \mathrm{~mm}$
MAX1537ETX	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 Thin QFN $6 \mathrm{~mm} \times 6 \mathrm{~mm}$
MAX1537ETX +	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	36 Thin QFN $6 \mathrm{~mm} \times 6 \mathrm{~mm}$

+Denotes lead-free package.

Dual Mode is a trademark of Maxim Integrated Products, Inc.

Features

- Fixed-Frequency, Current-Mode Control
- 40/60 Optimal Interleaving
- Accurate Differential Current-Sense Inputs
- Internal 5V and 3.3V Linear Regulators with 100mA Load Capability
- Auxiliary 12V or Adjustable 150mA Linear Regulator (MAX1537 Only)
- Dual-Mode ${ }^{\text {TM }}$ Feedback-3.3V/5V Fixed or Adjustable Output (Dual Mode) Voltages
- 200kHz/300kHz/500kHz Switching Frequency
- Versatile Power-Up Sequencing
- Adjustable Overvoltage and Undervoltage Protection
- 6V to 26V Input Range
- $2 \mathrm{~V} \pm 0.75 \%$ Reference Output
- Power-Good Output
- Soft-Shutdown
- $5 \mu \mathrm{~A}$ (typ) Shutdown Current

Pin Configurations

Pin Configurations continued at end of data sheet.

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

ABSOLUTE MAXIMUM RATINGS

	3 V to +30 V
GND to PGND	-0.3V to +0.3V
LDO5, LDO3, Vcc to GND	-0.3V to +6V
ILIM3, ILIM5, PGDLY to GND.	-0.3V to +6V
CSL3, CSH3, CSL5, CSH5 to GND	-0.3V to +6V
ON3, ON5, FB3, FB5 to GND	-0.3V to +6V
$\overline{\text { SKIP, }}$ OVP, UVP to GND.	-0.3V to +6V
PGOOD, FSEL, ADJA, ONA to GND	-0.3V to +6V
REF to GND.	-0.3V to (VCc + 0.3V)
DL3, DL5 to PGND.	-0.3V to (VLDO5 + 0.3V)
BST3, BST5 to PGND-0.3V to +36V
LX3 to BST3	-6V to +0.3V

LX5 to BST5...-6V to +0.3 V
DH5 to LX5 ...-0.3V to (VBST5 + 0.3V)
LDO3, LDO5 Short Circuit to GNDMomentary
REF Short Circuit to GND ...Momentary
INA Shunt Current.. +15 mA
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)
32-Pin TQFN (derate $21.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)..... .1702 mW $36-$ Pin TQFN (derate $26.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)..... .2105 mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Junction Temperature
$+150^{\circ} \mathrm{C}$
Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (soldering, 10s) $300^{\circ} \mathrm{C}$

DH3 to LX3 ..-0.3V to (VBST3 + 0.3V)
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(Circuit of Figure 1, $\mathrm{V}_{I N}=12 \mathrm{~V}$, both SMPS enabled, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, FSEL $=$ REF, $\overline{\text { SKIP }}=\mathrm{GND}, \mathrm{V}_{\mathrm{ILIM}}^{-}=\mathrm{V}_{\text {LDO5 }}, \mathrm{V}_{I N A}=15 \mathrm{~V}, \mathrm{~V}_{\text {LDOA }}=12 \mathrm{~V}$, $I_{\text {LDO5 }}=$ ILDO3 $^{\prime}=$ l $_{\text {LDOA }}=$ no load,, $\mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
INPUT SUPPLIES (Note 1)						
VIN Input Voltage Range	VIN	LDO5 in regulation	6		26	V
		IN = LDO5, V ${ }_{\text {OUT5 }}$ 4.43V	4.5		5.5	
VIN Operating Supply Current	IIN	LDO5 switched over to CSL5		15	35	$\mu \mathrm{A}$
VIN Standby Supply Current	IIN(STBY)	V IN $=6 \mathrm{~V}$ to 26V, both SMPS off, includes ISHDN		100	170	$\mu \mathrm{A}$
VIN Shutdown Supply Current	$\operatorname{lin}(\mathrm{SHDN})$	$\mathrm{VIN}=6 \mathrm{~V}$ to 26V, $\overline{\text { SHDN }}=\mathrm{GND}$		5	17	$\mu \mathrm{A}$
Quiescent Power Consumption	PQ	Both SMPS on, $\mathrm{FB} 3=\mathrm{FB} 5=\overline{\mathrm{SKIP}}=\mathrm{GND}$, $\mathrm{V}_{\text {CSL3 }}=3.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CSL}}=5.3 \mathrm{~V}, \mathrm{~V}_{\text {INA }}=15 \mathrm{~V}$, ILDOA $=0$, PIN + PCSL3 + PCSL5 + PINA		3.5	4.5	mW
VCc Quiescent Supply Current	Icc	Both SMPS on, FB3 $=$ FB5 $=$ GND, $\mathrm{V}_{\text {CSL3 }}=3.5 \mathrm{~V}, \mathrm{~V}_{\text {CSL5 }}=5.3 \mathrm{~V}$		1.1	2.1	mA
MAIN SMPS CONTROLLERS						
3.3V Output Voltage in Fixed Mode	Vout3	VIN $=6 \mathrm{~V}$ to 26V, $\overline{\text { SKIP }}=\mathrm{V}_{\text {CC }}($ Note 2)	3.280	3.33	3.380	V
5 V Output Voltage in Fixed Mode	Vout5	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V}$ to 26V, $\overline{\text { SKIP }}=\mathrm{V}_{\text {cC }}($ Note 2)	4.975	5.05	5.125	V
Feedback Voltage in Adjustable Mode	$\mathrm{V}_{\text {FB_ }}$	$\mathrm{V}_{\mathrm{IN}}=6 \mathrm{~V}$ to 26 V , FB 3 or FB 5 , duty factor $=20 \%$ to 80% (Note 2)	0.990	1.005	1.020	V
Output-Voltage Adjust Range		Either SMPS	1.0		5.5	V
FB3, FB5 Dual-Mode Threshold			0.1		0.2	V
Feedback Input Leakage Current		$\mathrm{V}_{\text {FB3 }}=\mathrm{V}_{\text {FB5 }}=1.1 \mathrm{~V}$	-0.1		+0.1	$\mu \mathrm{A}$
DC Load Regulation		Either SMPS, $\overline{\text { SKIP }}=V_{C C}$, ILOAD $=0$ to full load		-0.1		\%

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

ELECTRICAL CHARACTERISTICS (continued)

(Circuit of Figure 1, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, both SMPS enabled, $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{FSEL}=$ REF, $\overline{\mathrm{SKIP}}=\mathrm{GND}, \mathrm{V}_{\text {ILIM }}=\mathrm{V}_{\text {LDO5 }}, \mathrm{V}_{\text {INA }}=15 \mathrm{~V}, \mathrm{~V}_{\text {LDOA }}=12 \mathrm{~V}$, $I_{\text {LDO5 }}=I_{\text {LDO3 }}=I_{\text {LDOA }}=$ no load, $\mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $\mathbf{+ 8 5 ^ { \circ }} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Line-Regulation Error		Either SMPS, duty cycle $=10 \%$ to 90%		1			\%
Operating Frequency (Note 1)	fosc	FSEL = GND		170	200	230	kHz
		FSEL = REF		270	300	330	
		FSEL $=$ VCC		425	500	575	
Maximum Duty Factor (Note 1)	Dmax	FSEL = GND		91	93		\%
		FSEL = REF		91	93		
		FSEL $=$ VCC		91	93		
Minimum On-Time	ton(MIN)	(Note 3)				200	ns
SMPS3 to SMPS5 Phase Shift		SMPS5 starts after SMPS3			40		\%
					144		Deg
CURRENT LIMIT							
ILIM_ Adjustment Range				0.5		$V_{\text {REF }}$	V
Current-Sense Input Range		CSH_, CSL_		0		5.5	V
Current-Sense Input Leakage Current		$\mathrm{CSH}_{-}, \mathrm{V}_{\mathrm{CSH}}{ }^{\text {a }}=5.5 \mathrm{~V}$		-1		+1	$\mu \mathrm{A}$
Current-Limit Threshold (Fixed)	VIIMIT_	$\mathrm{V}_{\text {CSH_- }}$ - VCSL_, ILIM_ = VCC		70	75	80	mV
Current-Limit Threshold (Adjustable)	VLIMIT_	VCSH_- VCSL	$\mathrm{V}_{\text {ILIM }}=2.00 \mathrm{~V}$	170	200	230	mV
			$\mathrm{V}_{\text {ILIM }}=1.00 \mathrm{~V}$	91	100	109	
			$\mathrm{V}_{\text {ILIM }}=0.50 \mathrm{~V}$	42	50	58	
Current-Limit Threshold (Negative)	$\mathrm{V}_{\text {NEG }}$	$V_{C S H}-V_{C S L}, \overline{\text { SKIP }}=V_{C C}$, percent of current limit			-120		\%
Current-Limit Threshold (Zero Crossing)	VZX	$\mathrm{V}_{\text {PGND }}-\mathrm{V}_{\text {LX }}, \overline{\text { SKIP }}=\mathrm{GND}, \mathrm{ILIM} \mathrm{C}_{-}=\mathrm{V}_{C C}$			3		mV
Idle-Mode ${ }^{\text {TM }}$ Threshold	Vidle	VCSH_ - VCSL_	ILIM_ = VCC	10	16	22	mV
			With respect to currentlimit threshold (VLIMIT)	20			\%
ILIM_ Leakage Current		ILIM3 = ILIM5 = GND or VCC		-0.1		+0.1	$\mu \mathrm{A}$
Soft-Start Ramp Time	tss	Measured from the rising edge of $O N_{-}$to full scale			$\begin{aligned} & 5121 \\ & \text { fosc } \end{aligned}$		S
INTERNAL FIXED LINEAR REGULATORS							
LDO5 Output Voltage	VLDO5	$\begin{aligned} & \text { ON3 = ON5 = GND, 6V }<\mathrm{V}_{\mathrm{IN}}<26 \mathrm{~V}, \\ & 0<\text { ILDO5 }^{2}=100 \mathrm{~mA} \end{aligned}$		4.80	4.95	5.10	V
LDO5 Undervoltage-Lockout Fault Threshold		Rising edge, hysteresis $=1 \%$		3.75	4.0	4.25	V
LDO5 Bootstrap Switch Threshold		Rising edge of CSL5, hysteresis $=1 \%$		4.41		4.75	V
LDO5 Bootstrap Switch Resistance		$\begin{aligned} & \text { LDO5 to CSL5, VCSL5 }=5 \mathrm{~V} \text {, } \\ & \text { ILDO5 }=50 \mathrm{~mA} \end{aligned}$			0.75	3	Ω

Idle Mode is a trademark of Maxim Integrated Products, Inc.

