INTEGRATED CIRCUITS

Product data Supersedes data of 1994 Aug 31 File under Integrated Circuits, IC11 Handbook 2001 Aug 03

AU2901

DESCRIPTION

The AU2901 consists of four independent precision voltage comparators, with an offset voltage specification as low as 2.0 mV max for each comparator, which were designed specifically to operate from a single power supply over a wide range of voltages. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage. These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though they are operated from a single power supply voltage.

The AU2901 was designed to directly interface with TTL and CMOS. When operated from both plus and minus power supplies, the AU2901 will directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators.

FEATURES

- Wide single supply voltage range 2.0 V_{DC} to 36 V_{DC} or dual supplies ± 1.0 V_{DC} to ± 18 V_{DC}
- Very low supply current drain (0.8 mA) independent of supply voltage (1.0 mW/comparator at 5.0 V_{DC})
- Low input biasing current 25 nA
- Low input offset current ±5 nA and offset voltage
- Input common-mode voltage range includes ground
- Differential input voltage range equal to the power supply voltage
- Low output 250 mV at 4 mA saturation voltage
- Output voltage compatible with TTL, DTL, ECL, MOS and CMOS logic systems

APPLICATIONS

- A/D converters
- Wide range VCO
- MOS clock generator
- High voltage logic gate
- Multivibrators

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
14-Pin Plastic Small Outline (SO) Package	–40 °C to +125 °C	AU2901D	SOT108-1
14-Pin Plastic Dual In-Line Package (DIP)	–40 °C to +125 °C	AU2901N	SOT27-1

PIN CONFIGURATION

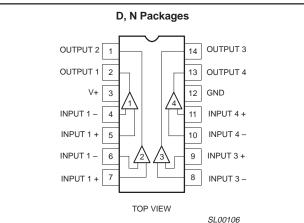


Figure 1. Pin Configuration

EQUIVALENT CIRCUIT

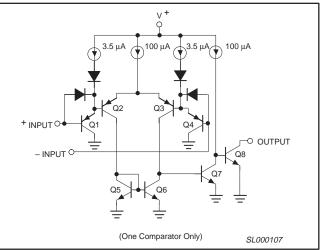


Figure 2. Equivalent Circuit

AU2901

Product data

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{CC}	V _{CC} supply voltage	36 or ±18	V _{DC}
V _{DIFF}	Differential input voltage	36	V _{DC}
V _{IN}	Input voltage	-0.3 to +36	V _{DC}
P _{DMAX}	Maximum power dissipation, T _{amb} = 25 °C (still-air) ¹ N package D package	1420 1040	mW mW
	Output short-circuit to ground ²	Continuous	
I _{IN}	Input current (V _{IN} < -0.3 V _{DC}) ³	50	mA
T _{amb}	Operating temperature range	-40 to +125	°C
T _{stg}	Storage temperature range	-65 to +150	°C
T _{sld}	Lead soldering temperature (10 sec max)	230	°C

NOTES:

1. Derate above 25 °C, at the following rates:

N Package at 11.4 mW/°C

D Package at 8.3 mW/°C

2. Short circuits from the output to V+ can cause excessive heating and eventual destruction. The maximum output current is approximately 20 mA independent of the magnitude of V+.

3. This input current will only exist when the voltage at any of the input leads is driven negative. It is due to the collector-base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the comparators to go to the V+ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This is not destructive and normal output states will reestablish when the input voltage, which was negative, again returns to a value greater than –0.3 V_{DC}.

ELECTRICAL CHARACTERISTICS

V+ = 5 V_{DC}; -40 °C \leq T_{amb} \leq 125 °C, unless otherwise specified.

SYMBOL	DADAMETED	TEST CONDITIONS				
	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT
V _{OS}	Input offset voltage ²	T _{amb} = 25 °C Over temp.		±2.0 ±2.5	±3 ±5	mV
V _{CM}	Input common-mode voltage range ³	T _{amb} = 25 °C Over temp.	0 0		V+ -1.5 V+ -2.0	V
V _{IDR}	Differential input voltage ¹	Keep all $V_{IN}^{s} \ge 0V_{DC}$ (or V– if need)			V+	V
I _{BIAS}	Input bias current ⁴	$I_{IN(+)}$ or $I_{IN(-)}$ with output in linear range $T_{amb} = 25 \text{ °C}$ Over temp.		25 200	250 500	nA
I _{OS}	Input offset current	$\begin{split} I_{IN(+)} &= I_{IN(-)} \\ T_{amb} &= 25 \ ^{\circ}\text{C} \\ \text{Over temp.} \end{split}$		±5 ±50	±50 ±200	nA nA
I _{OL}	Output sink current	$ \begin{array}{c} V_{IN(-)} \geq 1 \ V_{DC}; \ V_{IN}(+) = 0; \ V_{O} \leq 1.5 \ V_{DC}; \\ T_{amb} = 25 \ ^{\circ}C \end{array} $	6.0	16		mA
I _{ОН}	Output leakage current	$V_{IN(+)} \ge 1 V_{DC}; V_{IN}(-) = 0$ $V_O = 5 V_{DC}; T_{amb} = 25 \ ^{\circ}C$ $V_O = 30 V_{DC}; Over temp.$		0.1	1.0	nA μA
I _{CC}	Supply current	R _L = ∞ on comparators, T _{amb} = 25 °C V+ = 30 V		0.8 1.0	2.0 2.5	mA
A _V	Voltage gain	$R_L \ge 15 \text{ k}\Omega; \text{ V+} = 15 \text{ V}_{DC}$	25	100		V/mV
V _{OL}	Saturation voltage	$V_{IN(-)} \ge 1 \ V_{DC}; \ V_{IN(+)} = 0; \ I_{SINK} \le 4 \ mA$ $T_{amb} = 25 \ ^{\circ}C$ Over temp.		400	400 700	mV
t _{LSR}	Large–signal response time	$V_{IN} = TTL \text{ logic swing; } V_{REF} = 1.4V_{DC};$ $V_{RL} = 5V_{DC}; R_L = 5.1 \text{k}\Omega; T_{amb} = 25 ^{\circ}\text{C}$		300		ns
t _R	Response time ⁵	V _{RL} = 5 V _{DC} ; R _L = 5.1 kΩ; T _{amb} = 25 °C		1.3		μs

