August 2005

FDS6298 30V N-Channel Fast Switching PowerTrench[®] MOSFET

FAIRCHILD

SEMICONDUCTOR®

FDS6298

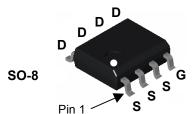
30V N-Channel Fast Switching PowerTrench[®] MOSFET

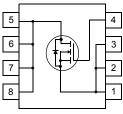
General Description

This N-Channel MOSFET has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low ${\sf R}_{{\sf DS}({\sf ON})}$ and fast switching speed.

Applications

- Control Switch for DC-DC Buck converters
- Notebook Vcore
- Telecom / Networking Point of Load


Features

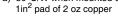

■ 13 A, 30 V $R_{DS(ON)} = 9m\Omega @ V_{GS} = 10 V$

 $R_{DS(ON)} = 12m\Omega @ V_{GS} = 4.5 V$

- Low gate charge (10nC @ $V_{GS} = 5 V$)
- Very low Miller Charge (3nC)
- Low Rg (1 Ohm)
- RoHS Compliant

Absolute Maximum Ratings T_A = 25°C unless otherwise noted

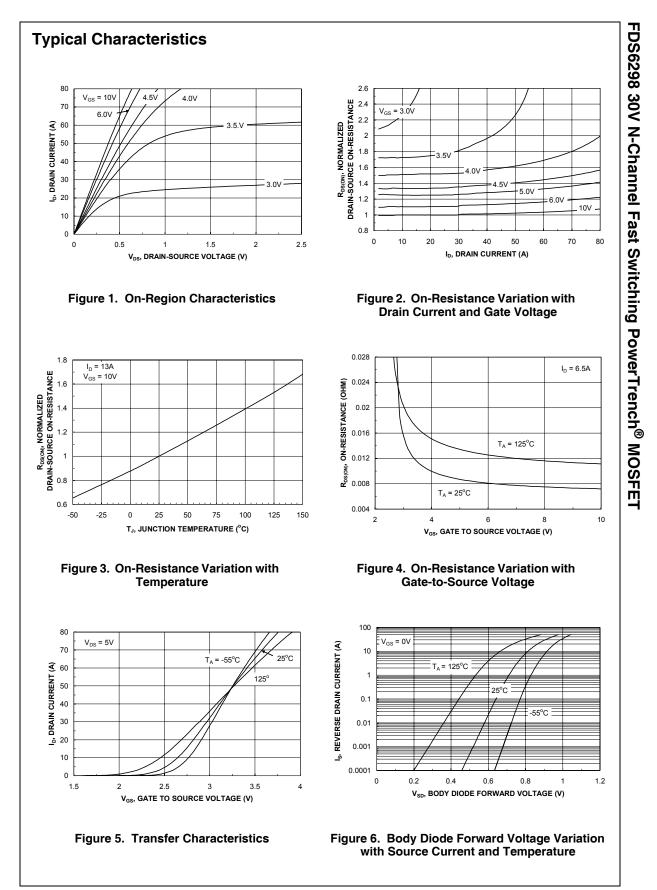
Symbol	Parameter	Ratings	Units	
V _{DSS}	Drain-Source Voltage		30	V
V _{GSS}	Gate-Source Voltage		±20	V
1	Drain Current -Continuous (N		13	^
D	-Pulsed		50	— A
Б	Power Dissipation for Single Operation	(Note 1a)	.) 3.0	
PD	Power Dissipation for Single Operation (Note 1b)		1.2	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C

