feATURES

- 16-Bit 150ksps ADC in MSOP Package
- Single 3V Supply
- Low Supply Current: 450 4 A (Typ)
- Auto Shutdown Reduces Supply Current to $10 \mu \mathrm{~A}$ at 1 ksps
- SPI/MICROWIRE ${ }^{\text {TM }}$ Compatible Serial I/O
- 16-Bit Upgrade to 12-Bit LTC1288
- Pin Compatible with 12-Bit LTC1861L

APPLICATIONS

- High Speed Data Acquisition
- Portable or Compact Instrumentation
- Low Power Battery-Operated Instrumentation
- Isolated and/or Remote Data Acquisition
$\overline{\mathbf{1 T}}$, LTC and LT are registered trademarks of Linear Technology Corporation. MICROWIRE is a trademark of National Semiconductor Corporation.

November 2002

DESCRIPTIOn

The LTC ${ }^{\circledR} 1865 \mathrm{~L}$ is a 16 -bit A/D converter that is offered in MSOP and SO-8 packages and operates on a single 3 V supply. At 150 ksps , the supply current is only $450 \mu \mathrm{~A}$. The supply current drops at lower speeds because the LTC1865L automatically powers down to a typical supply current of 1 nA between conversions. This 16-bit switched capacitor successive approximation ADC includes a sample-and-hold. The LTC1865L offers a software-selectable 2-channel MUX. An adjustable reference pin is provided on the MSOP version.
The 4-wire, serial I/O, MSOP or SO-8 package and extremely high sample rate-to-power ratio make this ADC an ideal choice for compact, low power, high speed systems.
This ADC can be used in ratiometric applications or with external references. The high impedance analog inputs and the ability to operate with reduced spans down to 1 V full scale, allow direct connection to signal sources in many applications, eliminating the need for external gain stages.

TYPICAL APPLICATION

Single 3V Supply, 150ksps, 16-Bit Sampling ADC

Supply Current vs Sampling Frequency

ABSOLUTE MAXImUM RATINGS

Supply Voltage ($\mathrm{V}_{\text {CC }}$)
(Notes 1, 2)
Ground Voltage Difference
AGND, DGND (MSOP Package) $\pm 0.3 \mathrm{~V}$
Analog Input (GND - 0.3V) to (VCC +0.3 V)
Digital Input \qquad (GND - 0.3V) to 7 V
Digital Output \qquad (GND -0.3 V) to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$

Power Dissipation
400mW
Operating Temperature Range
LTC1865LC $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
LTC1865LI $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)
$300^{\circ} \mathrm{C}$

PACKAGE/ORDER InFORMATION

	ORDER PARTNUMBERLTC1865LCMSLTC1865LIMSLTC1865LACMSLTC1865LAIMS		 $T_{\text {maxa }}=15^{\circ} \mathrm{C}, \theta_{\mathrm{A}}=175^{\circ} \mathrm{Cm}$		ORDER PARTNUMBERLTC1865LCS8LTCC1665LLS8LTC1865LACS8LTC1865LAIS8	
	MS PART MARKING				S8 PART MARKING	
	$\begin{aligned} & \text { LTJ4 } \\ & \text { LTJ5 } \end{aligned}$	$\begin{aligned} & \text { LTJ6 } \\ & \text { LTJ7 } \end{aligned}$			$\begin{aligned} & \text { 1865L } \\ & 1865 \mathrm{I} \end{aligned}$	1865LA 865LAI

Consult LTC Marketing for parts specified with wider operating temperature ranges.

CONVERTEß AחD MULTIPLEXER CHARACTERISTICS

The \bullet denotes specifications which apply over the full operating temperature range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. $V_{C C}=2.7 V, V_{\text {REF }}=2.5 \mathrm{~V}$ (MSOP) or $V_{\text {REF }}=V_{C C}(S O), f_{S C K}=f_{S C K}(M A X)$ as defined in Recommended Operating Conditions, unless otherwise noted.