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

ELECTRICAL CHARACTERISTICS (continued)

(Circuit of Figure 1, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, both SMPS enabled, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{FSEL}=\mathrm{REF}, \overline{\mathrm{SKIP}}=\mathrm{GND}, \mathrm{V}_{\mathrm{ILIM}}=\mathrm{V}_{\text {LDO5 }}, \mathrm{V}_{\text {INA }}=15 \mathrm{~V}, \mathrm{~V}_{\text {LDOA }}=12 \mathrm{~V}$, $l_{\text {LDO5 }}=$ l $_{\text {LDO3 }}=I_{\text {LDOA }}=$ no load, $\mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
LDO3 Output Voltage	VLDO3	Standby mode, $6 \mathrm{~V}<\mathrm{V}_{\text {IN }}<26 \mathrm{~V}$, $0<\text { LOAD }<100 \mathrm{~mA}$	3.20	3.35	3.42	V
LDO3 Bootstrap Switch Threshold		Rising edge of CSL3, hysteresis $=1 \%$	2.83		3.10	V
LDO3 Bootstrap Switch Resistance		$\begin{aligned} & \mathrm{LDO3} \text { to } \mathrm{CSL3}, \mathrm{~V} \mathrm{CSL3}=3.2 \mathrm{~V}, \\ & \mathrm{ILDO3}=50 \mathrm{~mA} \end{aligned}$		1	3	Ω
Short-Circuit Current		$\begin{aligned} & \mathrm{LDO3}=\mathrm{LDO5}=\mathrm{GND}, \\ & \text { CSL3 }=\mathrm{CSL5}=\text { GND } \end{aligned}$		150	220	mA
Short-Circuit Current (Switched Over to CSL_)		$\begin{aligned} & \mathrm{LDO} 3=\mathrm{LDO5}=\mathrm{GND}, \mathrm{~V}_{\mathrm{CSL}} \mathrm{P}>3.1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CSL} 5}>4.7 \mathrm{~V} \end{aligned}$	250			mA
AUXILIARY LINEAR REGULATOR (MAX1537 ONLY)						
LDOA Voltage Range	VLDOA		5		23	V
INA Voltage Range	VINA		6		24	V
LDOA Regulation Threshold, Internal Feedback		$\begin{aligned} & \text { ADJA }=\text { GND, } 0<\operatorname{l} \text { LDOA }<120 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {INA }}>13 \mathrm{~V} \end{aligned}$	11.4	12.0	12.4	V
ADJA Regulation Threshold, External Feedback	$V_{\text {ADJA }}$	$\begin{aligned} & 0<I_{\text {LDOA }}<120 \mathrm{~mA}, \mathrm{~V}_{\text {LDOA }}>5.0 \mathrm{~V} \text { and } \\ & \mathrm{V}_{\text {INA }}>\mathrm{V}_{\text {LDOA }}+1 \mathrm{~V} \end{aligned}$	1.94	2.00	2.06	V
ADJA Dual-Mode Threshold			0.1	0.15	0.2	V
ADJA Leakage Current		$V_{\text {ADJA }}=2.1 \mathrm{~V}$	-0.1		+0.1	$\mu \mathrm{A}$
LDOA Current Limit		$\mathrm{V}_{\text {LDOA }}$ forced to $\mathrm{V}_{\text {INA }}-1 \mathrm{~V}, \mathrm{~V}_{\text {ADJA }}=1.9 \mathrm{~V}$, VINA $>6 \mathrm{~V}$	150			mA
Secondary Feedback Regulation Threshold		VInA - VLDoA	0.65	0.8	0.95	V
DL Duty Factor		VINA - VLDOA $<0.7 \mathrm{~V}$, pulse width with respect to switching period		33		\%
INA Quiescent Current	IINA	$\mathrm{V}_{\text {INA }}=24 \mathrm{~V}$, ILDOA $=$ no load		50	165	$\mu \mathrm{A}$
INA Shunt Sink Current		$\mathrm{V}_{\text {INA }}=28 \mathrm{~V}$	10			mA
INA Leakage Current	IINA(SHDN)	VINA $=5 \mathrm{~V}$, LDOA disabled			30	$\mu \mathrm{A}$
REFERENCE (REF)						
Reference Voltage	VREF	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V , $\mathrm{I}_{\text {REF }}=0$	1.985	2.00	2.015	V
Reference Load Regulation		IREF $=-10 \mu \mathrm{~A}$ to $+100 \mu \mathrm{~A}$	1.980		2.020	V
REF Lockout Voltage	VREF(UVLO)	Rising edge, hysteresis $=350 \mathrm{mV}$		1.95		V
FAULT DETECTION						
Output Overvoltage Trip Threshold		$\overline{\mathrm{OVP}}=\mathrm{GND}$, with respect to errorcomparator threshold	8	11	15	\%
Output Overvoltage FaultPropagation Delay	tovp	50 mV overdrive		10		$\mu \mathrm{s}$

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

ELECTRICAL CHARACTERISTICS (continued)

(Circuit of Figure 1, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, both SMPS enabled, $\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{FSEL}=$ REF, $\overline{\mathrm{SKIP}}=\mathrm{GND}, \mathrm{V}_{\text {ILIM }}=\mathrm{V}_{\text {LDO5 }}, \mathrm{V}_{\mathrm{INA}}=15 \mathrm{~V}, \mathrm{~V}_{\text {LDOA }}=12 \mathrm{~V}$, $I_{\text {LDO5 }}=I_{\text {LDO3 }}=I_{\text {LDOA }}=$ no load, $\mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $\mathbf{+ 8 5 ^ { \circ }} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Output Undervoltage-Protection Trip Threshold		With respect to error-comparator threshold		65	70	75	\%
Output Undervoltage FaultPropagation Delay	tuvp	50 mV overdrive			10		$\mu \mathrm{s}$
Output Undervoltage-Protection Blanking Time	tBLANK	From rising edge of ON_		$\begin{gathered} 6144 / \\ \text { fosc } \end{gathered}$			S
PGOOD Lower Trip Threshold		With respect to error-comparator threshold, hysteresis = 1\%		-14	-10	-7.5	\%
PGOOD Propagation Delay	tPGOOD_	Falling edge, 50mV overdrive			10		$\mu \mathrm{s}$
PGOOD Output Low Voltage		$\mathrm{ISINK}=4 \mathrm{~mA}$				0.4	V
PGOOD Leakage Current	IPGOOD_	High state, PGOOD forced to 5.5V				1	$\mu \mathrm{A}$
PGDLY Pullup Current		PGDLY = GND		4	5	6	$\mu \mathrm{A}$
PGDLY Pulldown Resistance					10	25	Ω
PGDLY Trip Threshold				$\begin{gathered} \text { REF- } \\ 0.2 \end{gathered}$	REF	$\begin{gathered} \text { REF+ } \\ 0.2 \end{gathered}$	V
Thermal-Shutdown Threshold	TSHDN	Hysteresis $=15^{\circ} \mathrm{C}$			+160		${ }^{\circ} \mathrm{C}$
GATE DRIVERS							
DH_ Gate-Driver On-Resistance	RDH	BST_ - LX_ forced to 5V			1.5	5	Ω
DL_ Gate-Driver On-Resistance	RDL	DL_, high state			1.7	5	Ω
		DL_, low state			0.6	3	
DH_Gate-Driver Source/Sink Current	IDH	DH_ forced to 2.5 V , BST_ - LX_ forced to 5 V			2		A
DL_ Gate-Driver Source Current	IDL	DL_ forced to 2.5 V			1.7		A
DL_ Gate-Driver Sink Current	IDL (SINK)	DL_ forced to 2.5 V			3.3		A
Dead Time	tDEAD	DL_ rising			35		ns
		DH_rising		26			
LX_, BST_ Leakage Current		$\mathrm{V}_{\text {BST- }}=\mathrm{V}_{\text {LX_ }}=26 \mathrm{~V}$			<2	20	$\mu \mathrm{A}$
INPUTS AND OUTPUTS							
Logic Input Voltage		$\overline{\text { SKIP }}$, hysteresis $=600 \mathrm{mV}$	High	2.4			V
			Low			0.8	
Fault Enable Logic Input Voltage		$\overline{\text { OVP, }}$ UVP, ONA	High	$\begin{aligned} & 0.7 x \\ & V_{C C} \end{aligned}$			V
			Low			0.4	
Logic Input Current		তVP, UVP, $\overline{\text { SKIP, ONA }}$		-1		+1	$\mu \mathrm{A}$
$\overline{\text { SHDN }}$ Input Trip Level		Rising trip level		1.10	1.6	2.20	V
		Falling trip level		0.96	1	1.04	
ON_ Input Voltage		Clear fault level/SMPS off level				0.8	V
		Delay start level (REF)		1.9		2.1	
		SMPS on level		2.4			

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

ELECTRICAL CHARACTERISTICS (continued)

(Circuit of Figure 1, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, both SMPS enabled, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{FSEL}=\mathrm{REF}, \overline{\mathrm{SKIP}}=\mathrm{GND}, \mathrm{V}_{\mathrm{ILIM}}=\mathrm{V}_{\text {LDO5 }}, \mathrm{V}_{\text {INA }}=15 \mathrm{~V}, \mathrm{~V}_{\text {LDOA }}=12 \mathrm{~V}$, $I_{\text {LDO5 }}=I_{\text {LDO3 }}=I_{\text {LDOA }}=$ no load, $\mathbf{T}_{\mathbf{A}}=\mathbf{0}^{\circ} \mathbf{C}$ to $\mathbf{+ 8 5 ^ { \circ }} \mathbf{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
FSEL Three-Level Input Logic		High	VCC - 0.2			V
		REF	1.7		2.3	
		GND			0.4	
Input Leakage Current		$\overline{\text { OVP }}, \overline{\mathrm{UVP}}, \overline{\text { SKIP }}, \mathrm{ONA}, \mathrm{ON} 3$, ON5 = GND or V_{CC}	-1		+1	$\mu \mathrm{A}$
		$\overline{\text { SHDN, }}$ OV or 26V	-1		+1	
		FSEL = GND or VCC	-3		+3	
CSL_ Discharge-Mode On-Resistance	RDIscharge			10	25	Ω
CSL_ Synchronous-Rectifier Discharge-Mode Turn-On Level			0.2	0.3	0.4	V

ELECTRICAL CHARACTERISTICS

(Circuit of Figure 1, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, both SMPS enabled, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{FSEL}=\mathrm{REF}, \overline{\mathrm{SKIP}}=\mathrm{GND}, \mathrm{V}_{\mathrm{ILIM}}=\mathrm{V}_{\mathrm{LDO}}, \mathrm{V}_{\text {INA }}=15 \mathrm{~V}, \mathrm{~V}_{\text {LDOA }}=12 \mathrm{~V}$,

PARAMETER	SYMBOL	CONDITIONS	MIN	MAX	UNITS
INPUT SUPPLIES (Note 1)					
VIN Input Voltage Range	VIN	LDO5 in regulation	6	26	V
		IN = LDO5, Vout5 < 4.4V	4.5	5.5	
VIN Operating Supply Current	In	LDO5 switched over to CSL5, either SMPS on		35	$\mu \mathrm{A}$
VIN Standby Supply Current	IIN(STBY)	$\mathrm{V}_{\mathrm{IN}}=6 \mathrm{~V}$ to 26 V , both SMPS off, includes ISHDN		170	$\mu \mathrm{A}$
VIN Shutdown Supply Current	IIN(SHDN)	V IN $=6 \mathrm{~V}$ to 26V		17	$\mu \mathrm{A}$
Quiescent Power Consumption	PQ	Both SMPS on, FB3 $=\mathrm{FB} 5=\overline{\mathrm{SKIP}}=\mathrm{GND}$, $\mathrm{V}_{\text {CSL3 }}=3.5 \mathrm{~V}, \mathrm{~V}_{\text {CSL5 }}=5.3 \mathrm{~V}, \mathrm{~V}_{\text {INA }}=15 \mathrm{~V}$, ILDOA $=0$, PIN + PCSL3 + PCSL5 + PINA		4.5	mW
VCc Quiescent Supply Current	IcC	Both SMPS on, FB3 $=$ FB5 $=$ GND, $\mathrm{V}_{\mathrm{CSL}}=3.5 \mathrm{~V}, \mathrm{~V}_{\text {CSL5 }}=5.3 \mathrm{~V}$		2.5	mA
MAIN SMPS CONTROLLERS					
3.3V Output Voltage in Fixed Mode	Vout3	VIN $=6 \mathrm{~V}$ to 26V, $\overline{\text { SKIP }}=\mathrm{V}_{\text {CC }}($ (Note 2)	3.28	3.38	V
5 V Output Voltage in Fixed Mode	VOUT5	VIN $=6 \mathrm{~V}$ to 26V, $\overline{\text { SKIP }}=\mathrm{V}$ CC $($ (Note 2)	4.975	5.125	V
Feedback Voltage in Adjustable Mode	$\mathrm{V}_{\text {FB3 }}$, $\mathrm{V}_{\text {FB5 }}$	VIN $=6 \mathrm{~V}$ to 26 V , FB3 or FB5, duty factor $=20 \%$ to 80% (Note 2)	0.982	1.018	V
Output-Voltage Adjust Range		Either SMPS	1.0	5.5	V
FB3, FB5 Adjustable-Mode Threshold Voltage		Dual-mode comparator	0.1	0.2	V

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

ELECTRICAL CHARACTERISTICS (continued)

(Circuit of Figure 1, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, both SMPS enabled, $\mathrm{V}_{C C}=5 \mathrm{~V}$, FSEL $=$ REF, $\overline{\text { SKIP }}=\mathrm{GND}, \mathrm{V}_{\text {ILIM }}=\mathrm{V}_{\text {LDO5 }}, \mathrm{V}_{\text {INA }}=15 \mathrm{~V}, \mathrm{~V}_{\text {LDOA }}=12 \mathrm{~V}$,