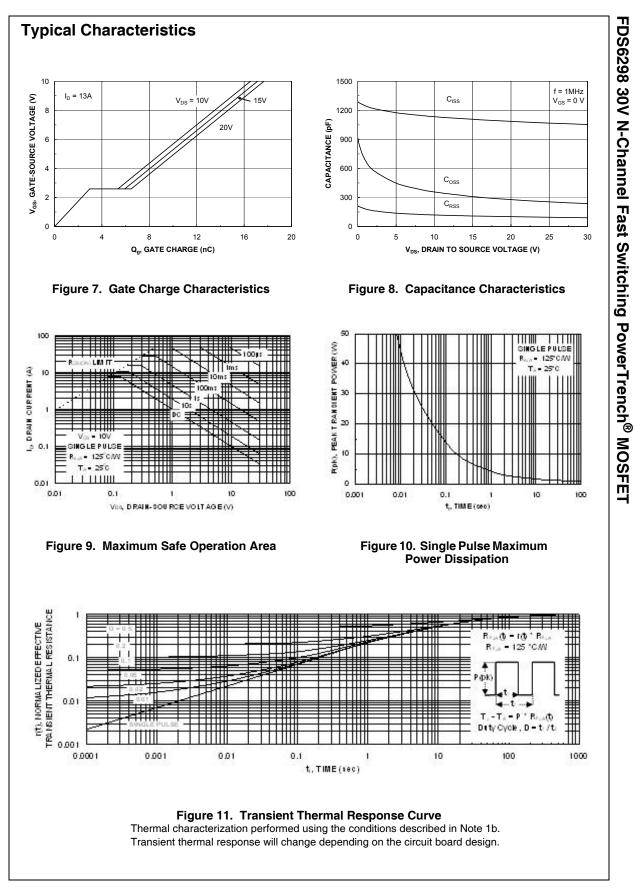

Thermal Characteristics

$R_{ ext{ heta}JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	50	°C/W
R_{\thetaJA}	Thermal Resistance, Junction-to-Ambient	(Note 1b)	125	°C/W
$R_{ ext{ heta}JC}$	Thermal Resistance, Junction-to-Case	(Note 1)	25	°C/W

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape Width	Quantity
FDS6298	FDS6298	13inch	12mm	2500 units


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	cteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	30	-	-	V
ΔBV_{DSS} ΔT_J	Breakdown Voltage Temperature Coefficient	I _D = 250μA, Referenced to 25°C	-	30	-	mV/°C
IDSS	Zero Gate Voltage Drain Current	$V_{GS} = 0V, V_{DS} = 24V$	-	-	1	μA
I _{GSS}	Gate-Body Leakage,	$V_{GS} = \pm 20V, V_{DS} = 0V$	-	-	±100	nA
On Chara	cteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1	1.7	3	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, Referenced to 25°C	-	-5	-	mV/°C
		I _D = 13A, V _{GS} = 10V	-	7.4	9	
Back	Static Drain-Source On-Besistance	I _D = 12A, V _{GS} = 4.5V	-	9.4	12	mΩ
R _{DS(on)}	Static Drain-Source On-Resistance	I _D = 13A, V _{GS} = 10V,	-	11	15	1115.2
		T _J = 125°C				
{9{FS} Dvnamic}	Forward Transconductance	$T_J = 125^{\circ}C$ $I_D = 13A, V_{DS} = 10V$	-	58	-	S
Dynamic C _{iss} C _{oss}	Characteristics Input Capacitance Output Capacitance	-	-	1108 310	-	pF pF
Dynamic C _{iss}	Characteristics Input Capacitance	$I_D = 13A, V_{DS} = 10V$ $V_{DS} = 15V, V_{GS} = 0V,$		1108		pF
Dynamic C _{iss} C _{oss} C _{rss} R _G Switching	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance	$V_{DS} = 13A, V_{DS} = 10V$ $V_{DS} = 15V, V_{GS} = 0V,$ f = 1.0MHz	-	1108 310 109	- - -	pF pF pF
Dynamic C _{iss} C _{oss} C _{rss} R _G	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2)	$V_{DS} = 13A, V_{DS} = 10V$ $V_{DS} = 15V, V_{GS} = 0V,$ f = 1.0MHz	-	1108 310 109 1	- - - 1.7	pF pF pF
Dynamic C _{iss} C _{oss} C _{rss} R _G Switching	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time	$V_{DS} = 13A, V_{DS} = 10V$ $V_{DS} = 15V, V_{GS} = 0V,$ f = 1.0MHz $V_{GS} = 15mV, f = 1MHz,$	-	1108 310 109 1	- - 1.7 20	pF pF pF Ω
Dynamic C _{iss} C _{oss} C _{rss} R _G Switching t _{d(on)} t _r t _{d(off)}	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time	$V_{DS} = 13A, V_{DS} = 10V$ $V_{DS} = 15V, V_{GS} = 0V,$ f = 1.0MHz $V_{GS} = 15mV, f = 1MHz,$ $V_{DD} = 15V, I_D = 1A$	-	1108 310 109 1 1 11 5	- - 1.7 20 10	pF pF pF Ω ns
Dynamic C _{iss} C _{oss} C _{rss} R _G Switching t _{d(on)} t _r	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time	$V_{DS} = 13A, V_{DS} = 10V$ $V_{DS} = 15V, V_{GS} = 0V,$ $f = 1.0MHz$ $V_{GS} = 15mV, f = 1MHz,$ $V_{DD} = 15V, I_{D} = 1A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$	-	1108 310 109 1 1 11 5 27	- - 1.7 20 10 43	pF pF pF Ω ns ns
Dynamic C_{iss} C_{rss} R_G Switching $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs}	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$V_{DS} = 13A, V_{DS} = 10V$ $V_{DS} = 15V, V_{GS} = 0V,$ $f = 1.0MHz$ $V_{GS} = 15mV, f = 1MHz,$ $V_{DD} = 15V, I_{D} = 1A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{DS} = 15V, I_{D} = 13A,$	-	1108 310 109 1 1 5 27 7 10 3	- - 1.7 20 10 43 14	pF pF pF Ω ns ns ns nc nC
Dynamic C_{iss} C_{rss} R_G Switching $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gs}	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge	$V_{DS} = 13A, V_{DS} = 10V$ $V_{DS} = 15V, V_{GS} = 0V,$ $f = 1.0MHz$ $V_{GS} = 15mV, f = 1MHz,$ $V_{DD} = 15V, I_{D} = 1A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$	-	1108 310 109 1 1 11 5 27 7 10	- - 1.7 20 10 43 14 14	pF pF Ω ns ns ns ns
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\$	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge	$V_{DS} = 13A, V_{DS} = 10V$ $V_{DS} = 15V, V_{GS} = 0V,$ $f = 1.0MHz$ $V_{GS} = 15W, f = 1MHz,$ $V_{DD} = 15V, I_D = 1A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{DS} = 15V, I_D = 13A,$ $V_{GS} = 5V$	-	1108 310 109 1 1 5 27 7 10 3	- - 1.7 20 10 43 14 14	pF pF pF Ω ns ns ns nc nC
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \end{array} \\ \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\$	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge	$V_{DS} = 13A, V_{DS} = 10V$ $V_{DS} = 15V, V_{GS} = 0V,$ $f = 1.0MHz$ $V_{GS} = 15W, f = 1MHz,$ $V_{DD} = 15V, I_D = 1A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{DS} = 15V, I_D = 13A,$ $V_{GS} = 5V$	-	1108 310 109 1 1 5 27 7 10 3	- - 1.7 20 10 43 14 14	pF pF pF Ω ns ns ns nc nC
Dynamic G_{iss} G_{coss} G_{rss} R_G Switching $t_{d(on)}$ t_r $t_{d(off)}$ t_f Q_g Q_{gd} Drain-Sou	Characteristics Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance Characteristics (Note 2) Turn-On Delay Time Turn-On Rise Time Turn-Off Delay Time Turn-Off Fall Time Total Gate Charge Gate-Source Charge Gate-Drain Charge Urce Diode Characteristics and	$V_{DS} = 15V, V_{GS} = 0V,$ $f = 1.0MHz$ $V_{GS} = 15W, f = 1MHz,$ $V_{GS} = 15W, f = 1MHz,$ $V_{GS} = 10V, R_{GEN} = 6\Omega$ $V_{DS} = 15V, I_{D} = 13A,$ $V_{GS} = 5V$ Maximum Ratings	- - - - - - - - - - - - - - - - -	1108 310 109 1 1 11 5 27 7 7 10 3 3 3	- - 1.7 20 10 43 14 14 - -	pF pF Ω ns ns ns nC nC


