
74LVT162245•74LVTH162245

Logic Symbol

Connection Diagrams

Pin Assignments for SSOP and TSSOP

Pin Assignment for FBGA

(Top Thru View)

Pin Descriptions

Pin Names	Description
$\overline{O E}_{n}$	Output Enable Input (Active LOW)
T / \bar{R}_{n}	Transmit/Receive Input
$A_{0}-A_{15}$	Side A Inputs/3-STATE Outputs
$B_{0}-B_{15}$	Side B Inputs/3-STATE Outputs
$N C$	No Connect

FBGA Pin Assignments

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
\mathbf{A}	B_{0}	NC	$\mathrm{T} / \overline{\mathrm{R}}_{1}$	$\overline{\mathrm{OE}}_{1}$	NC	A_{0}
\mathbf{B}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{1}$	NC	NC	A_{1}	$\mathrm{~A}_{2}$
\mathbf{C}	$\mathrm{~B}_{4}$	$\mathrm{~B}_{3}$	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	A_{3}	$\mathrm{~A}_{4}$
\mathbf{D}	$\mathrm{~B}_{6}$	$\mathrm{~B}_{5}$	GND	GND	A_{5}	$\mathrm{~A}_{6}$
\mathbf{E}	$\mathrm{~B}_{8}$	$\mathrm{~B}_{7}$	GND	GND	A_{7}	$\mathrm{~A}_{8}$
\mathbf{F}	$\mathrm{~B}_{10}$	$\mathrm{~B}_{9}$	GND	GND	A_{9}	$\mathrm{~A}_{10}$
\mathbf{G}	$\mathrm{~B}_{12}$	$\mathrm{~B}_{11}$	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	A_{11}	$\mathrm{~A}_{12}$
\mathbf{H}	$\mathrm{~B}_{14}$	$\mathrm{~B}_{13}$	NC	NC	A_{13}	$\mathrm{~A}_{14}$
\mathbf{J}	$\mathrm{~B}_{15}$	NC	T / \bar{R}_{2}	$\overline{\mathrm{OE}}_{2}$	NC	A_{15}

Truth Tables

Inputs		Outputs
$\overline{\mathbf{O E}}_{\mathbf{1}}$	$\mathrm{T} / \overline{\mathbf{R}}_{\mathbf{1}}$	
L	L	Bus $\mathrm{B}_{0}-\mathrm{B}_{7}$ Data to Bus $\mathrm{A}_{0}-\mathrm{A}_{7}$
L	H	Bus $\mathrm{A}_{0}-\mathrm{A}_{7}$ Data to Bus $\mathrm{B}_{0}-\mathrm{B}_{7}$
H	X	HIGH-Z State on $\mathrm{A}_{0}-\mathrm{A}_{7}, \mathrm{~B}_{0}-\mathrm{B}_{7}$

Inputs		Outputs
$\overline{\mathrm{OE}}_{2}$	$\mathrm{T} / \overline{\mathbf{R}}_{2}$	
L	L	Bus $\mathrm{B}_{8}-\mathrm{B}_{15}$ Data to Bus $\mathrm{A}_{8}-\mathrm{A}_{15}$
L	H	Bus $\mathrm{A}_{8}-\mathrm{A}_{15}$ Data to Bus $\mathrm{B}_{8}-\mathrm{B}_{15}$
H	X	HIGH-Z State on $\mathrm{A}_{8}-\mathrm{A}_{15}, \mathrm{~B}_{8}-\mathrm{B}_{15}$
	Level Level ce	

Functional Description

The LVT162245 and LVTH162245 contain sixteen noninverting bidirectional buffers with 3-STATE outputs. The device is byte controlled with each byte functioning identi-
cally, but independent of the other. The control pins can be shorted together to obtain full 16 -bit operation.

Logic Diagrams

Absolute Maximum Ratings(Note 3)

Symbol	Parameter	Value	Conditions	Units
$\mathrm{V}_{\text {cc }}$	Supply Voltage	-0.5 to +4.6		V
V_{1}	DC Input Voltage	-0.5 to +7.0		V
V_{O}	Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to +7.0	Output in HIGH or LOW State (Note 4)	
IIK	DC Input Diode Current	-50	$\mathrm{V}_{1}<$ GND	mA
$\mathrm{I}_{\text {OK }}$	DC Output Diode Current	-50	$\mathrm{V}_{\mathrm{O}}<$ GND	mA
I_{0}	DC Output Current	64	$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\text {CC }}$ Output at HIGH State	mA
		128	$\mathrm{V}_{\text {O }}>\mathrm{V}_{\text {CC }}$ Output at LOW State	
I_{CC}	DC Supply Current per Supply Pin	± 64		mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 128		mA
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65 to +150		${ }^{\circ} \mathrm{C}$

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V_{CC}	Supply Voltage	2.7	3.6	V
V_{1}	Input Voltage	0	5.5	V
$\overline{\mathrm{I}_{\mathrm{OH}}}$	HIGH-Level Output Current B Port A Port		$\begin{aligned} & \hline-32 \\ & -12 \end{aligned}$	mA
$\overline{\mathrm{IOL}}$	$\begin{array}{\|cc\|}\text { LOW-Level Output Current } & \text { B Port } \\ \text { A Port }\end{array}$		$\begin{aligned} & 64 \\ & 12 \end{aligned}$	mA
T_{A}	Free Air Operating Temperature	-40	+85	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	Input Edge Rate, $\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}-2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	0	10	ns/V

Note 3: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions
beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.
Note 4: 10 Absolute Maximum Rating must be observed.
DC Electrical Characteristics