PARAMETER	SYMBOL	CONDITIONS		MIN	MAX	UNITS
Operating Frequency (Note 1)	fosc	FSEL = GND		170	230	kHz
		FSEL = REF		240	330	
		FSEL $=$ VCC		375	575	
Maximum Duty Factor (Note 1)	Dmax	FSEL = GND		91		\%
		FSEL = REF		91		
		FSEL $=\mathrm{V}_{\text {CC }}$		91		
Minimum On-Time	ton(min)				250	ns
CURRENT LIMIT						
ILIM_ Adjustment Range				0.5	$V_{\text {REF }}$	V
Current-Limit Threshold (Fixed)	VLIMIT_	$\mathrm{V}_{\text {CSH_ }}-\mathrm{V}_{\text {CSL_ }}$, ILIM ${ }_{\text {- }}=\mathrm{V}_{\text {CC }}$		67	83	mV
Current-Limit Threshold (Adjustable)	VLIMIT_	$\mathrm{V}_{\text {CSH_ }}$ - VCSL_	$\mathrm{V}_{\text {ILIM }}=2.00 \mathrm{~V}$	170	230	mV
			$\mathrm{V}_{\text {ILIM }}=1.00 \mathrm{~V}$	90	110	
			VILIM ${ }^{\text {I }}=0.50 \mathrm{~V}$	40	60	
INTERNAL FIXED LINEAR REGULATORS						
LDO5 Output Voltage	VLDO5	$\begin{aligned} & \text { ON3 = ON5 = GND, 6V }<\text { VIN }<26 \mathrm{~V}, \\ & 0<\text { ILDO5 }^{2} 100 \mathrm{~mA} \end{aligned}$		4.8	5.1	V
LDO5 Undervoltage-Lockout Fault Threshold		Rising edge, hysteresis $=1 \%$		3.75	4.30	V
LDO3 Output Voltage	VLDO3	Standby mode, $6 \mathrm{~V}<\mathrm{V}$ IN $<28 \mathrm{~V}$,$0<I_{\text {LOAD }}<100 \mathrm{~mA}$		3.20	3.43	V
AUXILIARY LINEAR REGULATOR (MAX1537 ONLY)						
LDOA Voltage Range	VLODA			5	23	V
INA Voltage Range	VINA			6	24	V
LDOA Regulation Threshold, Internal Feedback		$\begin{aligned} & \text { ADJA }=\text { GND }, 0<\operatorname{ILDOA}<120 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {INA }}>13 \mathrm{~V} \end{aligned}$		11.40	12.55	V
ADJA Regulation Threshold, External Feedback	$V_{\text {ADJA }}$	$\begin{aligned} & 0<I_{\text {LDOA }}<120 \mathrm{~mA}, \mathrm{~V}_{\text {LDOA }}>5.0 \mathrm{~V} \text { and } \\ & \mathrm{V}_{\text {INA }}>\mathrm{V}_{\text {LDOA }}+1 \mathrm{~V} \end{aligned}$		1.94	2.08	V
ADJA Dual-Mode Threshold		ADJA		0.10	0.25	V
Secondary Feedback Regulation Threshold		VINA - VLDOA		0.63	0.97	V
INA Quiescent Current	IINA	$\mathrm{V}_{\text {INA }}=24 \mathrm{~V}, \mathrm{I}$ LDOA $=$ no load			165	$\mu \mathrm{A}$
REFERENCE (REF)						
Reference Voltage	$V_{\text {REF }}$	$\mathrm{V} \mathrm{CC}=4.5 \mathrm{~V}$ to 5	IREF $=0$	1.97	2.03	V

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

ELECTRICAL CHARACTERISTICS (continued)

(Circuit of Figure 1, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, both SMPS enabled, $\mathrm{V}_{C C}=5 \mathrm{~V}$, $\mathrm{FSEL}=\mathrm{REF}, \overline{\mathrm{SKIP}}=\mathrm{GND}, \mathrm{V}_{\mathrm{ILIM}}=\mathrm{V}_{\text {LDO5 }}, \mathrm{V}_{\mathrm{INA}}=15 \mathrm{~V}, \mathrm{~V}_{\text {LDOA }}=12 \mathrm{~V}$, $I_{\text {LDO5 }}=$ I LDO3 $^{\prime}=$ ILDOA $=$ no load, $\mathbf{T}_{\mathbf{A}}=\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$ to $+\mathbf{8 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted.) (Note 4)

PARAMETER	SYMBOL	CONDITIONS		MIN	MAX	UNITS
FAULT DETECTION						
Output Overvoltage Trip Threshold		$\overline{\mathrm{OVP}}=\mathrm{GND}$, with respect to errorcomparator threshold		+8	+15	\%
Output Undervoltage-Protection Trip Threshold		With respect to error-comparator threshold		+65	+75	\%
PGOOD Lower Trip Threshold		With respect to error-comparator threshold, hysteresis = 1\%		-14.0	-7.0	\%
PGOOD Output Low Voltage		ISINK $=4 \mathrm{~mA}$			0.4	V
PGDLY Pulldown Resistance					25	Ω
PGDLY Trip Threshold				REF-	$\begin{gathered} \text { REF+ } \\ 0.2 \end{gathered}$	V
GATE DRIVERS						
DH_ Gate-Driver On-Resistance	RDH	BST_ - LX_ forced to 5V			5	Ω
DL_ Gate-Driver On-Resistance	RDL	DL_, high state			5	Ω
		DL_, low state			3	
INPUTS AND OUTPUTS						
Logic Input Voltage		$\overline{\text { SKIP, }}$, hysteresis $=600 \mathrm{mV}$	High	2.4		V
			Low		0.8	
Fault Enable Logic Input Voltage		$\overline{O V P}, \overline{U V P}, \mathrm{ONA}$	High	$\begin{aligned} & 0.7 x \\ & V_{C C} \end{aligned}$		V
			Low		0.4	
$\overline{\text { SHDN }}$ Input Trip Level		Rising trip level		1.1	2.2	V
		Falling trip level		0.95	1.05	
ON_ Input Voltage		Clear fault level			0.8	V
		SMPS off level			1.6	
		Delay start level (REF)		1.9	2.1	
		SMPS on level		2.4		
FSEL Three-Level Input Logic		High		VCC - 0.		V
		REF		1.7	2.3	
		GND			0.4	

Note 1: The MAX1533/MAX1537 cannot operate over all combinations of frequency, input voltage ($\mathrm{V}_{\text {IN }}$), and output voltage. For large input-to-output differentials and high-switching frequency settings, the required on-time may be too short to maintain the regulation specifications. Under these conditions, a lower operating frequency must be selected. The minimum on-time must be greater than 150ns, regardless of the selected switching frequency. On-time and off-time specifications are measured from 50% point to 50% point at the D_{-}pin with LX $=$GND, $V_{B S T}=5 \mathrm{~V}$, and a 250 pF capacitor connected from DH_ to LX_. Actual in-circuit times may differ due to MOSFET switching speeds.
Note 2: When the inductor is in continuous conduction, the output voltage has a DC regulation level lower than the error-comparator threshold by 50% of the ripple. In discontinuous conduction ($\overline{\mathrm{SKIP}}=\mathrm{GND}$, light load), the output voltage has a DC regulation level higher than the trip level by approximately 1% due to slope compensation.
Note 3: Specifications are guaranteed by design, not production tested.
Note 4: Specifications to $-40^{\circ} \mathrm{C}$ are guaranteed by design, not production tested.

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Typical Operating Characteristics

(MAX1537 circuit of Figure 1, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{LDO5}=\mathrm{V} C \mathrm{C}=5 \mathrm{~V}, \overline{\mathrm{SKIP}}=\mathrm{GND}, \mathrm{FSEL}=\mathrm{REF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

NO-LOAD SUPPLY CURRENT
vs. INPUT VOLTAGE (FULLY ENABLED)

5V OUTPUT VOLTAGE (OUT5)
vs. LOAD CURRENT

3.3V OUTPUT VOLTAGE (OUT3)
vs. LOAD CURRENT

NO-LOAD SUPPLY CURRENT
vs. INPUT VOLTAGE (STANDBY MODE)

5V OUTPUT VOLTAGE (OUT5)
vs. INPUT VOLTAGE

3.3V OUTPUT VOLTAGE (OUT3)
vs. INPUT VOLTAGE

SHUTDOWN SUPPLY CURRENT
vs. INPUT VOLTAGE

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Typical Operating Characteristics (continued)

(MAX1537 circuit of Figure 1, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{LDO5}=\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \overline{\mathrm{SKIP}}=\mathrm{GND}, \mathrm{FSEL}=\mathrm{REF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Typical Operating Characteristics (continued)

(MAX1537 circuit of Figure 1, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{LDO5}=\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \overline{\mathrm{SKIP}}=\mathrm{GND}, \mathrm{FSEL}=\mathrm{REF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Typical Operating Characteristics (continued)

(MAX1537 circuit of Figure 1, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{LDO5}=\mathrm{V}_{\mathrm{C}}=5 \mathrm{~V}, \overline{\mathrm{SKIP}}=\mathrm{GND}, \mathrm{FSEL}=\mathrm{REF}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

$100 \mu \mathrm{~s} / \mathrm{div}$
A. LLDOA $=10 \mathrm{~mA}$ TO $100 \mathrm{~mA}, 100 \mathrm{~mA} / \mathrm{div}$
B. INA, $1 \mathrm{~V} / \mathrm{div}$
C. LDOA, $50 \mathrm{mV} / \mathrm{div}$

INA = VOLTAGE GENERATED BY SECONDARY TRANSFORMER WINDING

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Pin Description

PIN		NAME	FUNCTION
MAX1533	MAX1537		
-	1	ADJA	Auxiliary Feedback Input. Connect a resistive voltage-divider from LDOA to analog ground to adjust the auxiliary linear-regulator output voltage. ADJA regulates at 2 V . Connect ADJA to GND for nominal 12 V output using internal feedback.
1	2	ON5	5 V SMPS Enable Input. The 5V SMPS is enabled if ON5 is greater than the SMPS on level and disabled if ON5 is less than the SMPS off level. If ON5 is connected to REF, the 5V SMPS starts after the 3.3 V SMPS reaches regulation (delay start). Drive ON5 below the clear fault level to reset the fault latches.
2	3	ON3	3.3V SMPS Enable Input. The 3.3V SMPS is enabled if ON3 is greater than the SMPS on level and disabled if ON3 is less than the SMPS off level. If ON3 is connected to REF, the 3.3V SMPS starts after the 5V SMPS reaches regulation (delay start). Drive ON3 below the clear fault level to reset the fault latches.
-	4	ONA	LDOA Enable Input. When ONA is low, LDOA is high impedance and the secondary winding control is off. When ONA is high, LDOA is on. Connect to LDO3, LDO5, CSL3, CSL5, or other output for desired automatic startup sequencing.
3	5	FSEL	Frequency-Select Input. This three-level logic input sets the controller's switching frequency. Connect to GND, REF, or $V_{C C}$ to select the following typical switching frequencies: $\mathrm{V}_{\mathrm{CC}}=500 \mathrm{kHz}, \mathrm{REF}=300 \mathrm{kHz}, \mathrm{GND}=200 \mathrm{kHz}$
4	6	ILIM3	3.3V SMPS Peak Current-Limit Threshold Adjustment. The current-limit threshold defaults to 75 mV if ILIM3 is connected to V_{CC}. In adjustable mode, the current-limit threshold across CSH3 and CSL3 is precisely 1/10th the voltage seen at ILIM3 over a 500 mV to 2.0 V range. The logic threshold for switchover to the 75 mV default value is approximately $\mathrm{V}_{\mathrm{CC}}-1 \mathrm{~V}$.
5	7	ILIM5	5 V SMPS Peak Current-Limit Threshold. The current-limit threshold defaults to 75 mV if ILIM5 is connected to $V_{C C}$. In adjustable mode, the current-limit threshold across CSH5 and CSL5 is precisely $1 / 10$ th the voltage seen at ILIM5 over a 500 mV to 2.0 V range. The logic threshold for switchover to the 75 mV default value is approximately $\mathrm{V}_{\mathrm{Cc}}-1 \mathrm{~V}$.
6	8	REF	2.0V Reference Voltage Output. Bypass REF to analog ground with a $0.1 \mu \mathrm{~F}$ or greater ceramic capacitor. The reference can source up to 100 AA for external loads. Loading REF degrades output-voltage accuracy according to the REF load-regulation error. The reference shuts down when SHDN is low.
7	9	GND	Analog Ground. Connect the backside pad to GND.
8	10	Vcc	Analog Supply Input. Connect to the system supply voltage (+4.5 V to +5.5 V) through a series 20Ω resistor. Bypass V_{C} to analog ground with a $1 \mu \mathrm{~F}$ or greater ceramic capacitor.
9	11	PGDLY	Power-Good One-Shot Delay. Place a timing capacitor on PGDLY to delay PGOOD going high. PGDLY has a $5 \mu \mathrm{~A}$ pullup current and a 10Ω pulldown. The pulldown is activated when power is not good. When power is good, the pulldown is shut off and the $5 \mu \mathrm{~A}$ pullup is activated. When PGDLY crosses REF, PGOOD is enabled.