DYOAMIC ACCURACY
The - denotes specifications which apply over the full operating temperature range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=3 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=150 \mathrm{kHz}$, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX
UNITS					
SNR	Signal-to-Noise Ratio		82	dB	
S/(N + D)	Signal-to-Noise Plus Distortion Ratio	1 kHz Input Signal	82	dB	
THD	Total Hamonic Distortion Up to 5th Harmonic	1 kHz Input Signal	92	dB	
	Full Power Bandwidth		10	MHz	
	Full Linear Bandwidth	$\mathrm{S} /(\mathrm{N}+\mathrm{D}) \geq 75 \mathrm{~dB}$	ln		

DIGITAL AnD DC ELECTRICAL CHARACTERISTICS The • denotes specifications which apply

over the full operating temperature range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=2.5 \mathrm{~V}$ (MSOP) or $\mathrm{V}_{\text {REF }}=\mathrm{V}_{\text {CC }}$ (SO), unless otherwise noted.

SYMBOL	PARAMETER	CONDITION		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {IH }}$	High Level Input Voltage	$\mathrm{V}_{\text {CC }}=3.3 \mathrm{~V}$	\bullet	1.9			V
VIL	Low Level Input Voltage	$V_{\text {CC }}=2.7 \mathrm{~V}$	\bullet			0.45	V
$\underline{\mathrm{IIH}^{\prime}}$	High Level Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$	\bullet			2.5	$\mu \mathrm{A}$
$\underline{\text { ILI }}$	Low Level Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	\bullet			-2.5	$\mu \mathrm{A}$
V_{OH}	High Level Output Voltage	$\begin{aligned} & V_{C C}=2.7 \mathrm{~V}, I_{0}=10 \mu \mathrm{~A} \\ & V_{C C}=2.7 \mathrm{~V}, I_{0}=360 \mu \mathrm{~A} \end{aligned}$	\bullet	$\begin{aligned} & 2.3 \\ & 21 \end{aligned}$	$\begin{aligned} & 2.60 \\ & 2.45 \end{aligned}$		V
$\mathrm{V}_{0 \mathrm{~L}}$	Low Level Output Voltage	$V_{C C}=2.7 \mathrm{~V}, \mathrm{I}_{0}=400 \mu \mathrm{~A}$	\bullet			0.3	V
$\underline{10 z}$	Hi-Z Output Leakage	CONV $=\mathrm{V}_{\text {CC }}$	\bullet			± 3	$\mu \mathrm{A}$
ISOURCE	Output Source Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$			-6.5		mA
ISINK	Output Sink Current	$V_{\text {OUT }}=V_{\text {CC }}$			6.5		mA
$\mathrm{I}_{\text {REF }}$	Reference Current (MSOP)	$\begin{aligned} & \mathrm{CONV}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{f}_{\mathrm{SMPL}}=\mathrm{f}_{\mathrm{SMPL}(\mathrm{MAX})} \end{aligned}$	\bullet		$\begin{gathered} 0.001 \\ 0.01 \end{gathered}$	$\begin{gathered} 3 \\ 0.1 \end{gathered}$	$\mu \mathrm{A}$ mA
$I_{C C}$	Supply Current	CONV $=V_{\text {CC }}$ After Conversion $\mathrm{f}_{\mathrm{SMPL}}=\mathrm{f}_{\mathrm{SMPL}}(\mathrm{MAX})$	\bullet		$\begin{gathered} 0.5 \\ 0.45 \end{gathered}$	$\begin{gathered} 10 \\ 1 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
$\underline{P_{D}}$	Power Dissipation	$\mathrm{f}_{\text {SMPL }}=\mathrm{f}_{\text {SMPL }}(\mathrm{MAX})$			1.22		mW

RECOMmEnDED OPERATING COODITIONS The \bullet denotes specifications which apply vert the full operating temperature range, otherwise specifications are $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{V}_{\text {CC }}$	Supply Voltage			2.7		3.6	V
$\mathrm{f}_{\text {SCK }}$	Clock Frequency		\bullet	DC		8	MHz
tcyc	Total Cycle Time			$16 \cdot$ SCK + toonv			$\mu \mathrm{S}$
$\mathrm{t}_{\text {SMPL }}$	Analog Input Sampling Time			14			SCK
$\mathrm{t}_{\text {suCONV }}$	Setup Time CONV \downarrow Before First SCK \uparrow (See Figure 1)			60			ns
$t_{\text {thl }}$	Hold Time SDI After SCK \uparrow			30			ns
$\mathrm{t}_{\text {sudl }}$	Setup Time SDI Stable Before SCK \uparrow			30			ns
twhCLK	SCK High Time	$\mathrm{f}_{\text {SCK }}=\mathrm{f}_{\text {SCK }}($ MAX $)$		45\%			1/fsck
twLCLK	SCK Low Time	$\mathrm{f}_{\text {SCK }}=\mathrm{f}_{\text {SCK }}($ MAX $)$		45\%			1/fsck
twhCONV	CONV High Time Between Data Transfer Cycles			toonv			$\mu \mathrm{S}$
twLCONV	CONV Low Time During Data Transfer			16			SCK
thCONV	Hold Time CONV Low After Last SCK \uparrow			26			ns