minimum pad

Scale 1: 1 on letter size paper

2. Test: Pulse Width < 300 μs, Duty Cycle < 2.0%

FDS6298 Rev. C (W)

TRADEMARKS				
•	gistered and unregistered chaustive list of all such tra		iconductor owns or is auth	orized to use and is not
ACEx™	FACT™	i-Lo™	PACMAN™	SPM™
ActiveArray™	FACT Quiet Series™	ImpliedDisconnect [™]	POP™	Stealth™
Bottomless™	FAST [®]	IntelliMAX™	Power247™	SuperFET™
Build it Now™	FASTr™	ISOPLANAR™	PowerEdge™	SuperSOT™-3
CoolFET™	FPS™	LittleFET™	PowerSaver™	SuperSOT™-6
CROSSVOLT™	FRFET™	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-8
DOME™	GlobalOptoisolator™	MicroFET™	QFET [®]	SyncFET™
EcoSPARK™	GTO™	MicroPak™	QS™	TinyLogic [®]
E ² CMOS™	HiSeC™	MICROWIRE™	QT Optoelectronics [™]	TINYOPTO™
EnSigna™	I ² C™	MSX™	Quiet Series™	TruTranslation™
		MSXPro™	RapidConfigure™	UHC™
Across the board. Around the world.™		OCX™	RapidConnect™	UltraFET®
The Power Franchise [®]		OCXPro™	µSerDes™	UniFET™
Programmable A	ctive Droop™	OPTOLOGIC [®]	SILENT SWITCHER®	VCX™
-	-	OPTOPLANAR™	SMART START™	Wire™

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor The datasheet is printed for reference information only

PRODUCT STATUS DEFINITIONS

FDS6298 Rev. C (W)