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Pin Description (continued)

PIN		NAME				
MAX1533	MAX1537			$	$	Open-Drain Power-Good Output. PGOOD is low if either output is more than 10\%
:---						
10						

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Pin Description (continued)

PIN		NAME	
MAX1533	MAX1537		
25	27	CSL5	Negative Current-Sense Input for 5V SMPS. Connect to the negative terminal of the current-sense element. Figure 9 describes two different current-sensing options. CSL5 also serves as the bootstrap input for LDO5.
26	28	CSH5	Positive Current-Sense Input for 5V SMPS. Connect to the positive terminal of the current-sense element. Figure 9 describes two different current-sensing options.
27	29	IN	Input of the Startup Circuitry and the LDO5 Internal 5V Linear Regulator. Bypass to PGND with 0.22
29	31	LX5 close to the IC.	

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Table 1. Component Selection for Standard Applications

COMPONENT	5A/300kHz	5A/500kHz
Input Voltage	VIN $=7 \mathrm{~V}$ to 24 V	$\mathrm{V}_{\text {IN }}=7 \mathrm{~V}$ to 24 V
CIN_, Input Capacitor	(2) $10 \mu \mathrm{~F}, 25 \mathrm{~V}$ Taiyo Yuden TMK432BJ106KM	(2) $10 \mu \mathrm{~F}, 25 \mathrm{~V}$ Taiyo Yuden TMK432BJ106KM
Couts, Output Capacitor	$150 \mu \mathrm{~F}, 6.3 \mathrm{~V}, 40 \mathrm{~m} \Omega$, low-ESR capacitor Sanyo 6TPB150ML	$150 \mu \mathrm{~F}, 6.3 \mathrm{~V}, 40 \mathrm{~m} \Omega$, low-ESR capacitor Sanyo 6TPB150ML
Cout3, Output Capacitor	$220 \mu \mathrm{~F}, 4 \mathrm{~V}, 40 \mathrm{~m} \Omega$, low-ESR capacitor Sanyo 4TPB220ML	$220 \mu \mathrm{~F}, 4 \mathrm{~V}, 40 \mathrm{~m} \Omega$, low-ESR capacitor Sanyo 4TPB220ML
NH_ High-Side MOSFET	Fairchild Semiconductor FDS6612A International Rectifier IRF7807V	Fairchild Semiconductor FDS6612A International Rectifier IRF7807V
NL_ Low-Side MOSFET	Fairchild Semiconductor FDS6670S International Rectifier IRF7807VD1	Fairchild Semiconductor FDS6670S International Rectifier IRF7807VD1
DL_Schottky Rectifier (if needed)	$2 \mathrm{~A}, 30 \mathrm{~V}, 0.45 \mathrm{~V}_{\mathrm{f}}$ Nihon EC21QS03L	$2 \mathrm{~A}, 30 \mathrm{~V}, 0.45 \mathrm{~V}_{\mathrm{f}}$ Nihon EC21QS03L
Inductor/Transformer	T1 $=6.8 \mu \mathrm{H}, 1: 2$ turns Sumida 4749-T132 L1 $=5.8 \mu \mathrm{H}, 8.6 \mathrm{~A}$ Sumida CDRH127-5R8NC	$3.9 \mu \mathrm{H}$ Sumida CDRH124-3R9NC
RCs	$10 \mathrm{~m} \Omega \pm 1 \%, 0.5 \mathrm{~W}$ resistor IRC LR2010-01-R010F or Dale WSL-2010-R010F	$10 \mathrm{~m} \Omega \pm 1 \%, 0.5 \mathrm{~W}$ resistor IRC LR2010-01-R010F or Dale WSL-2010-R010F

Table 2. Component Suppliers

SUPPLIER	WEBSITE
AVX	www.avx.com
Central Semiconductor	www.centralsemi.com
Coilcraft	www.coilcraft.com
Coiltronics	www.coiltronics.com
Fairchild Semiconductor	www.fairchildsemi.com
International Rectifier	www.irf.com
Kemet	www.kemet.com

The MAX1533/MAX1537 standard application circuit (Figure 1) generates the $5 \mathrm{~V} / 5 \mathrm{~A}$ and $3.3 \mathrm{~V} / 5 \mathrm{~A}$ typical of the main supplies in a notebook computer. The input supply range is 7 V to 24 V . See Table 1 for component selections and Table 2 for component manufacturers.
The MAX1533/MAX1537 contain two interleaved fixedfrequency step-down controllers designed for lowvoltage power supplies. The optimal interleaved architecture guarantees out-of-phase operation, reducing the input capacitor ripple. Two internal LDOs generate the keep-alive 5 V and 3.3 V power. The MAX1537 has an auxiliary LDO that can be configured to the preset 12 V output or an adjustable output.

SUPPLIER	WEBSITE
Panasonic	www.panasonic.com/industrial
Sanyo	www.secc.co.jp
Sumida	www.sumida.com
Taiyo Yuden	www.t-yuden.com
TDK	www.component.tdk.com
TOKO	www.tokoam.com
Vishay (Dale, Siliconix)	www.vishay.com

Fixed Linear Regulators (LDO5 and LDO3)
Two internal linear regulators produce preset 5V (LDO5) and 3.3V (LDO3) low-power outputs. LDO5 powers LDO3, the gate drivers for the external MOSFETs, and provides the bias supply (VCc) required for the SMPS analog control, reference, and logic blocks. LDO5 supplies at least 100 mA for external and internal loads, including the MOSFET gate drive, which typically varies from 5 mA to 50 mA , depending on the switching frequency and external MOSFETs selected. LDO3 also supplies at least 100 mA for external loads. Bypass LDO5 and LDO3 with a $2.2 \mu \mathrm{~F}$ or greater output capacitor, using an additional $1.0 \mu \mathrm{~F}$ per 20 mA of internal and external load.

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Figure 1. MAX1533/MAX1537 Standard Application Circuit

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Abstract

SMPS to LDO Bootstrap Switchover When the 5 V main output voltage is above the LDO5 bootstrap-switchover threshold, an internal 0.75Ω (typ) p-channel MOSFET shorts CSL5 to LDO5 while simultaneously shutting down the LDO5 linear regulator. Similarly, when the 3.3 V main output voltage is above the LDO3 bootstrap-switchover threshold, an internal 1Ω (typ) p-channel MOSFET shorts CSL3 to LDO3 while simultaneously shutting down the LDO3 linear regulator. These actions bootstrap the device, powering the internal circuitry and external loads from the output SMPS voltages, rather than through linear regulators from the battery. Bootstrapping reduces power dissipation due to gate charge and quiescent losses by providing power from a 90\%-efficient switch-mode source, rather than from a much-less-efficient linear regulator. The output current limit increases to 200mA when the LDO_ outputs are switched over.

SMPS 5 V Bias Supply (LDO5 and Vcc)

The A switch-mode power supplies (SMPS) require a 5 V bias supply in addition to the high-power input supply (battery or AC adapter). This 5 V bias supply is generated by the MAX1533/MAX1537s' internal 5V linear regulator (LDO5). This bootstrapped LDO allows the MAX1533/MAX1537 to power-up independently. The gate-driver input supply is connected to the fixed 5 V linear-regulator output (LDO5). Therefore, the 5V LDO supply must provide VCC (PWM controller) and the gate-drive power, so the maximum supply current required is:

$$
\begin{aligned}
\mathrm{IBIAS} & =\mathrm{I} C C+\text { fSW }\left(\mathrm{QG}_{\mathrm{G}(\mathrm{LOW})}+\mathrm{Q}_{\mathrm{G}(\mathrm{HIGH}))}\right) \\
& =5 \mathrm{~mA} \text { to } 50 \mathrm{~mA}(\text { typ })
\end{aligned}
$$

where ICC is 1 mA (typ), fsw is the switching frequency, and $Q_{G}\left(\right.$ LOW) and $Q_{G(H I G H)}$ are the MOSFET data sheet's total gate-charge specification limits at $V_{G S}=5 \mathrm{~V}$.

Reference (REF)

The 2 V reference is accurate to $\pm 1 \%$ over temperature and load, making REF useful as a precision system reference. Bypass REF to GND with a $0.22 \mu \mathrm{~F}$ or greater ceramic capacitor. The reference sources up to $100 \mu \mathrm{~A}$ and sinks $10 \mu \mathrm{~A}$ to support external loads. If highly accurate specifications ($\pm 0.5 \%$) are required for the main SMPS output voltages, the reference should not be loaded. Loading the reference reduces the LDO5, LDO3, OUT5, and OUT3 output voltages slightly because of the reference load-regulation error.

System Enable/Shutdown (SHDN)

Drive $\overline{\text { SHDN }}$ below the precise $\overline{\text { SHDN }}$ input falling-edge trip level to place the MAX1533/MAX1537 in their lowpower shutdown state. The MAX1533/MAX1537 consume only $5 \mu \mathrm{~A}$ of quiescent current while in shutdown mode. When shutdown mode activates, the reference turns off, making the threshold to exit shutdown less accurate. To guarantee startup, drive $\overline{\text { SHDN }}$ above 2.2V ($\overline{\text { SHDN }}$ input rising-edge trip level). For automatic shutdown and startup, connect SHDN to VIN. The accurate 1 V falling-edge threshold on $\overline{\text { SHDN }}$ can be used to detect a specific input-voltage level and shut the device down. Once in shutdown, the 1.6 V rising-edge threshold activates, providing sufficient hysteresis for most applications.

SMPS Detailed Description

SMPS POR, UVLO, and Soft-Start Power-on reset (POR) occurs when VCC rises above approximately 1 V , resetting the undervoltage, overvoltage, and thermal-shutdown fault latches. The POR circuit also ensures that the low-side drivers are pulled low if OVP is disabled ($\overline{\mathrm{OVP}}=\mathrm{VCC}$), or driven high if OVP is enabled ($\overline{O V P}=$ GND) until the SMPS controllers are activated.
The VCC input undervoltage-lockout (UVLO) circuitry inhibits switching if the 5 V bias supply (LDO5) is below the 4 V input UVLO threshold. Once the 5 V bias supply (LDO5) rises above this input UVLO threshold and the controllers are enabled, the SMPS controllers start switching and the output voltages begin to ramp up using soft-start.
The internal digital soft-start gradually increases the internal current-limit level during startup to reduce the input surge currents. The MAX1533/MAX1537 divide the soft-start period into five phases. During the first phase, each controller limits its current limit to only 20% of its full current limit. If the output does not reach regulation within 128 clock cycles ($1 / \mathrm{fOSC}$), soft-start enters the second phase and the current limit is increased by another 20%. This process repeats until the maximum current limit is reached after 512 clock cycles (1 / fOSC) or when the output reaches the nominal regulation voltage, whichever occurs first (see the startup waveforms in the Typical Operating Characteristics).

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Figure 2. MAX1533/MAX1537 Functional Diagram

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Table 3. Operating Modes

MODE	INPUTS* *			OUTPUTS			
	SHDN	ON5	ON3	LDO5	LDO3	5V SMPS	3V SMPS
Shutdown Mode	LOW	X	X	OFF	OFF	OFF	OFF
Standby Mode	HIGH	LOW	LOW	ON	ON	OFF	OFF
Normal Operation	HIGH	HIGH	HIGH	ON	ON	ON	ON
3.3V SMPS Active	HIGH	LOW	HIGH	ON	ON	OFF	ON
$5 V$ SMPS Active	HIGH	HIGH	LOW	ON	ON	ON	OFF
Normal Operation (Delayed 5V SMPS Startup)	HIGH	REF	HIGH	ON	ON	Power-up after $3.3 V ~ S M P S ~ i s ~ i n ~$ regulation	ON
Normal Operation (Delayed 3.3V SMPS Startup)	HIGH	HIGH	REF	ON	ON	ON	Oower-up after 5V SMPS is in regulation

* $\overline{S H D N}$ is an accurate, low-voltage logic input with 1 V falling-edge threshold voltage and 1.6 V rising-edge threshold voltage. ON3 and ON5 are 3-level CMOS logic inputs, a logic-low voltage is less than 0.8 V , a logic-high voltage is greater than 2.4 V , and the middle logic level is between 1.9 V and 2.1V (see the Electrical Characteristics table).

SMPS Enable Controls (ON3, ON5)
ON3 and ON5 control SMPS power-up sequencing. ON3 or ON5 rising above 2.4 V enables the respective outputs. ON3 or ON5 falling below 1.6 V disables the respective outputs. Driving ON_ below 0.8 V clears the overvoltage, undervoltage, and thermal fault latches.