TMIIC CHARFCTERISTISS The o denotes specifications which apply over the full operating temperature

range, otherwise specifications are $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=2.5 \mathrm{~V}$ (MSOP) or $\mathrm{V}_{\text {REF }}=\mathrm{V}_{\mathrm{CC}}(\mathrm{SO})$, $\mathrm{f}_{\text {SCK }}=\mathrm{f}_{\mathrm{SCK}}(\mathrm{MAX})$ as defined in Recommended Operating Conditions, unless otherwise noted.

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\mathrm{t}_{\text {Conv }}$	Conversion Time (See Figure 1)		\bullet		3.7	4.66	$\mu \mathrm{S}$
$\mathrm{f}_{\text {SMPL(MAX }}$	Maximum Sampling Frequency		\bullet	150			kHz
$\mathrm{t}_{\mathrm{dDO}}$	Delay Time, SCK \downarrow to SDO Data Valid	$C_{\text {LOAD }}=20 \mathrm{pF}$	\bullet		45	$\begin{aligned} & 55 \\ & 60 \end{aligned}$	ns
$\mathrm{t}_{\text {dis }}$	Delay Time, CONV \uparrow to SDO Hi-Z		\bullet		55	120	ns
$\mathrm{t}_{\text {en }}$	Delay Time, CONV \downarrow to SDO Enabled	$C_{\text {LOAD }}=20 \mathrm{pF}$	\bullet		35	120	ns
thDO	Time Output Data Remains Valid After SCK \downarrow	$\mathrm{C}_{\text {LOAD }}=20 \mathrm{pF}$	\bullet	5	15		ns
tr_{r}	SDO Rise Time	$\mathrm{C}_{\text {LOAD }}=20 \mathrm{pF}$			25		ns
t_{f}	SDO Fall Time	$\mathrm{C}_{\text {LOAD }}=20 \mathrm{pF}$			12		ns

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.
Note 2: All voltage values are with respect to GND.

Note 3: Integral nonlinearity is defined as deviation of a code from a straight line passing through the actual endpoints of the transfer curve. The deviation is measured from the center of the quantization band.
Note 4: Channel leakage current is measured while the part is in sample mode.

TYPICAL PGRFORmANCE CHARACTERISTICS

PIn functions

(MSOP Package)
CONV (Pin 1): Convert Input. A logic high on this input starts the A/D conversion process. If the CONV input is left high after the A / D conversion is finished, the part powers down. A logic low on this input enables the SDO pin, allowing the data to be shifted out.
CHO, CH1 (Pins 2, 3): Analog Inputs. These inputs must be free of noise with respect to AGND.
AGND (Pin 4): Analog Ground. AGND should be tied directly to an analog ground plane.
DGND (Pin 5): Digital Ground. DGND should be tied directly to an analog ground plane.
SDI (Pin 6): Digital Data Input. The A/D configuration word is shifted into this input.
SDO (Pin 7): Digital Data Output. The A/D conversion result is shifted out of this output.

SCK (Pin 8): ShiftClock Input. This clock synchronizes the serial data transfer.

VCC (Pin 9): Positive Supply. This supply must be kept free of noise and ripple by bypassing directly to the analog ground plane.
$\mathbf{V}_{\text {REF }}$ (Pin 10): Reference Input. The reference input defines the span of the A/D converter and must be kept free of noise with respect to AGND.

(SO-8 Package)

CONV (Pin 1): Convert Input. A logic high on this input starts the A/D conversion process. If the CONV input is left high after the A / D conversion is finished, the part powers down. A logic low on this input enables the SDO pin, allowing the data to be shifted out.
CHO, CH1 (Pins 2, 3): Analog Inputs. These inputs must be free of noise with respect to GND.

GND (Pin 4): Analog Ground. GND should be tied directly to an analog ground plane.
SDI (Pin 5): Digital Data Input. The A/D configuration word is shifted into this input.
SDO (Pin 6): Digital Data Output. The A/D conversion result is shifted out of this output.
SCK (Pin 7): Shift Clock Input. This clock synchronizes the serial data transfer.
$V_{\text {CC }}$ (Pin 8): Positive Supply. This supply must be kept free of noise and ripple by bypassing directly to the analog ground plane. $V_{\text {REF }}$ is tied internally to this pin.