Symbol	Parameter		V_{cc}	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
			(V)	Min	Max			
V_{IK}	Input Clamp Diode Voltage		2.7		-1.2	V	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.7-3.6	2.0		V	$\mathrm{V}_{\mathrm{O}} \leq 0.1 \mathrm{~V}$ or	
V_{IL}	Input LOW Voltage		2.7-3.6		0.8	V	$\mathrm{V}_{\mathrm{O}} \geq \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V}$	
V_{OH}	Output HIGH Voltage	A Port	3.0	2.0		V	$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	
			2.7-3.6	$\mathrm{V}_{\mathrm{CC}}-0.2$		V	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	
		B Port	2.7	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-8 \mathrm{~mA}$	
			3.0	2.0			$\mathrm{I}_{\mathrm{OH}}=-32 \mathrm{~mA}$	
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	A Port	3.0		0.8	V	$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	
			2.7		0.2	V	$\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	
		B Port	2.7		0.5	v	$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$	
			3.0		0.4		$\mathrm{l}_{\mathrm{OL}}=16 \mathrm{~mA}$	
			3.0		0.5		$\mathrm{l}_{\mathrm{OL}}=32 \mathrm{~mA}$	
			3.0		0.55		$\mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}$	
$\overline{l_{\text {(HOLD) }}}$ (Note 5)	Bushold Input Minimum Drive		3.0	75		$\mu \mathrm{A}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	
			-75		$\mathrm{V}_{1}=2.0 \mathrm{~V}$			
$T_{\text {(OD) }}$ (Note 5)	Bushold Input Over-Drive Current to Change State			3.0	500		$\mu \mathrm{A}$	(Note 6)
			-500			(Note 7)		
I_{1}	Input Current		3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{1}=5.5 \mathrm{~V}$	
		Control Pins	3.6		± 1		$\mathrm{V}_{1}=0 \mathrm{~V}$ or V_{CC}	
		Data Pins	3.6		-5		$\mathrm{V}_{1}=0 \mathrm{~V}$	
					1		$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$	
loff	Power Off Leakage Current		0		± 100	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$	

DC Electrical Characteristics (Continued)						
Symbol	Parameter	V_{cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions
			Min	Max		
$\mathrm{I}_{\text {PU/PD }}$	Power Up/Down 3-STATE Current	0-1.5V		± 100	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } 3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$
$\mathrm{I}_{\text {OZL }}$	3-STATE Output Leakage Current	3.6		-5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$
IOZL (Note 5)	3-STATE Output Leakage Current	3.6		-5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=0.0 \mathrm{~V}$
$\mathrm{I}_{\text {OZH }}$	3-STATE Output Leakage Current	3.6		5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=3.0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{OZH}}$ (Note 5)	3-STATE Output Leakage Current	3.6		5	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{O}}=3.6 \mathrm{~V}$
IOZH^{+}	3-STATE Output Leakage Current	3.6		10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current	3.6		0.19	mA	Outputs HIGH
$\mathrm{I}_{\text {CCL }}$	Power Supply Current	3.6		5	mA	Outputs LOW
$\mathrm{I}_{\text {CCZ }}$	Power Supply Current	3.6		0.19	mA	Outputs Disabled
$\mathrm{I}_{\mathrm{CCZ}}{ }^{+}$	Power Supply Current	3.6		0.19	mA	$\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{O}} \leq 5.5 \mathrm{~V}$ Outputs Disabled
$\Delta \mathrm{l}_{\mathrm{CC}}$	Increase in Power Supply Current (Note 8)	3.6		0.2	mA	One Input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$ Other Inputs at V_{CC} or GND

Note 5: Applies to Bushold versions only (74LVTH162245).
Note 6: An external driver must source at least the specified current to switch from LOW-to-HIGH.
Note 7: An external driver must sink at least the specified current to switch from HIGH-to-LOW.
Note 8: This is the increase in supply current for each input that is at the specified voltage level rather than V_{CC} or GND.

Dynamic Switching Characteristics (Note 9)

Symbol	Parameter		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			Units	Conditions$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$
		(V)	Min	Typ	Max		
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	3.3		0.8		V	(Note 10)
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic $\mathrm{V}_{\text {OL }}$	3.3		-0.8		V	(Note 10)

Note 9: Characterized in SSOP package. Guaranteed parameter, but not tested.
Note 10: Max number of outputs defined as (n). $\mathrm{n}-1$ data inputs are driven 0 V to 3 V . Output under test held LOW

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$				Units
		$\mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\mathrm{Cc}}=2.7 \mathrm{~V}$		
		Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{PLH}}$ $t_{\text {PHL }}$	Propagation Delay Data to A Port Output	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 4.1 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to B Port Output	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 3.9 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time for A Port Output	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 5.3 \\ & 5.6 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 6.3 \\ & 7.2 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time for B Port Output	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 6.9 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time for A Port Output	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 5.6 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.3 \\ & 5.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time for B Port Output	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 5.4 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.1 \\ & 5.4 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{OSHL}}$ tosLh	A Port Output to Output Skew (Note 11)		1.0		1.0	ns
$\mathrm{t}_{\mathrm{OSHL}}$ tosLh	B Port Output to Output Skew (Note 11)		1.0		1.0	ns

Capacitance (Note 12)

Symbol	Parameter	Conditions	Typical	Units
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	4	pF
$\mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Input/Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0 \mathrm{~V}$ or V_{CC}	pF	

[^0]Physical Dimensions inches (millimeters) unless otherwise noted

[^0]: Note 12: Capacitance is measured at frequency $\mathrm{f}=1 \mathrm{MHz}$, per MIL-STD-883, Method 3012