SMPS Power-Up Sequencing

Connecting ON3 or ON5 to REF forces the respective outputs off while the other output is below regulation and starts after that output regulates. The second SMPS remains on until the first SMPS turns off, the device shuts down, a fault occurs, or LDO5 goes into undervoltage lockout. Both supplies begin their power-down sequence immediately when the first supply turns off.

Output Discharge (Soft-Shutdown)
When output discharge is enabled (OVP pulled low) and the switching regulators are disabled-by transitions into standby or shutdown mode, or when an output undervoltage fault occurs-the controller discharges both outputs through internal 12Ω switches, until the output voltages decrease to 0.3 V . This slowly discharges the output capacitance, providing a softdamped shutdown response. This eliminates the slightly negative output voltages caused by quickly discharging the output through the inductor and lowside MOSFET. When an SMPS output discharges to
0.3 V , its low-side driver (DL_) is forced high, clamping the respective SMPS output to GND. The reference remains active to provide an accurate threshold and to provide overvoltage protection. Both SMPS controllers contain separate soft-shutdown circuits.
When output discharge is disabled ($\overline{\mathrm{OVP}}=\mathrm{V}_{C C}$), the lowside drivers (DL_) and high-side drivers (DH_) are both pulled low, forcing LX into a high-impedance state. Since the outputs are not actively discharged by the SMPS controllers, the output-voltage discharge rate is determined only by the output capacitance and load current.

Fixed-Frequency, Current-Mode
PWM Controller
The heart of each current-mode PWM controller is a multiinput, open-loop comparator that sums two signals: the output-voltage error signal with respect to the reference voltage and the slope-compensation ramp (Figure 3). The MAX1533/MAX1537 use a direct-summing configuration, approaching ideal cycle-to-cycle control over the output voltage without a traditional error amplifier and the phase shift associated with it. The MAX1533/MAX1537 use a relatively low loop gain, allowing the use of lowcost output capacitors. The low loop gain results in the -0.1% typical load-regulation error and helps reduce the output capacitor size and cost by shifting the unitygain crossover frequency to a lower level.

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Figure 3: PWM-Controller Functional Diagram

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Frequency Selection (FSEL)

The FSEL input selects the PWM-mode switching frequency. Table 4 shows the switching frequency based on FSEL connection. High-frequency (500 kHz) operation optimizes the application for the smallest component size, trading off efficiency due to higher switching losses. This may be acceptable in ultra-portable devices where the load currents are lower. Low-frequency (200kHz) operation offers the best overall efficiency at the expense of component size and board space.

Forced-PWM Mode

The low-noise forced-PWM mode disables the zerocrossing comparator, which controls the low-side switch on-time. This forces the low-side gate-drive waveform to constantly be the complement of the high-side gatedrive waveform, so the inductor current reverses at light loads while DH_ maintains a duty factor of VOUT / VIN. The benefit of forced-PWM mode is to keep the switching frequency fairly constant. However, forced-PWM operation comes at a cost: the no-load 5 V supply current remains between 15 mA and 50 mA , depending on the external MOSFETs and switching frequency.
Forced-PWM mode is most useful for avoiding audiofrequency noise and improving load-transient response. Since forced-PWM operation disables the zero-crossing comparator, the inductor current reverses under light loads.

Light-Load Operation Control (ISIIP)

The MAX1533/MAX1537 include a light-load operatingmode control input (SKIP) used to independently enable or disable the zero-crossing comparator for both controllers. When the zero-crossing comparator is enabled, the controller forces DL_ low when the cur-rent-sense inputs detect zero inductor current. This keeps the inductor from discharging the output capacitors and forces the controller to skip pulses under lightload conditions to avoid overcharging the output. When the zero-crossing comparator is disabled, the controller is forced to maintain PWM operation under light-load conditions (forced-PWM).

Table 4. FSEL Configuration Table

FSEL	SWITCHING FREQUENCY
$V_{C C}$	500 kHz
REF	300 kHz
GND	200 kHz

Idle-Mode Current-Sense Threshold
The on-time of the step-down controller terminates when the output voltage exceeds the feedback threshold and when the current-sense voltage exceeds the idle-mode current-sense threshold. Under light-load conditions, the on-time duration depends solely on the idle-mode current-sense threshold, which is approximately 20% of the full-load current-limit threshold set by ILIM_. This forces the controller to source a minimum amount of power with each cycle. To avoid overcharging the output, another on-time cannot begin until the output voltage drops below the feedback threshold. Since the zero-crossing comparator prevents the switching regulator from sinking current, the controller must skip pulses. Therefore, the controller regulates the valley of the output ripple under light-load conditions.

Automatic Pulse-Skipping Crossover In skip mode, an inherent automatic switchover to PFM takes place at light loads (Figure 4). This switchover is affected by a comparator that truncates the low-side switch on-time at the inductor current's zero crossing. The zero-crossing comparator senses the inductor current across the low-side MOSFET (PGND to LX_). Once VPGND - VLX_ drops below the 3mV zero-crossing cur-rent-sense threshold, the comparator forces DL_ low (Figure 3). This mechanism causes the threshold between pulse-skipping PFM and nonskipping PWM operation to coincide with the boundary between continuous and discontinuous inductor-current operation (also known as the "critical conduction" point). The load-current level at which PFM/PWM crossover occurs, ILOAD(SKIP), is given by:

$$
\mathrm{I}_{\mathrm{LOAD}(\mathrm{SKIP})}=\frac{\mathrm{V}_{\text {OUT }}\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right)}{2 \times \mathrm{V}_{\mathbb{I}} \times \mathrm{f}_{\mathrm{SW}} \times \mathrm{L}}
$$

The switching waveforms may appear noisy and asynchronous when light loading causes pulse-skipping operation, but this is a normal operating condition that results in high light-load efficiency. Trade-offs in PFM noise vs. light-load efficiency are made by varying the inductor value. Generally, low inductor values produce a broader efficiency vs. load curve, while higher values result in higher full-load efficiency (assuming that the coil resistance remains fixed) and less output voltage ripple. Penalties for using higher inductor values include larger physical size and degraded load-transient response (especially at low input-voltage levels).

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Figure 4. Pulse-Skipping/Discontinuous Crossover Point

Output Voltage

DC output accuracy specifications in the Electrical Characteristics table refer to the error-comparator's threshold. When the inductor continuously conducts, the MAX1533/MAX1537 regulate the peak of the output ripple, so the actual DC output voltage is lower than the slope-compensated trip level by 50% of the output ripple voltage. For PWM operation (continuous conduction), the output voltage is accurately defined by the following equation:

$$
V_{\text {OUT }}(P W M)=V_{\text {NOM }}\left(1-\frac{A_{\text {SLOPE }} V_{\text {NOM }}}{V_{I N}}\right)-\left(\frac{V_{\text {RIPPLE }}}{2}\right)
$$

where $\mathrm{V}_{\text {NOM }}$ is the nominal output voltage, ASLOPE equals 1%, and VRIPPLE is the output ripple voltage (VRIPPLE $=$ ESR $\times \Delta$ linductor as described in the Output Capacitor Selection section).
In discontinuous conduction (IOUT < ILOAD(SKIP)), the MAX1533/MAX1537 regulate the valley of the output ripple, so the output voltage has a DC regulation level higher than the error-comparator threshold. For PFM operation (discontinuous conduction), the output voltage is approximately defined by the following equation:

Figure 5. Dual-Mode Feedback Decoder

$$
V_{\text {OUT }}(\mathrm{PFM})=\mathrm{V}_{\text {NOM }}+\frac{1}{2}\left(\frac{\mathrm{f}_{\mathrm{SW}}}{f_{\mathrm{OSC}}}\right) \text { IIDLE } \times \mathrm{ESR}
$$

where $\mathrm{V}_{\text {NOM }}$ is the nominal output voltage, fosc is the maximum switching frequency set by the internal oscillator, fSW is the actual switching frequency, and IIDLE is the idle-mode inductor current when pulse skipping.

Adjustable/Fixed Output Voltages

(Dual-Mode Feedback)
Connect FB3 and FB5 to GND to enable the fixed SMPS output voltages (3.3V and 5V, respectively), set by a preset, internal resistive voltage-divider connected between CSL_ and analog ground. Connect a resistive voltage-divider at FB_ between CSL_ and GND to adjust the respective output voltage between 1 V and 5.5V (Figure 5). Choose R2 (resistance from FB to GND) to be about $10 \mathrm{k} \Omega$ and solve for R1 (resistance from OUT to FB) using the equation:

$$
\mathrm{R} 1=\mathrm{R} 2\left(\frac{\mathrm{~V}_{\mathrm{OUT}_{-}}}{\mathrm{V}_{\mathrm{FB}}^{-}}-1\right)
$$

where $\mathrm{V}_{\mathrm{FB}}=1 \mathrm{~V}$ nominal.

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

When adjusting both output voltages, set the 3.3 V SMPS lower than the 5V SMPS. LDO5 connects to the 5 V output (CSL5) through an internal switch only when CSL5 is above the LDO5 bootstrap threshold (4.56V). Similarly, LDO3 connects to the 3.3 V output (CSL3) through an internal switch only when CSL3 is above the LDO3 bootstrap threshold (2.91V). Bootstrapping works most effectively when the fixed output voltages are used. Once LDO_ is bootstrapped from CSL_, the internal linear regulator turns off. This reduces internal power dissipation and improves efficiency at higher input voltage.

Current-Limit Protection (ILIM_)
The current-limit circuit uses differential current-sense inputs (CSH_ and CSL_) to limit the peak inductor current. If the magnitude of the current-sense signal exceeds the current-limit threshold, the PWM controller turns off the high-side MOSFET (Figure 3). At the next rising edge of the internal oscillator, the PWM controller does not initiate a new cycle unless the current-sense signal drops below the current-limit threshold. The actual maximum load current is less than the peak cur-rent-limit threshold by an amount equal to half of the inductor ripple current. Therefore, the maximum load capability is a function of the current-sense resistance, inductor value, switching frequency, and duty cycle (Vout / Vin).
In forced-PWM mode, the MAX1533/MAX1537 also implement a negative current limit to prevent excessive reverse inductor currents when Vout is sinking current. The negative current-limit threshold is set to approximately 120% of the positive current limit and tracks the positive current limit when ILIM_ is adjusted.
Connect ILIM_ to VCC for the 75 mV default threshold, or adjust the current-limit threshold with an external resis-tor-divider at ILIM_. Use a $2 \mu \mathrm{~A}$ to $20 \mu \mathrm{~A}$ divider current for accuracy and noise immunity. The current-limit threshold adjustment range is from 50 mV to 200 mV . In the adjustable mode, the current-limit threshold voltage equals precisely $1 / 10$ th the voltage seen at ILIM_. The logic threshold for switchover to the 75 mV default value is approximately $\mathrm{VCC}_{C}-1 \mathrm{~V}$.
Carefully observe the PC board layout guidelines to ensure that noise and DC errors do not corrupt the differential current-sense signals seen by CSH_ and CSL_. Place the IC close to the sense resistor with short, direct traces, making a Kelvin-sense connection to the current-sense resistor.

MOSFET Gate Drivers (DH_, DL_)

The DH_ and DL_ drivers are optimized for driving moderate-sized high-side and larger low-side power MOSFETs. This is consistent with the low duty factor seen in notebook applications, where a large VIN VOUT differential exists. The high-side gate drivers (DH_) source and sink 2A, and the low-side gate drivers (DL_) source 1.7A and sink 3.3A. This ensures robust gate drive for high-current applications. The DH_ floating high-side MOSFET drivers are powered by diode-capacitor charge pumps at BST_ (Figure 6) while the DL_ synchronous-rectifier drivers are powered directly by the fixed 5 V linear regulator (LDO5).
Adaptive dead-time circuits monitor the DL_ and DH_ drivers and prevent either FET from turning on until the other is fully off. The adaptive driver dead time allows operation without shoot-through with a wide range of MOSFETs, minimizing delays and maintaining efficiency. There must be a low-resistance, low-inductance path from the DL_ and DH_ drivers to the MOSFET gates for the adaptive dead-time circuits to work properly; otherwise, the sense circuitry in the MAX1533/ MAX1537 interprets the MOSFET gates as "off" while charge actually remains. Use very short, wide traces (50 to 100 mils wide if the MOSFET is 1 inch from the driver).
The internal pulldown transistor that drives DL_ low is robust, with a 0.6Ω (typ) on-resistance. This helps prevent DL_ from being pulled up due to capacitive coupling from the drain to the gate of the low-side MOSFETs when the inductor node (LX_) quickly switches from ground to Vin. Applications with high input voltages and long inductive driver traces may require additional gate-to-source capacitance to ensure fastrising LX_ edges do not pull up the low-side MOSFETs' gate, causing shoot-through currents. The capacitive coupling between LX_ and DL_ created by the MOSFET's gate-to-drain capacitance (CRSS), gate-tosource capacitance (CISS - CRSS), and additional board parasitics should not exceed the following minimum threshold:

$$
\mathrm{V}_{\mathrm{GS}(\mathrm{TH})}>\mathrm{V}_{\mathrm{IN}}\left(\frac{\mathrm{C}_{\mathrm{RSS}}}{\mathrm{C}_{I S S}}\right)
$$

Lot-to-lot variation of the threshold voltage may cause problems in marginal designs. Alternatively, adding a resistor less than 10Ω in series with BST_ may remedy the problem by increasing the turn-on time of the highside MOSFET without degrading the turn-off time (Figure 6).