BLOCK DIAGRAM

TEST CIRCUITS

Load Circuit for $\mathrm{t}_{\mathrm{dDO}}, \mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}, \mathrm{t}_{\text {dis }}$ and t_{en}

Voltage Waveforms for SDO Delay Time, $\mathrm{t}_{\mathrm{dDO}}$ and $\mathrm{t}_{\mathrm{hDO}}$

Voltage Waveforms for SDO Rise and Fall Times, $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$

NOTE 1: WAVEFORM 1 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH THAT THE OUTPUT IS HIGH UNLESS DISABLED BY THE OUTPUT CONTROL
NOTE 2: WAVEFORM 2 IS FOR AN OUTPUT WITH INTERNAL CONDITIONS SUCH
THAT THE OUTPUT IS LOW UNLESS DISABLED BY THE OUTPUT CONTROL

APPLICATIONS InfORmATION

Operating Sequence

The LTC1865L conversion cycle begins with the rising edge of CONV. After a period equal to $\mathrm{t}_{\mathrm{CONV}}$, the conversion is finished. If CONV is left high after this time, the LTC1865L goes into sleep mode. If CONV goes low before the conversion is finished, it will terminate the conversion and the output data will be invalid. To prepare for the next conversion, it is still necessary to clock in the new data input word and shift out the invalid data output word. The next conversion cycle can then proceed normally. The LTC1865L's 2-bit data word is clocked into the SDI input on the rising edge of SCK after CONV goes low. Additional inputs on the SDI pin are then ignored until the next CONV cycle. The shift clock (SCK) synchronizes the data transfer with each bit being transmitted on the falling SCK edge and captured on the rising SCK edge in both transmitting and receiving systems. The data is transmitted and received simultaneously (full duplex). After completing the data transfer, if further SCK clocks are applied with CONV Iow, SDO will output zeros indefinitely. See Figure 1.

Analog Inputs

The two bits of the input word (SDI) assign the MUX configuration for the requested conversion. For a given channel selection, the converter will measure the voltage between the two channels indicated by the " + " and " - " signs in the selected row of Table 1. In single-ended mode, all input channels are measured with respect to GND (or AGND). A zero code will occur when the " + " input minus the "-" input equals zero. Full scale occurs when the " + " input minus the " - " input equals $V_{\text {REF }}$ minus

1LSB. See Figure 2. Both the " + " and " - " inputs are sampled at the same time so common mode noise is rejected. The input span in the SO-8 package is fixed at $V_{\text {REF }}=V_{C C}$. Ifthe "-" input in differential mode is grounded, a rail-to-rail input span will result on the " + " input.

Reference Input

The reference input of the LTC1865L S0-8 package is internally tied to $V_{C C}$. The span of the A / D converter is therefore equal to V_{Cc}. The voltage on the reference input of the LTC1865L MSOP package defines the span of the A/D converter. The LTC1865L MSOP package can operate with voltages from 1 V to V_{CC}.

	Table 1. Multiplexer Channel Selection				
	MUX ADDRESS		CHANNEL \#		GND
	SGL/DIFF	ODD/SIGN	0	1	
SINGLE-ENDED	1	0	+		-
MUX MODE	1	1		+	-
DIFFERENTIAL	0	0	+	-	
MUX MODE	0	1	-	+	

GENERAL ANALOG CONSIDERATIONS

Grounding

The LTC1865L should be used with an analog ground plane and single point grounding techniques. Do not use wire wrapping techniques to breadboard and evaluate the device. To achieve the optimum performance, use a printed circuit board. The ground pins (AGND and DGND for the MSOP package and GND for the SO-8 package) should be

Figure 1. LTC1865L Operating Sequence

APPLICATIONS INFORMATION

tied directly to the analog ground plane with minimum lead length.

Bypassing

For good performance, the $\mathrm{V}_{C C}$ and $\mathrm{V}_{\text {REF }}$ pins must be free of noise and ripple. Any changes in the $\mathrm{V}_{C C} / V_{\text {REF }}$ voltage with respect to ground during the conversion cycle can induce errors or noise in the output code. Bypass the $\mathrm{V}_{C C}$ and $V_{\text {REF }}$ pins directly to the analog ground plane with a minimum of $1 \mu \mathrm{~F}$ tantalum. Keep the bypass capacitor leads as short as possible.

