
2.125 Gb/s Integrated 850nm MSM-TIA
PRELIMINARY DATA SHEET - Rev 1.2

FEATURES

- Differential Output TIA
- 3.3 V Operation
- Automatic Gain Control
- Integrated 850nm MSM Detector & TIA
- TO-56 Ultra Flat-Window Hermetic Package
- High Reliability

APPLICATIONS

• 2x Fibre Channel (2.125 Gb/s)

PRODUCT DESCRIPTION

The ANADIGICS AMT8302 is a 3.3 V monolithically integrated Metal-Semiconductor-Metal (MSM) photodetector and transimpedance amplifier (TIA) used to convert an 850nm input optical signal into a differential output voltage, and is manufactured in ANADIGICS' 6" GaAs wafer fabrication facility. The integrated MSM and TIA receiver maximizes the receiver performance by minimizing the photodetector input parasitics to the TIA and

internally biasing the photodetector to achieve high sensitivity, bandwidth and overload performance. As an integrated product the reliability is inherently better than a discrete solution, and both the MSM-TIA integrated circuit and TO56 flat window packaged receiver pass stringent reliability requirements. These products are readily designed into receivers and transceivers for 2X Fibre Channel applications.

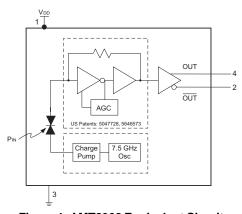


Figure 1: AMT8302 Equivalent Circuit

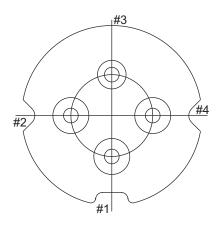


Figure 2: T56 Pinout (Bottom View)

Table 1: Pin Description

PIN	DESCRIPTION	COMMENT	
1	V _{DD} - Positive Supply Voltage	+3.3 Volts	
2	2 Vour - TIA Output Voltage (Inverted) Logical '0' with optical input		
3	Ground	Case is grounded	
4	Vоит - TIA Output Voltage (Non-Inverted)	Logical '1' with optical input	

ELECTRICAL CHARACTERISTICS

Table 2: Absolute Minimum and Maximum Ratings

PARAMETER	MIN	MAX	UNIT
Supply Voltage (VDD)	-	+6.0	V
Optical Input Power (P _N)	-	+5	dBm
Storage Temperature (Tstg)	-65	+125	°C

Stresses in excess of the absolute ratings may cause permanent damage. Functional operation is not implied under these conditions. Exposure to absolute ratings for extended periods of time may adversely affect reliability.

Table 3: Electrical Specifications

Table 5: Electrical Specifications				
PARAMETER	MIN	TYP	MAX	UNIT
Wavelength (λ)	770	850	860	nm
Detector Diameter	-	100	-	μm
Small Signal Differential Responsivity (1) (@ 50 MHz)	1000	-	-	V/W
Bandwidth ⁽¹⁾	1400	1900	-	MHz
Low Frequency Cutoff	-	-	300	kHz
Output Resistance	-	40	-	Ω
Optical Overload (2)	0	-	-	dBm
Optical Sensitivity (2)	-19	-	-	dBm
Differential Output Voltage (3)	-	750	-	mV
Trise and Trall (20-80%) (3)	-	140	-	ps
Duty Cycle Distortion (3)	-	5	-	%
Total Jitter (3), (4)	-	50	-	ps
Supply Current	-	35	55	mA
Operating Voltage Range	+ 3.0	+3.3	+3.6	V
Operating Case Temperature Range	0	-	80	°C

Notes:

⁽⁴⁾ 6σ about the center eye crossing

⁽¹⁾ Measured at -14 dBm optical input power with output connected into $R_L = 100 \Omega$ (differential)

⁽²⁾ Measured at 10⁻¹⁰ BER with a 2⁷-1 PRBS at 2.125 Gb/s

⁽³⁾ Measured with a 2^7 -1 PRBS at 2.125 Gb/s, an input optical power of -3 dBm and $R_L=100~\Omega$ (differential)

PERFORMANCE DATA

Figure 3: Eye Diagram with an Optical Input Power of -18 dBm

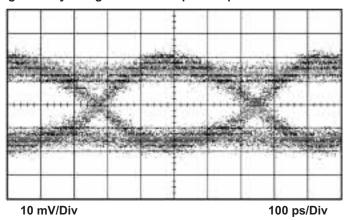


Figure 4: Eye Diagram with an Optical Input Power of -8.0 dBm

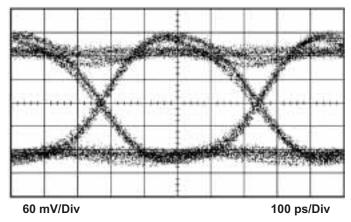


Figure 5: Eye Diagram with an Optical Input Power of 0 dBm

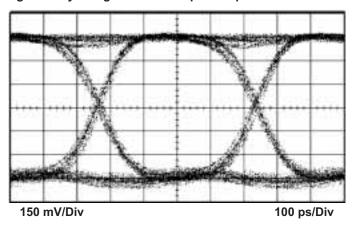


Figure 6: Supply Current vs.Temperature

45.0

45.0

45.0

45.0

40.0

30.0

30.0

30.0

10 20 30 40 50 60 70 80 90

Figure 7: Bandwidth vs. Temperature

2400
2000
1400
1400
1200
10 20 30 40 50 60 70 80 90

Figure 8: Differential Responsivity vs. Temperature

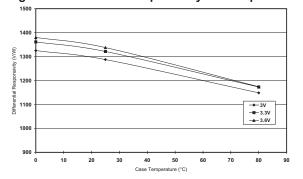


Figure 9: Sensitivity vs. Temperature

-18.50
-19.00
-19.50
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.00
-21.0