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Power-Good Output (PGOOD)
PGOOD is the open-drain output of a comparator that continuously monitors both SMPS output voltages for undervoltage conditions. PGOOD is actively held low in shutdown (SHDN or ON3 or ON5 = GND), soft-start, and soft-shutdown. Once the digital soft-start terminates, PGOOD becomes high impedance as long as both outputs are above 90% of the nominal regulation voltage set by FB_. PGOOD goes low once either SMPS output drops 10% below its nominal regulation point, an output overvoltage fault occurs, or either SMPS controller is shut down. For a logic-level PGOOD output voltage, connect an external pullup resistor between PGOOD and VCC. A $100 \mathrm{k} \Omega$ pullup resistor works well in most applications.
PGOOD is independent of the fault protection states $\overline{\mathrm{OVP}}$ and UVP.

Fault Protection
Output Overvoltage Protection (OVP)

Figure 6. Optional Gate-Driver Circuitry

Figure 7. Power-Good and Fault Protection

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

high. This turns on the synchronous-rectifier MOSFETs with 100% duty, rapidly discharging the output capacitors and clamping both outputs to ground. However, immediately latching DL_ high typically causes slightly negative output voltages due to the energy stored in the output LC at the instant the OVP occurs. If the load cannot tolerate a negative voltage, place a power Schottky diode across the output to act as a reversepolarity clamp. If the condition that caused the overvoltage persists (such as a shorted high-side MOSFET), the battery fuse blows. Cycle Vcc below 1V or toggle either ON3, ON5, or SHDN to clear the fault latch and restart the SMPS controllers.
Connect $\overline{\text { OVP }}$ to VCc to disable the output overvoltage protection.

Output Undervoltage Protection (UVP)
Each SMPS controller includes an output UVP protection circuit that begins to monitor the output 6144 clock cycles ($1 /$ fosc) after that output is enabled (ON_ pulled high). If either SMPS output voltage drops below 70% of its nominal regulation voltage and the UVP protection is enabled ($\overline{U V P}=$ GND), the UVP circuit sets the fault latch, pulls PGOOD low, and shuts down both controllers using discharge mode (see the Output Discharge (Soft-Shutdown) section). When an SMPS output voltage drops to 0.3 V , its synchronous rectifier turns on, clamping the discharged output to GND. Cycle VCc below 1 V or toggle either ON3, ON5, or $\overline{\text { SHDN }}$ to clear the fault latch and restart the SMPS controllers.
Connect $\overline{\mathrm{UVP}}$ to V_{CC} to disable the output undervoltage protection.

Table 5. Operating Modes Truth Table

MODE	CONDITION	COMMENT
Power-Up	LDO5 < UVLO threshold.	Transitions to discharge mode after VIN POR and after REF becomes valid. LDO5, LDO3, REF remain active. DL_ is active if $\overline{\mathrm{OVP}}$ is low.
Run	$\overline{\text { SHDN }}=$ high, ON3 or ON5 enabled.	Normal operation.
Output Overvoltage Protection (OVP)	Either output > 111\% of nominal level, $\overline{\mathrm{OVP}}=$ low.	Exited by POR or cycling SHDN, ON3, or ON5.
Output Undervoltage Protection (UVP)	Either output < 70% of nominal level, UVP is enabled 6144 clock cycles (1 / fosc) after the output is enabled and $\overline{\mathrm{UVP}}=$ low.	Exited by POR or cycling $\overline{\mathrm{SHDN}}$, ON3, or ON5. If $\overline{\mathrm{OVP}}$ is not high, DL3 and DL5 go high after discharge.
Discharge	$\overline{\mathrm{OVP}}$ is low and either SMPS output is still high in either standby mode or shutdown mode.	Discharge switch (10Ω) connects CSL_ to PGND. This is a temporary state entered when LDO5 is undervoltage or on the way to output UVLO, standby, shutdown, or thermal-shutdown states. One SMPS can be in discharge mode while the other is in run mode. If both outputs are discharged to 0.3V (on CSL_), discharge mode transitions to the appropriate state.
Standby	ON5 and ON3 < startup threshold, $\overline{\mathrm{SHDN}}=$ high.	DL_ stays high if $\overline{\text { OVP }}$ is low. LDO3, LDO5 active.
Shutdown	$\overline{\text { SHDN }}=$ low.	All circuitry off.
Thermal Shutdown	$\mathrm{T} J>+160^{\circ} \mathrm{C}$.	Exited by POR or cycling SHDN, ON3, or ON5. If $\overline{\mathrm{OVP}}$ is not high, DL3 and DL5 go high before LDO5 turns off.
Switchover Fault	Excessive current on LDO3 or LDO5 switchover transistors.	Exited by POR or cycling SHDN, ON3, or ON5. If $\overline{\mathrm{OVP}}$ is not high, DL3 and DL5 go high before LDO5 turns off.

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Abstract

Thermal Fault Protection The MAX1533/MAX1537 feature a thermal fault-protection circuit. When the junction temperature rises above $+160^{\circ} \mathrm{C}$, a thermal sensor activates the fault latch, pulls PGOOD low, and shuts down both SMPS controllers using discharge mode (see the Output Discharge (SoftShutdown) section). When an SMPS output voltage drops to 0.3 V , its synchronous rectifier turns on, clamping the discharged output to GND. Cycle VCC below 1V or toggle either ON3, ON5, or SHDN to clear the fault latch and restart the controllers after the junction temperature cools by $15^{\circ} \mathrm{C}$.

\section*{Auxiliary LDO Detailed Description (MAX1537 Only)}

The MAX1537 includes an auxiliary linear regulator that delivers up to 150 mA of load current. The output (LDOA) can be preset to 12 V , ideal for PCMCIA power requirements, and for biasing the gates of load switches in a portable device. In adjustable mode, LDOA can be set to anywhere from 5 V to 23 V . The auxiliary regulator has an independent ON/OFF control, allowing it to be shut down when not needed, reducing power consumption when the system is in a low-power state.
A flyback-winding control loop regulates a secondary winding output, improving cross-regulation when the primary output is lightly loaded or when there is a low input-output differential voltage. If VINA - VLDOA falls below 0.8 V , the low-side switch is turned on for a time equal to 33% of the switching period. This reverses the inductor (primary) current, pulling current from the output filter capacitor and causing the flyback transformer to operate in forward mode. The low impedance presented by the transformer secondary in forward mode dumps current into the secondary output, charging up the secondary capacitor and bringing VINA - VLDOA back into regulation. The secondary feedback loop does not improve secondary output accuracy in normal flyback mode, where the main (primary) output is heavily loaded. In this condition, secondary output accuracy is determined by the secondary rectifier drop, transformer turns ratio, and accuracy of the main output voltage.

Adjustable LDOA Voltage (Dual-Mode Feedback)

Connect ADJA to GND to enable the fixed, preset 12 V auxiliary output. Connect a resistive voltage-divider at ADJA between LDOA and GND to adjust the respective output voltage between 5V and 23V (Figure 8). Choose R2 (resistance from ADJA to GND) to be approximately

Figure 8. Linear-Regulator Functional Diagram
$100 \mathrm{k} \Omega$ and solve for R1 (resistance from LDOA to ADJA) using the following equation:

$$
R 1=R 2\left(\frac{V_{\text {LDOA }}}{V_{\text {ADJA }}}-1\right)
$$

where $\mathrm{V}_{\text {ADJA }}=2 \mathrm{~V}$ nominal.

Design Procedure

Firmly establish the input voltage range and maximum load current before choosing a switching frequency and inductor operating point (ripple-current ratio). The primary design trade-off lies in choosing a good switching frequency and inductor operating point, and the following four factors dictate the rest of the design:

- Input Voltage Range. The maximum value ($\operatorname{VIN}(\mathrm{MAX})$) must accommodate the worst-case, high AC-adapter voltage. The minimum value (VIN(MIN)) must account for the lowest battery voltage after drops due to connectors, fuses, and battery-selector switches. If there is a choice at all, lower input voltages result in better efficiency.

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

- Maximum Load Current. There are two values to consider. The peak load current (ILOAD(MAX)) determines the instantaneous component stresses and filtering requirements and thus drives output-capacitor selection, inductor saturation rating, and the design of the current-limit circuit. The continuous load current (lloAD) determines the thermal stresses and thus drives the selection of input capacitors, MOSFETs, and other critical heat-contributing components.
- Switching Frequency. This choice determines the basic trade-off between size and efficiency. The optimal frequency is largely a function of maximum input voltage, due to MOSFET switching losses that are proportional to frequency and $\mathrm{V}_{\mathrm{IN}}{ }^{2}$. The optimum frequency is also a moving target, due to rapid improvements in MOSFET technology that are making higher frequencies more practical.
- Inductor Operating Point. This choice provides trade-offs between size vs. efficiency and transient response vs. output ripple. Low inductor values provide better transient response and smaller physical size, but also result in lower efficiency and higher output ripple due to increased ripple currents. The minimum practical inductor value is one that causes the circuit to operate at the edge of critical conduction (where the inductor current just touches zero with every cycle at maximum load). Inductor values lower than this grant no further size-reduction benefit. The optimum operating point is usually found between 20% and 50% ripple current. When pulse skipping ((SKIP low and light loads), the inductor value also determines the load-current value at which PFM/PWM switchover occurs.

Inductor Selection

The switching frequency and inductor operating point determine the inductor value as follows:

$$
L=\frac{V_{\text {OUT }}\left(V_{\text {IN }}-V_{\text {OUT }}\right)}{V_{\text {IN }} f_{\text {OSC }} \operatorname{IOAD(MAX)} \operatorname{LIR}}
$$

For example: $\operatorname{ILOAD}(\mathrm{MAX})=5 \mathrm{~A}, \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$, fosc $=300 \mathrm{kHz}, 30 \%$ ripple current or LIR $=0.3$.

$$
\mathrm{L}=\frac{5 \mathrm{~V} \times(12 \mathrm{~V}-5 \mathrm{~V})}{12 \mathrm{~V} \times 300 \mathrm{kHz} \times 5 \mathrm{~A} \times 0.3}=6.50 \mu \mathrm{H}
$$

Find a low-loss inductor with the lowest possible DC resistance that fits in the allotted dimensions. Most inductor manufacturers provide inductors in standard values, such as $1.0 \mu \mathrm{H}, 1.5 \mu \mathrm{H}, 2.2 \mu \mathrm{H}, 3.3 \mu \mathrm{H}$, etc. Also
look for nonstandard values, which can provide a better compromise in LIR across the input voltage range. If using a swinging inductor (where the no-load inductance decreases linearly with increasing current), evaluate the LIR with properly scaled inductance values. For the selected inductance value, the actual peak-to-peak inductor ripple current (Δ IINDUCTOR) is defined by:

$$
\Delta_{\text {INDUCTOR }}=\frac{V_{\text {OUT }}\left(\mathrm{V}_{\text {IN }}-V_{\text {OUT }}\right)}{V_{\text {IN }} f_{\mathrm{OSC}} L}
$$

Ferrite cores are often the best choice, although powdered iron is inexpensive and can work well at 200 kHz . The core must be large enough not to saturate at the peak inductor current (IPEAK):

$$
I_{\text {PEAK }}=\operatorname{l}_{\text {LOAD }}(\mathrm{MAX})+\frac{\Delta_{I_{\text {INDUCTOR }}}}{2}
$$