Analog Inputs

Because of the capacitive redistribution A / D conversion techniques used, the analog inputs of the LTC1865L have capacitive switching input current spikes. These current spikes settle quickly and do not cause a problem if source
resistances are less than 200Ω or high speed op amps are used (e.g., the LT ${ }^{\circledR} 1211$, LT1469, LT1807, LT1810, LT1630, LT1226 or LT1215). But if large source resistances are used, or if slow settling op amps drive the inputs, take care to ensure the transients caused by the current spikes settle completely before the conversion begins.
 (SELECTED "-" CHANNEL) REFER TO TABLE 1

Figure 2. LTC1865L Transfer Curve

MS Package

10-Lead Plastic MSOP
(Reference LTC DWG \# 05-08-1661)

8-Lead Plastic Small Outline (Narrow . 150 Inch)
(Reference LTC DWG \# 05-08-1610)

RELATED PARTS

PART NUMBER	SAMPLE RATE	POWER DISSIPATION	DESCRIPTION
8-Bit Serial I/O ADCs			
LTC1096/LTC1096L	15 ksps	0.9 mW	1-Channel, Unipolar Operation, 5V/3V
LTC1098/LTC1098L	15 ksps	0.6 mW	2-Channel, Unipolar Operation, 5V/3V
LTC1196	1 Msps	20 mW	1-Channel, Unipolar Operation with Reference Input, 5V/3V
LTC1198	750ksps	20 mW	2-Channel, Unipolar Operation, 5V/3V

10-Bit Serial I/O ADCs

LTC1197/LTC1197L	$500 \mathrm{ksps} / 250 \mathrm{ksps}$	22.5 mW	S0-8, MS8, 1-Channel, 5V/3V
LTC1199/LTC1199L	$450 \mathrm{ksps} / 210 \mathrm{ksps}$	25 mW	S0-8, MS8, 2-Channel, 5V/3V

12-Bit Serial I/O ADCs LTC1286/LTC1298			
12.5ksps/11.1ksps	$1.3 \mathrm{~mW} / 1.7 \mathrm{~mW}$	1-Channel with Reference (LTC1286), 2-Channel (LTC1298), 5V	
LTC1400	400 ksps	75 mW	$1-C h a n n e l$, Bipolar or Unipolar Operation, Internal Reference, 5V
LTC1401	200 ksps	15 mW	S0-8 with Reference, 3V
LTC1402	2.2 Msps	90 mW	Serial I/0, Bipolar or Unipolar, Internal Reference
LTC1860/LTC1861	600 ksps	25 mW	S0-8 with Reference, Bipolar or Unipolar, 5V
LTC1860L/LTC1861L	250ksps	4.25 mW	S0-8, MS8, 1-Channel, 5V/S0-8, MS10, 2-Channel, 5V

14-Bit Serial I/O ADCs

LTC1417	400ksps	20 mW	16-Pin SSOP, Unipolar or Bipolar, Reference, 5V
LTC1418	200 ksps	15 mW	Serial/Parallel I/O, Internal Reference, 5V

16-Bit Serial I/O ADCs

LTC1609	200ksps	65 mW	Configurable Bipolar or Unipolar Input Ranges, 5V
LTC1864/LTC1865	250 ksps	4.25 mW	S0-8, MS8, 1-Channel, 5V/S0-8, MS10, 2-Channel, 5V
LTC1864L	150ksps	1.22 mW	S0-8, MS8, 1-Channel, 3V

PART NUMBER	DESCRIPTION	COMMENTS
References	Micropower Precision Series Reference	Bandgap, $130 \mu \mathrm{~A}$ Supply Current, $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, Available in SOT-23
LT1460	Micropower Low Dropout Reference	$60 \mu \mathrm{~A}$ Supply Current, $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}, \mathrm{SOT}-23$
LT1790		
Op Amps	Single/Dual 90MHz, 16-Bit Accurate Op Amps	$22 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate, $75 \mu \mathrm{~V} / 125 \mu \mathrm{~V}$ Offset
LT1468/LT1469	Single/Dual 325MHz Low Noise Op Amps	$140 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate, $3.5 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ Noise, -80 dBc Distortion
LT1806/LT1807	Single/Dual 180MHz Low Distortion Op Amps	$350 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate, -90 dBc Distortion at 5 MHz

