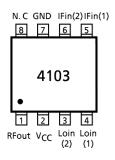
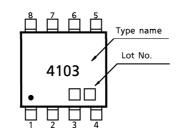
TOSHIBA TA4103F

TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA4103F

1.9 GHz BAND UP CONVERTER APPLICATION


FEATURES


- Built in Lo and IF buffer amplifiers.
- Double balanced MIX circuit
- High conversion gain: $G_C = 3 dB$ (Typ.)
- Recommended operating voltage : $V_{CC} = 2.7 \sim 3.3 \text{ V}$

SSOP8-P-0.65

Weight: 0.02 g (Typ.)

PIN ASSIGNMENT (Top View)

MARKING

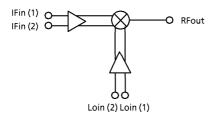
MAXIMUM RATING (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	Vcc	5	V
Total Power Dissipation	P _D (*)	300	mW
Operating Temperature	T _{opr}	- 40∼85	°C
Storage Temperature Range	T _{stg}	- 55∼125	°C

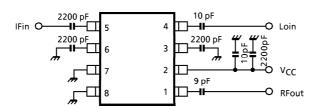
(*): When mounted on the glass epoxy board of $2.5 \text{ cm}^2 \times 1.6 \text{ t}$.

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.

 The products described in this document are subject to the foreign exchange and foreign trade laws.
 The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.


 The information contained herein is subject to change without notice.

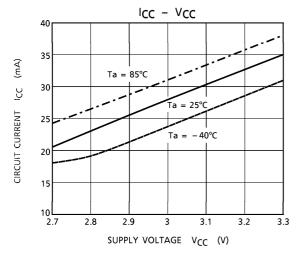
ELECTRICAL CHARACTERISTICS ($V_{CC} = 3 \text{ V}$, $1a = 25^{\circ}\text{C}$, $2g = 21 = 50 \Omega$)										
CHARACTERISTIC	SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT			
RF Frequency Range	f _{RFout}			1895	_	1918	MHz			
IF Frequency Range	fIFin] —		220	_	250	MHz			
Lo Frequency Range	fLoin			1645	_	1698	MHz			
Circuit Current	Icc	_	Non Carrier	23	26.5	33	mA			
Conversion Gain	GC		PLoin = -20 dBmW	1	3	_	dB			
Output Power At 1dB Gaing Compression	Po1dB			- 19	- 17	_	dB			
Lo-RF Leakage Power	PRFLo	1		_	_	- 20	dBmW			
Lo-IF Leakege Power	PIFLo			_	_	- 33	dBmW			
Adjacent Channel Leakage Power Ratio	Padj		$P_{RFout} = -18 dBmW$ $P_{IFin} = Adjusted$ $\Delta f = 600 kHz (Note)$	_	- 63	_	dB			

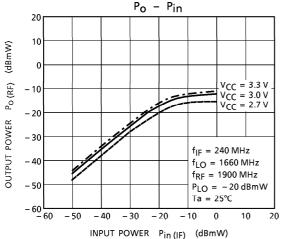

ELECTRICAL CHARACTERISTICS ($V_{CC} = 3 \text{ V}$, $Ta = 25^{\circ}\text{C}$, $Zg = ZI = 50 \Omega$)

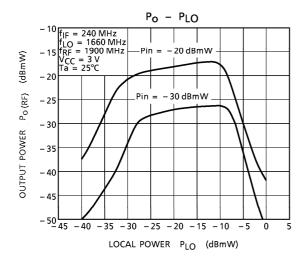
(Note) : Input signal is modulated to $\pi/4QPSK$ ($\alpha=0.5$). Bit rate is 384 kbps.

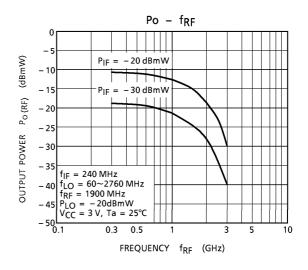
BLOCK DIAGRAM

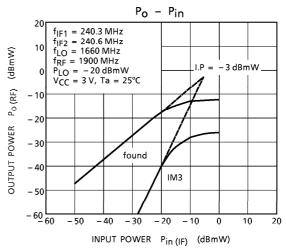
TEST CIRCUIT 1

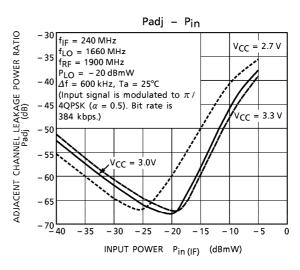


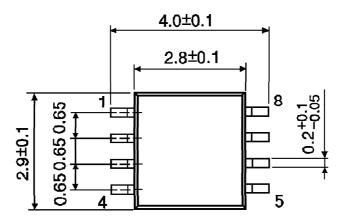

NOTICE

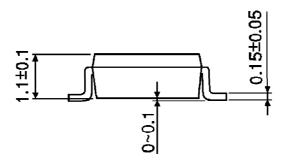

The circuits and measurements contained in this document are given only in the context of as examples of applications for these products.


Moreover, these example application circuits are not intended for mass production, since the high-frequency characteristics (the AC characteristics) of these devices will be affected by the external components which the customer uses, by the design of the circuit and by various other conditions. It is the responsibility of the customer to design external circuits which correctly implement the intended application, and to check the characteristics of the design.


TOSHIBA assume no responsibility for the integrity of customer circuit designs or applications.







PACKAGE DIMENSIONS

SSOP8-P-0.65 Unit: mm

Weight: 0.02 g (Typ.)