MEASUREMENT METHODS

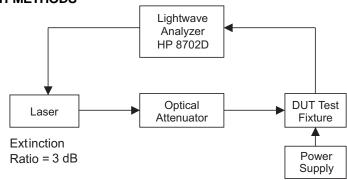


Figure 10: Test Setup for Frequency Response

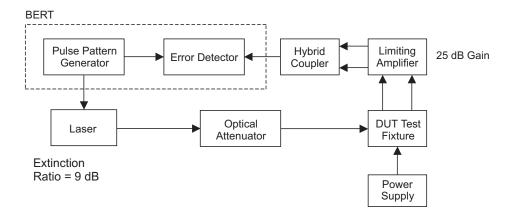


Figure 11: Test Setup for Sensitivity

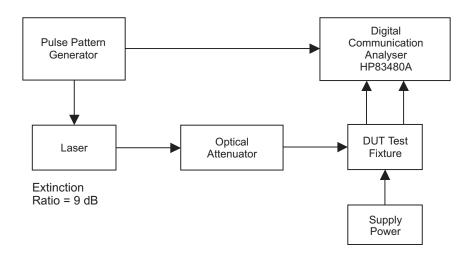


Figure 12: Test Setup for Eye Measurements

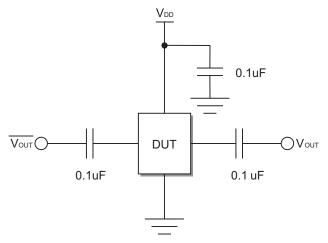


Figure 13: DUT Test Fixture Schematic

APPLICATION INFORMATION

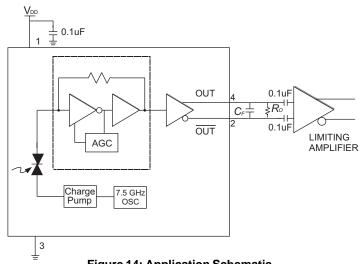
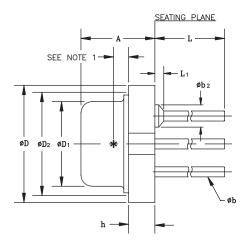
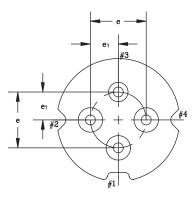


Figure 14: Application Schematic

 C_F is an optional single pole noise filter

$$C_F = \frac{1}{2\pi \ f_c R}$$


 f_c is the desired cutoff frequency


$$R = 50 \Omega$$

R₀ is required with high input resistance limiting amplifiers

$$R_0 = 100 \Omega$$

COMPONENT PACKAGING

BOTTOM VIEW

MM CONTROLLING DIMENSIONS

S _{YMBOL}	MILLIMETERS		INCHES		NOTE
-0 _L	MIN.	MAX.	MIN.	MAX.	1
A	3.10	3.50	0.122	0.138	
øb	0.40	0.50	0.016	0.020	
øb2	-	1.20	_	0.047	
øD	5.56	5.62	0.219	0.221	5
ØD1	3.80	3.90	0.150	0.154	
øD2	-	4.70	_	0.185	4&5
е	2.54 T.P.		0.100 T.P.		
e 1	1.27 T.P.		0.050 T.P.		
h	1.10	1.30	0.043	0.051	
L	6.00	7.00	0.236	0.276	
Lı	_	0.50	_	0.020	

NOTES:

- 1. INTERNAL OPTICAL HEIGHT = $0.70\pm0.04[0.028\pm0.0015]$
- 2. DETECTOR DIODE PLACEMENT ACCURACY: \$\,\phi\ 0.15MM[0.006] WITH RESPECT TO CENTER OF HEADER.
- 3. CAN PLACEMENT ACCURACY: \div 0.2MM[0.008] WITH RESPECT TO CENTER OF HEADER.
- 4. AREA DESIGNATED BY $\emptyset D_2$ TO BE MEASURED WITH RESPECT TO CENTER OF HEADER.
- 5. AREA BETWEEN ØD AND ØD2 MUST REMAIN CLEAR, FLAT AND UNAFFECTED BY WELD OR WELD PROCESS.
- 6. BENT LEADS SHOULD NOT EXTEND OUTSIDE DIAMETER (ØD) OF HEADER OR TOUCH EACH OTHER.

Figure 15: T56F Package Outline

NOTES

AMT8302

NOTES

NOTES

ORDERING INFORMATION

ORDER NUMBER	TEMPERATURE RANGE	PACKAGE DESCRIPTION	COMPONENT PACKAGING
AMT8302T56F	0 °C to +80 °C	TO-56 Ultra Flat Window Package	-

ANADIGICS, Inc.

141 Mount Bethel Road Warren, New Jersey 07059, U.S.A.

Tel: +1 (908) 668-5000 Fax: +1 (908) 668-5132

URL: http://www.anadigics.com E-mail: Mktg@anadigics.com

IMPORTANT NOTICE

ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders.

WARNING

ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.