Transformer Design (For the MAX1537

 Auxiliary Output)A coupled inductor or transformer can be substituted for the inductor in the 5V SMPS to create an auxiliary output (Figure 1). The MAX1537 is particularly well suited for such applications because the secondary feedback threshold automatically triggers DL5 even if the 5 V output is lightly loaded.
The power requirements of the auxiliary supply must be considered in the design of the main output. The transformer must be designed to deliver the required current in both the primary and the secondary outputs with the proper turns ratio and inductance. The power ratings of the synchronous-rectifier MOSFETs and the current limit in the MAX1537 must also be adjusted accordingly. Extremes of low input-output differentials, widely different output loading levels, and high turns ratios can further complicate the design due to parasitic transformer parameters such as interwinding capacitance, secondary resistance, and leakage inductance. Power from the main and secondary outputs is combined to get an equivalent current referred to the main output. Use this total current to determine the current limit (see the Setting the Current Limit section):
ITOTAL = PTOTAL / VOUT5
where ITOTAL is the equivalent output current referred to the main output, and Ptotal is the sum of the output power from both the main output and the secondary output:

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

$$
N=\frac{V_{S E C}+V_{F W D}}{V_{\text {OUT5 }}+V_{\text {RECT }}+V_{\text {SENSE }}}
$$

where LPRIMARY is the primary inductance, N is the transformer turns ratio, VSEC is the minimum required rectified secondary voltage, VFWD is the forward drop across the secondary rectifier, VOUT5(MIN) is the minimum value of the main output voltage, and $V_{\text {RECT }}$ is the on-state voltage drop across the synchronous-rectifier MOSFET. The transformer secondary return is often connected to the main output voltage instead of ground to reduce the necessary turns ratio. In this case, subtract VOUT5 from the secondary voltage (VSEC - VOUT5) in the transformer turns-ratio equation above. The secondary diode in coupled-inductor applications must withstand flyback voltages greater than 60V. Common silicon rectifiers, such as the 1N4001, are also prohibited because they are too slow. Fast silicon rectifiers such as the MURS120 are the only choice. The flyback voltage across the rectifier is related to the VIN - Vout difference, according to the transformer turns ratio:

$$
V_{\text {FLYBACK }}=V_{\text {SEC }}+\left(V_{\text {IN }}-V_{\text {OUT5 }}\right) \times N
$$

where N is the transformer turns ratio (secondary windings/primary windings), and VSEC is the maximum secondary DC output voltage. If the secondary winding is returned to VOUT5 instead of ground, subtract VOUT5 from VFLYBACK in the equation above. The diode's reverse-breakdown voltage rating must also accommodate any ringing due to leakage inductance. The diode's current rating should be at least twice the DC load current on the secondary output.

Transient Response

The inductor ripple current also impacts transientresponse performance, especially at low VIN - VOUT differentials. Low inductor values allow the inductor current to slew faster, replenishing charge removed from the output filter capacitors by a sudden load step. The total output voltage sag is the sum of the voltage sag while the inductor is ramping up, and the voltage sag before the next pulse can occur.

$$
\begin{aligned}
& V_{S A G}= \frac{L\left(\Delta I_{\text {LOAD(MAX) }}\right)^{2}}{2 C_{\text {OUT }}\left(V_{I N} \times \mathrm{D}_{\text {MAX }}-\mathrm{V}_{\text {OUT }}\right)}+ \\
& \frac{\Delta I_{\text {LOAD(MAX) }}(\mathrm{T}-\Delta \mathrm{T})}{\mathrm{C}_{\text {OUT }}}
\end{aligned}
$$

where DMAX is the maximum duty factor (see the Electrical Characteristics table), T is the switching period
($1 / \mathrm{fOSC}$), and ΔT equals VOUT / VIN $\times T$ when in PWM mode, or $L \times 0.2 \times I_{\text {MAX }} /\left(V_{I N}-V_{O U T}\right)$ when in skip mode. The amount of overshoot during a full-load to noload transient due to stored inductor energy can be calculated as:

$$
\mathrm{V}_{\mathrm{SOAR}}=\frac{\left(\Delta \mathrm{l}_{\mathrm{LOAD}(\mathrm{MAX})}\right)^{2} \mathrm{~L}}{2 \mathrm{C}_{\mathrm{OUT}} \mathrm{~V}_{\mathrm{OUT}}}
$$

Setting the Current Limit

The minimum current-limit threshold must be great enough to support the maximum load current when the current limit is at the minimum tolerance value. The peak inductor current occurs at ILOAD(MAX) plus half the ripple current; therefore:

$$
\mathrm{LIMIT}>\mathrm{L}_{\mathrm{LOAD}(\mathrm{MAX})}+\left(\frac{\Delta \mathrm{I}_{\mathrm{INDUCTOR}}}{2}\right)
$$

where ILIMIT equals the minimum current-limit threshold voltage divided by the current-sense resistance (RSENSE). For the default setting, the minimum currentlimit threshold is 70 mV .
Connect ILIM_ to VCC for the default current-limit threshold. In adjustable mode, the current-limit threshold is precisely $1 / 10$ th the voltage seen at ILIM_. For an adjustable threshold, connect a resistive divider from REF to analog ground (GND) with ILIM_ connected to the center tap. The external 500 mV to 2 V adjustment range corresponds to a 50 mV to 200 mV current-limit threshold. When adjusting the current limit, use 1% tolerance resistors and a divider current of approximately $10 \mu \mathrm{~A}$ to prevent significant inaccuracy in the currentlimit tolerance.
The current-sense method (Figure 9) and magnitude determine the achievable current-limit accuracy and power loss. Typically, higher current-sense limits provide tighter accuracy, but also dissipate more power. Most applications employ a current-limit threshold (VLIMIT) of 50 mV to 100 mV , so the sense resistor can be determined by:

$$
\text { RSENSE }=\text { VLIMIT } / \text { ILIM }
$$

For the best current-sense accuracy and overcurrent protection, use a 1% tolerance current-sense resistor between the inductor and output as shown in Figure 9a. This configuration constantly monitors the inductor current, allowing accurate current-limit protection.

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Alternatively, high-power applications that do not require highly accurate current-limit protection may reduce the overall power dissipation by connecting a series RC circuit across the inductor (Figure 9b) with an equivalent time constant:

$$
\frac{L}{R_{L}}=C_{E Q} \times R_{E Q}
$$

where R_{L} is the inductor's series DC resistance. In this configuration, the current-sense resistance equals the inductor's DC resistance (RSENSE = RL). Use the worstcase inductance and RL values provided by the induc-
tor manufacturer, adding some margin for the inductance drop over temperature and load.

Output Capacitor Selection

The output filter capacitor must have low enough equivalent series resistance (ESR) to meet output ripple and load-transient requirements, yet have high enough ESR to satisfy stability requirements. The output capacitance must be high enough to absorb the inductor energy while transitioning from full-load to no-load conditions without tripping the overvoltage fault protection. When using high-capacitance, low-ESR capacitors (see the Output-Capacitor Stability Considerations section),

a) OUTPUT SERIES RESISTOR SENSING

b) LOSSLESS INDUCTOR SENSING

Figure 9. Current-Sense Configurations

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

the filter capacitor's ESR dominates the output voltage ripple. So the output capacitor's size depends on the maximum ESR required to meet the output voltage ripple (VRIPPLE(P-P)) specifications:

$$
V_{\text {RIPPLE(P-P) }}=R_{\text {ESR }} \operatorname{lioad}_{\text {LMAX }} \operatorname{LIR}
$$

In idle mode, the inductor current becomes discontinuous, with peak currents set by the idle-mode currentsense threshold (VIDLE $=0.2 \mathrm{~V}$ LIMIT). In idle mode, the no-load output ripple can be determined as follows:

$$
V_{\text {RIPPLE }(P-P)}=\frac{V_{\text {IDLE }} R_{E S R}}{R_{S E N S E}}
$$

The actual capacitance value required relates to the physical size needed to achieve low ESR, as well as to the chemistry of the capacitor technology. Thus, the capacitor is usually selected by ESR and voltage rating rather than by capacitance value (this is true of tantalums, OS-CONs, polymers, and other electrolytics). When using low-capacity filter capacitors, such as ceramic capacitors, size is usually determined by the capacity needed to prevent VSAG and VSOAR from causing problems during load transients. Generally, once enough capacitance is added to meet the overshoot requirement, undershoot at the rising load edge is no longer a problem (see the VSAG and VSOAR equations in the Transient Response section). However, lowcapacity filter capacitors typically have high-ESR zeros that may affect the overall stability (see the OutputCapacitor Stability Considerations).

Output-Capacitor Stability Considerations

Stability is determined by the value of the ESR zero relative to the switching frequency. The boundary of instability is given by the following equation:

$$
\text { where } \mathrm{f}_{\mathrm{ESR}}=\frac{\mathrm{f}_{\mathrm{ESR}} \leq \frac{\mathrm{f}_{\mathrm{OSC}}}{\pi}}{2 \pi \mathrm{R}_{\mathrm{ESR}} \mathrm{C}_{\mathrm{OUT}}}
$$

For a typical 300 kHz application, the ESR zero frequency must be well below 95 kHz , preferably below 50 kHz . Tantalum and OS-CON capacitors in widespread use at the time of publication have typical ESR zero frequencies of 25 kHz . In the design example used for inductor selection, the ESR needed to support 25 mVP -p ripple is $25 \mathrm{mV} / 1.5 \mathrm{~A}=16.7 \mathrm{~m} \Omega$. One $220 \mu \mathrm{~F} / 4 \mathrm{~V}$ Sanyo polymer (TPE) capacitor provides $15 \mathrm{~m} \Omega$ (max) ESR. This results in a zero at 48 kHz , well within the bounds of stability.

For low-input-voltage applications where the duty cycle exceeds 50% (VOUT / VIN $\geq 50 \%$), the output ripple voltage should not be greater than twice the internal slopecompensation voltage:

VRIPPLE $\leq 0.02 \times$ Vout
where $V_{\text {RIPPLE }}$ equals Δ IINDUCTOR \times RESR. The worstcase ESR limit occurs when VIN $=2 \times$ VOUT, so the above equation can be simplified to provide the following boundary condition:

$$
\text { RESR } \leq 0.04 \times L \times \text { fosc }
$$

Do not put high-value ceramic capacitors directly across the feedback sense point without taking precautions to ensure stability. Large ceramic capacitors can have a high-ESR zero frequency and cause erratic, unstable operation. However, it is easy to add enough series resistance by placing the capacitors a couple of inches downstream from the feedback sense point, which should be as close as possible to the inductor.
Unstable operation manifests itself in two related but distinctly different ways: short/long pulses or cycle skipping resulting in a lower switching frequency. Instability occurs due to noise on the output or because the ESR is so low that there is not enough voltage ramp in the output voltage signal. This "fools" the error comparator into triggering too early or skipping a cycle. Cycle skipping is more annoying than harmful, resulting in nothing worse than increased output ripple. However, it can indicate the possible presence of loop instability due to insufficient ESR. Loop instability can result in oscillations at the output after line or load steps. Such perturbations are usually damped, but can cause the output voltage to rise above or fall below the tolerance limits.
The easiest method for checking stability is to apply a very fast zero-to-max load transient and carefully observe the output-voltage-ripple envelope for overshoot and ringing. It can help to simultaneously monitor the inductor current with an AC-current probe. Do not allow more than one cycle of ringing after the initial step-response under/overshoot.

Input Capacitor Selection

The input capacitor must meet the ripple current requirement (IRMS) imposed by the switching currents. For an out-of-phase regulator, the total RMS current in the input capacitor is a function of the load currents, the input currents, the duty cycles, and the amount of overlap as defined in Figure 10.
The 40/60 optimal interleaved architecture of the MAX1533/MAX1537 allows the input voltage to go as low as 8.3 V before the duty cycles begin to overlap.

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

This offers improved efficiency over a regular 180° out-of-phase architecture where the duty cycles begin to overlap below 10V. Figure 10 shows the input-capacitor RMS current vs. input voltage for an application that requires $5 \mathrm{~V} / 5 \mathrm{~A}$ and $3.3 \mathrm{~V} / 5 \mathrm{~A}$. This shows the improvement of the 40/60 optimal interleaving over 50/50 interleaving and in-phase operation.
For most applications, nontantalum chemistries (ceramic, aluminum, or OS-CON) are preferred due to their resistance to power-up surge currents typical of systems with a mechanical switch or connector in series with the input. Choose a capacitor that has less than $10^{\circ} \mathrm{C}$ temperature rise at the RMS input current for optimal reliability and lifetime.

