FEATURES:

- Enhanced N channel FET with no inherent diode to Vcc
- 25Ω bidirectional switches connect inputs to outputs
- Pin compatible with 74F244, 74FCT244, and 74FCT244T
- Zero propagation delay, zero ground bounce
- Undershoot clamp diodes on all switch and control inputs
- Available in QSOP and SOIC packages

DESCRIPTION:

The QS32244 provides a set of eight high-speed CMOS TTL-compatible bus switches in a pinout compatible with 74FCT244, 74F244, 74ALS/AS/ LS2448-bitdrivers. The two enable ($\overline{\mathrm{xG}}$) signals turn the switche on similar to the $\bar{x} \bar{G}$ signals of the $74^{\prime} 244$.

The QS32244 adds an internal 25Ω resistor to reduce reflection noise in high speed applications. When the switch is closed, it acts as the source termination for the driver connected to it.

QuickSwitch devices provide an order of magnitude faster speed than conventional logic devices.

The QS32244 is characterized for operation at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

APPLICATIONS:

- Hot-swapping, hot-docking
- Voltage translation (5V to 3.3V)
- Power conservation
- Capacitance reduction and isolation
- Logic replacement (data processing)
- Clock gating
- Bus switching and isolation

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Supply Voltage to Ground	-0.5 to +7	V
VTERM $^{(3)}$	DC Switch Voltage Vs	-0.5 to +7	V
VTERM $^{(3)}$	DC Input Voltage VIn	-0.5 to +7	V
VAC 2	AC Input Voltage (pulse width $\leq 20 \mathrm{~ns})$	-3	V
Iout	DC Output Current	120	mA
Pmax	Maximum Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\right)$	0.5	W
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. All terminals except Vcc

CAPACITANCE $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V} \mathbb{N}=0 \mathrm{~V}, \mathrm{~V}\right.$ Out $\left.=0 \mathrm{~V}\right)$

Pins	Typ.	Max. $^{(1)}$	Unit
Control Inputs	3	5	pF
Quickswitch Channels (Switch OFF)	5	7	pF

NOTE:

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names		Description
$\overline{1 G}, \overline{2 G}$	OutputEnable	
Ax, Yx	Data I/Os	

FUNCTION TABLE ${ }^{(1)}$

$\overline{1 G}$	$\overline{2 G}$	$1 A, 1 \mathrm{Y} / / 0 s$	$2 A, 2 Y \mathrm{Y} / 0 \mathrm{~s}$
H	H	Disconnected	Disconnected
L	H	$1 A x=1 Y x$	Disconnected
H	L	Disconnected	$2 A x=2 Y x$
L	L	$1 A x=1 Y x$	$2 A x=2 Y x$

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
VIH	Input HIGH Voltage	Guaranteed Logic HIGH for Control Inputs	2	-	-	V
VIL	InputLOW Voltage	Guaranteed Logic LOW for Control Inputs	-	-	0.8	V
IIN	InputLeakage Current(Control Inputs)	$\mathrm{OV} \leq \mathrm{VIN} \leq \mathrm{Vcc}$	-	-	± 1	$\mu \mathrm{A}$
Ioz	Off-State Current(Hi-Z)	OV \leq Vout \leq Vcc, Switches OFF	-	-	± 1	$\mu \mathrm{A}$
Ron	Switch ON Resistance ${ }^{(2)}$	Vcc $=$ Min., VIN $=0 \mathrm{~V}$, ION $=30 \mathrm{~mA}$	20	28	40	Ω
		Vcc $=$ Min., VIN $=2.4 \mathrm{~V}$, ION $=15 \mathrm{~mA}$	20	35	48	
Vp	Pass Voltage ${ }^{(3)}$	$\mathrm{VIN}=\mathrm{VCC}=5 \mathrm{~V}$, Iout $=-5 \mu \mathrm{~A}$	3.7	4	4.2	V

NOTES:

1. Typical values are at $\mathrm{Vcc}=5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Ron is guaranteed but not production tested.
3. Pass voltage is guaranteed but not production tested.

TYPICAL ON RESISTANCE vs Vin AT Vcc $=5 \mathrm{~V}$

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	TestConditions ${ }^{(1)}$	Max.	Unit
ICCQ	Quiescent Power Supply Current	Vcc $=$ Max., Vin $=$ GND or Vcc, $\mathrm{f}=0$	3	$\mu \mathrm{A}$
$\Delta \mathrm{lcC}$	Power Supply Current per Control Input HIGH ${ }^{(2)}$	Vcc = Max., VIN $=3.4 \mathrm{~V}, \mathrm{f}=0$	2.5	mA
ICCD	Dynamic Power Supply Current per MHz ${ }^{(3)}$	Vcc = Max., A and Y Pins Open, Control Inputs Toggling @ 50\% Duty Cycle	0.25	mA/MHz

NOTES:

1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
2. Per TTL-driven input $(\mathrm{VIN}=3.4 \mathrm{~V})$. A and Y pins do not contribute to $\Delta \mathrm{Icc}$.
3. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and Y inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=5 \mathrm{~V} \pm 5 \%$
CLOAD $=50 \mathrm{pF}$, RLOAD $=500 \Omega$ unless otherwise noted.

Symbol	Parameter	Min. ${ }^{(1)}$	Typ.	Max.	Unit
tPLH tPHL	DataPropagation Delay ${ }^{(2)}$ Ax to Yx	-	-	$1.25{ }^{(3)}$	ns
$\begin{aligned} & \text { tPZL } \\ & \text { tPZH } \end{aligned}$	Switch Turn-On Delay $\overline{1 G}, \overline{2 G}$ to $Y x$	0.5	-	6.6	ns
$\begin{aligned} & \text { tPLZ } \\ & \text { tPHZ } \end{aligned}$	$\begin{aligned} & \text { Switch Turn-OffDelay }{ }^{(2)} \\ & \overline{1 G}, \overline{2 G} \text { to } Y x \end{aligned}$	0.5	-	5.2	ns

NOTES:

1. Minimums are guaranteed but not production tested.
2. This parameter is guaranteed but not production tested.
3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 1.25 ns at $\mathrm{CL}_{\mathrm{L}}=50 \mathrm{pF}$. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

ORDERINGINFORMATION