NOTES:

 Positive excursions of input voltage may exceed the power supply level by 17 V. As long as the other voltage remains within the common-mode range, the comparator will provide a proper output state. The low input voltage state must not be less than -0.3 V_{DC} (or 0.3 V_{DC} below the magnitude of the negative power supply, if used).

2. At output switch point, $V_O \approx 1.4 V_{DC}$, $R_S = 0 \Omega$ with V+ from 5 V_{DC} to 30 V_{DC} ; and over the full input common-mode range (0 V_{DC} to V+ - 1.5 V_{DC}).

 The input common-mode voltage or either input signal voltage should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is V+ – 1.5 V, but either or both inputs can go to 30 V_{DC} without damage.

4. The direction of the input current is out of the IC due to the PNP input stage. This current is essentially constant, independent of the state of the output so no loading change exists on the reference or input lines.

5. The response time specified is for a 100 mV input step with a 5 mV overdrive. For larger overdrive signals, 300 ns can be obtained (see Typical Performance Characteristics section).

AU2901

EQUIVALENT CIRCUIT

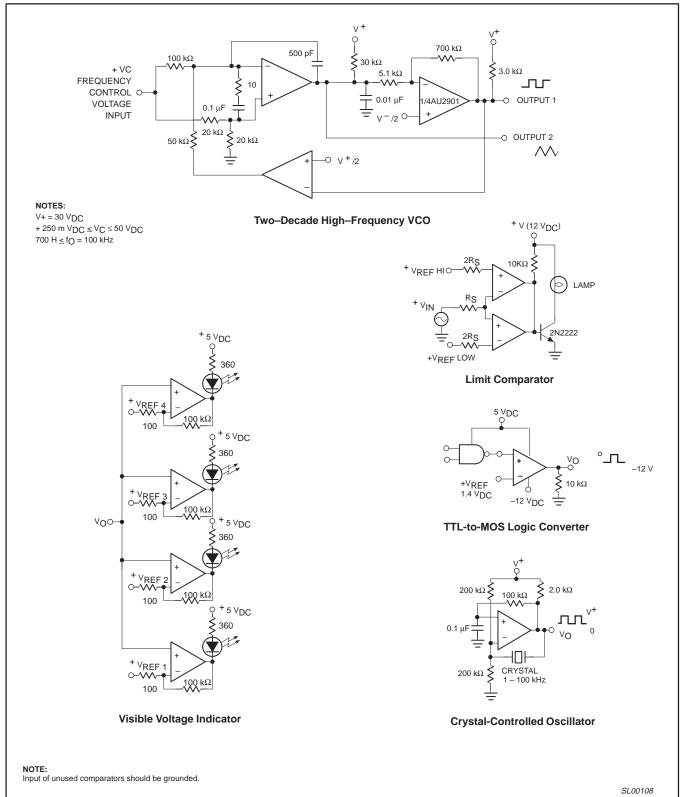
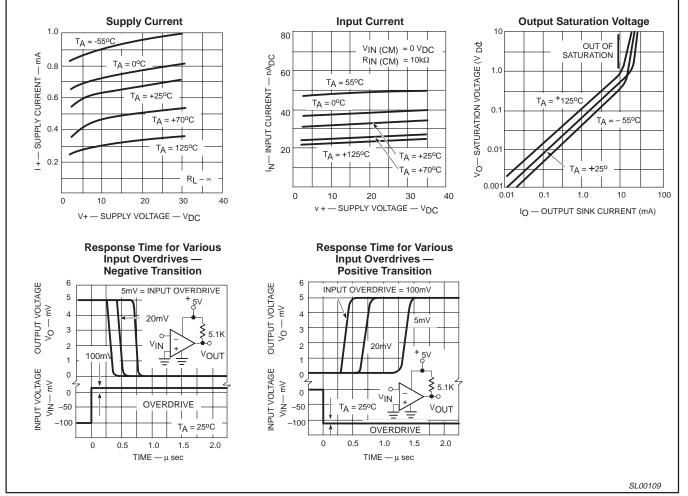
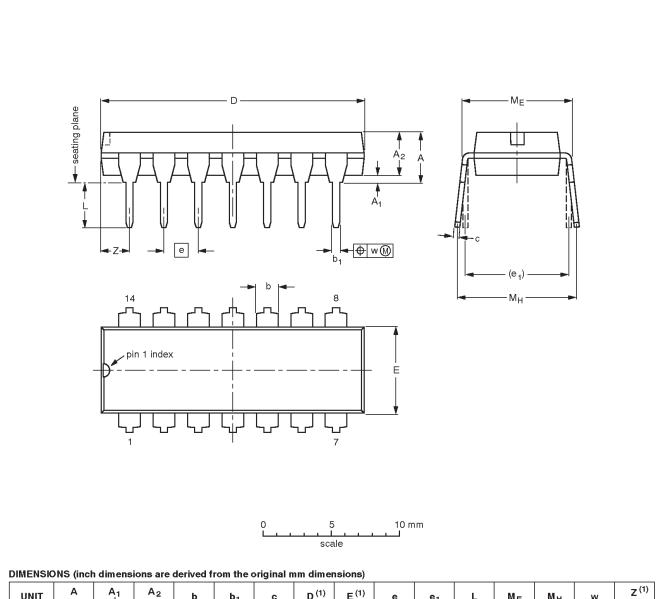