Power-MOSFET Selection

Most of the following MOSFET guidelines focus on the challenge of obtaining high load-current capability when using high-voltage (>20V) AC adapters. Low-current applications usually require less attention.
The high-side MOSFET (NH) must be able to dissipate the resistive losses plus the switching losses at both $\operatorname{VIN}(\operatorname{MIN})$ and $\operatorname{VIN}(M A X)$. Ideally, the losses at $\operatorname{VIN}(M I N)$ should be roughly equal to the losses at $\operatorname{VIN}(M A X)$, with lower losses in between. If the losses at $\operatorname{VIN}(\mathrm{MIN})$ are

Figure 10. Input RMS Current
significantly higher, consider increasing the size of NH_{H}. Conversely, if the losses at $\operatorname{VIN}(M A X)$ are significantly higher, consider reducing the size of NH_{H}. If VIN does not vary over a wide range, maximum efficiency is achieved by selecting a high-side MOSFET (NH) that has conduction losses equal to the switching losses.
Choose a low-side MOSFET (NL_{L}) that has the lowest possible on-resistance (RDS(ON)), comes in a moder-ate-sized package (i.e., SO-8, DPAK, or D²PAK), and is reasonably priced. Ensure that the MAX1533/MAX1537 DL_ gate driver can supply sufficient current to support the gate charge and the current injected into the parasitic drain-to-gate capacitor caused by the high-side MOSFET turning on; otherwise, cross-conduction problems may occur. Switching losses are not an issue for the low-side MOSFET since it is a zero-voltage switched device when used in the step-down topology.

Power-MOSFET Dissipation

Worst-case conduction losses occur at the duty factor extremes. For the high-side MOSFET (NH), the worstcase power dissipation due to resistance occurs at minimum input voltage:

$$
\mathrm{PD}\left(\mathrm{~N}_{\mathrm{H}} \text { Resistive }\right)=\left(\frac{\mathrm{V}_{\mathrm{OUT}}}{\mathrm{~V}_{\mathrm{N}}}\right)\left(\mathrm{L}_{\mathrm{LOAD}}\right)^{2} \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}
$$

Generally, use a small high-side MOSFET to reduce switching losses at high input voltages. However, the RDS(ON) required to stay within package power-dissipation limits often limits how small the MOSFET can be. The optimum occurs when the switching losses equal the conduction (RDS(ON)) losses. High-side switching losses do not become an issue until the input is greater than approximately 15 V .
Calculating the power dissipation in high-side MOSFETs (NH) due to switching losses is difficult, since it must allow for difficult-to-quantify factors that influence the turn-on and turn-off times. These factors include the internal gate resistance, gate charge, threshold voltage, source inductance, and PC board layout characteristics. The following switching loss calculation provides only a very rough estimate and is no substitute for breadboard evaluation, preferably including verification using a thermocouple mounted on $\mathrm{NH}^{\text {: }}$

$$
P D\left(N_{H} \text { Switching }\right)=\frac{\left(V_{\operatorname{IN}(M A X)}\right)^{2} C_{R S S} f_{S W} I_{\text {LOAD }}}{\mathrm{I}_{\mathrm{GATE}}}
$$

where CRSS is the reverse transfer capacitance of NH_{H}, and IGATE is the peak gate-drive source/sink current (1A typ).

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Switching losses in the high-side MOSFET can become a heat problem when maximum AC-adapter voltages are applied, due to the squared term in the switchingloss equation ($\mathrm{C} \times \mathrm{VIN}^{2} \times \mathrm{fsw}$). If the high-side MOSFET chosen for adequate RDS(ON) at low battery voltages becomes extraordinarily hot when subjected to VIN(MAX), consider choosing another MOSFET with lower parasitic capacitance.
For the low-side MOSFET (NL), the worst-case power dissipation always occurs at maximum battery voltage:

$$
\operatorname{PD}\left(N_{\mathrm{L}} \text { Resistive }\right)=\left[1-\left(\frac{V_{\mathrm{OUT}}}{V_{\operatorname{IN}(\mathrm{MAX})}}\right)\right]\left(\mathrm{l}_{\mathrm{LOAD}}\right)^{2} \mathrm{R}_{\mathrm{DS}(\mathrm{ON})}
$$

The absolute worst case for MOSFET power dissipation occurs under heavy-overload conditions that are greater than ILOAD(MAX) but are not high enough to exceed the current limit and cause the fault latch to trip. To protect against this possibility, "overdesign" the circuit to tolerate:

$$
I_{\text {LOAD }}=I_{\text {LIMIT }}-\left(\frac{\Delta l_{\text {INDUCTOR }}}{2}\right)
$$

where ILIMIT is the peak current allowed by the currentlimit circuit, including threshold tolerance and senseresistance variation. The MOSFETs must have a relatively large heatsink to handle the overload power dissipation.
Choose a Schottky diode (DL) with a forward-voltage drop low enough to prevent the low-side MOSFET's body diode from turning on during the dead time. As a general rule, select a diode with a DC current rating equal to $1 / 3$ rd the load current. This diode is optional and can be removed if efficiency is not critical.

Boost Capacitors
The boost capacitors (CBST) must be selected large enough to handle the gate-charging requirements of the high-side MOSFETs. Typically, 0.1μ F ceramic capacitors work well for low-power applications driving medium-sized MOSFETs. However, high-current applications driving large, high-side MOSFETs require boost capacitors larger than $0.1 \mu \mathrm{~F}$. For these applications, select the boost capacitors to avoid discharging the capacitor more than 200 mV while charging the highside MOSFETs' gates:

$$
\mathrm{C}_{\mathrm{BST}}=\frac{\mathrm{Q}_{\mathrm{GATE}}}{200 \mathrm{mV}}
$$

where QGate is the total gate charge specified in the high-side MOSFET's data sheet. For example, assume the FDS6612A n-channel MOSFET is used on the high side. According to the manufacturer's data sheet, a single FDS6612A has a maximum gate charge of $13 n \mathrm{C}$ $(V G S=5 V)$. Using the above equation, the required boost capacitance is:

$$
C_{B S T}=\frac{13 n C}{200 \mathrm{mV}}=0.065 \mu \mathrm{~F}
$$

Selecting the closest standard value. This example requires a $0.1 \mu \mathrm{~F}$ ceramic capacitor.

Applications Information

Duty-Cycle Limits

Minimum Input Voltage
The minimum input operating voltage (dropout voltage) is restricted by the maximum duty-cycle specification (see the Electrical Characteristics table). However, keep in mind that the transient performance gets worse as the step-down regulators approach the dropout voltage, so bulk output capacitance must be added (see the voltage sag and soar equations in the Design Procedure section). The absolute point of dropout occurs when the inductor current ramps down during the off-time (Δ IDOWN) as much as it ramps up during the on-time ($\Delta l \cup P$). This results in a minimum operating voltage defined by the following equation:

$$
V_{I N(M I N)}=V_{\mathrm{OUT}}+V_{\mathrm{CHG}}+h\left(\frac{1}{D_{\mathrm{MAX}}}-1\right)\left(\mathrm{V}_{\mathrm{OUT}}+\mathrm{V}_{\mathrm{DIS}}\right)
$$

where $\mathrm{V}_{\mathrm{CHG}}$ and $\mathrm{V}_{\text {DIS }}$ are the parasitic voltage drops in the charge and discharge paths, respectively. A reasonable minimum value for h is 1.5 , while the absolute minimum input voltage is calculated with $h=1$.

Maximum Input Voltage

The MAX1533/MAX1537 controllers include a minimum on-time specification, which determines the maximum input operating voltage that maintains the selected switching frequency (see the Electrical Characteristics table). Operation above this maximum input voltage results in pulse-skipping operation, regardless of the operating mode selected by SKIP. At the beginning of each cycle, if the output voltage is still above the feed-

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

back-threshold voltage, the controller does not trigger an on-time pulse, effectively skipping a cycle. This allows the controller to maintain regulation above the maximum input voltage, but forces the controller to effectively operate with a lower switching frequency. This results in an input threshold voltage at which the controller begins to skip pulses (VIN(SKIP)):

$$
V_{\mathrm{IN}(\mathrm{SKIP})}=\mathrm{V}_{\mathrm{OUT}}\left(\frac{1}{\mathrm{f}_{\mathrm{OSC}}} \begin{array}{l}
\mathrm{t}_{\mathrm{ON}(\mathrm{MIN})}
\end{array}\right)
$$

where foSC is the switching frequency selected by FSEL.

PC Board Layout Guidelines

Careful PC board layout is critical to achieving low switching losses and clean, stable operation. The switching power stage requires particular attention (Figure 11). If possible, mount all of the power components on the top side of the board, with their ground terminals flush against one another. Follow these guidelines for good PC board layout:

- Keep the high-current paths short, especially at the ground terminals. This practice is essential for stable, jitter-free operation.
- Keep the power traces and load connections short. This practice is essential for high efficiency. Using thick copper PC boards (2oz vs. 1oz) can enhance full-load efficiency by 1% or more. Correctly routing PC board traces is a difficult task that must be approached in terms of fractions of centimeters, where a single $m \Omega$ of excess trace resistance causes a measurable efficiency penalty.
- Minimize current-sensing errors by connecting CSH_ and CSL_ directly across the current-sense resistor (RSENSE_).
- When trade-offs in trace lengths must be made, it is preferable to allow the inductor charging path to be made longer than the discharge path. For example, it is better to allow some extra distance between the input capacitors and the high-side MOSFET than to allow distance between the inductor and the lowside MOSFET or between the inductor and the output filter capacitor.
- Route high-speed switching nodes (BST_, LX_, DH_, and $D L_{-}$) away from sensitive analog areas (REF, FB_, $\mathrm{CSH}_{-}, \mathrm{CSL}_{-}$).

Layout Procedure

1) Place the power components first, with ground terminals adjacent (NL_{-}source, CIN, CoUT_, and DL_ anode). If possible, make all these connections on the top layer with wide, copper-filled areas.
2) Mount the controller IC adjacent to the low-side MOSFET, preferably on the back side opposite NL_{-} and NH_{-}to keep LX _, GND, DH_{-}, and the DL_{-}gatedrive lines short and wide. The DL_ and DH_{-}gate traces must be short and wide (50 to 100 mils wide if the MOSFET is 1 inch from the controller IC) to keep the driver impedance low and for proper adaptive dead-time sensing.
3) Group the gate-drive components (BST_ diode and capacitor, LDO5 bypass capacitor) together near the controller IC.
4) Make the DC-DC controller ground connections as shown in Figures 1 and 11. This diagram can be viewed as having two separate ground planes: power ground, where all the high-power components go; and an analog ground plane for sensitive analog components. The analog ground plane and power ground plane must meet only at a single point directly at the IC.
5) Connect the output power planes directly to the out-put-filter-capacitor positive and negative terminals with multiple vias. Place the entire DC-DC converter circuit as close to the load as is practical.

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Figure 11. PC Board Layout

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

\qquad Pin Configurations (continued)

TOP VIEW			
ADJAON5	-1		CSL5
	-2-1	$\stackrel{\square}{2}$	FB5
ON3	- ${ }^{-1}$	$\stackrel{\text { ¢-25 }}{ }$	LD05
ONA	-¢ ${ }^{-1}$	\cdots	DL5
	- /a,	-23	PGND
ILIM3ILIM5	- ${ }^{-1}$ -	-	DL3
	-ī	-21	LD03
	-8-1	\bigcirc	FB3
			CSL3
	O는 엉		
	THIN QFN $6 \mathrm{~mm} \times 6 \mathrm{~mm}$		

Chip Information

TRANSISTOR COUNT: 6890
PROCESS: BiCMOS

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

NOTES:

1. DIMENSIONING \& TOLERANCING CONFORM TO ASME Y14.5M-1994.
2. ALL DIMENSIONS ARE IN MILIMETERS. ANGLES ARE IN DEGREES.
3. NIS THE TOTAL NUMBER OF TERMINALS.
4. THE TERMINAL \#1 IDENTIFIIER AND TERMINAL NUMBERING CONVENTION SHAL OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL \# IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE.
S. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm
ND AND Ne REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY
5. DEPOPULATIONIS POSSIBLE NA SMME TRCAL FASHION
6. COPLANARITY APPLLES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS
DRAWING CONFORMS TO JEDEC MO220, EXCEPT EXPOSED PAD DIMENSION FOR T2855-1,
T2855-3 AND T2855-6.
\ MARKING IS FOR PACKAGE ORIENTATION REFERENCE ONLY
7. NUMBER OF LEADS SHOWN ARE FOR REFERENCE ONLY
DRAWING NOT TO SCALE-

HPALLAS /VIスXI/V

$\pi \pi E^{2}$	16, 20, 28, 32L THIN QFN, $5 \times 5 \times 0.8 \mathrm{~mm}$	
movil	Docanariconnolime $21-0140$	$\stackrel{\text { arer }}{ }$

High-Efficiency, 5x Output, Main Power-Supply Controllers for Notebook Computers

[^0]

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

[^0]: (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