Figure 3. Equivalent Circuit

Product data

TYPICAL PERFORMANCE CHARACTERISTICS




Figure 4. Typical Performance Characteristics

AU2901

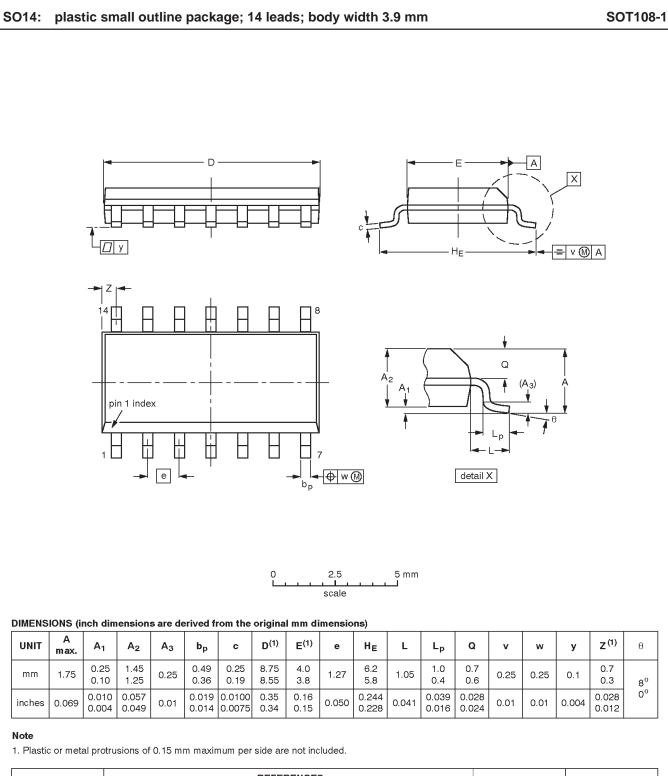
Philips Semiconductors

Quad voltage comparator

DIP14: plastic dual in-line package; 14 leads (300 mil)

UNIT	A max.	A ₁ min.	A ₂ max.	b	b ₁	с	D ⁽¹⁾	E ⁽¹⁾	е	e ₁	L	ME	М _Н	w	Z ⁽¹⁾ max.
mm	4.2	0.51	3.2	1.73 1.13	0.53 0.38	0.36 0.23	19.50 18.55	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	2.2
inches	0.17	0.020	0.13	0.068 0.044	0.021 0.015	0.014 0.009	0.77 0.73	0.26 0.24	0.10	0.30	0.14 0.12	0.32 0.31	0.39 0.33	0.01	0.087

Note


1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE	REFERENCES				EUROPEAN ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT27-1	050G04	MO-001	SC-501-14			-95-03-11 99-12-27	

AU2901

SOT27-1

Product data

OUTLINE	REFERENCES						
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE	
SOT108-1	076E06	MS-012				-97-05-22 99-12-27	

AU2901

NOTES

Data sheet status

Data sheet status ^[1]	Product status ^[2]	Definitions
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

[1] Please consult the most recently issued data sheet before initiating or completing a design.

[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information please visit http://www.semiconductors.philips.com. Fax: +31

Fax: +31 40 27 24825

© Koninklijke Philips Electronics N.V. 2002 All rights reserved. Printed in U.S.A.

Date of release: 01-02

For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com

Document order number:

9397 750 09268

Let's make things better.

