

CYM1838

Features

- · High-density 4-megabit SRAM module
- High-speed CMOS SRAMs — Access time of 20 ns
- 66-pin, 1.1-inch-square PGA package
- · Low active power -4.0W (max.)
- Hermetic SMD technology
- · TTL-compatible inputs and outputs
- · Commercial and military temperature ranges

Functional Description

The CYM1838 is a very high performance 4-megabit static RAM module organized as 128K words by 32 bits. The module is constructed using four 128K x 8 static RAMs mounted onto

128K x 32 Static RAM Module

a multilayer ceramic substrate. Four chip selects (\overline{CS}_1 , \overline{CS}_2 , \overline{CS}_3 , \overline{CS}_4) are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.

Writing to each byte is accomplished when the appropriate chip selects (CS) and write enable (WE) inputs are both LOW.Data on the input/output pins (I/Ox) is written into the memory location specified on the address pins (A₀ through A₁₆).

Reading the device is accomplished by taking chip selects LOW while write enable remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the data input/output pins.

The data input/output pins remain in a high-impedance state when write enable is LOW or the appropriate chip selects are HIGH.

Logic Block Diagram	Pin Configuration
,	PGA Top View 1 12 23 34 45 56
$\begin{array}{c} A_0 - A_{16} \\ \hline \hline \\ \hline $	O 1/O ₈ O WE ₂ O 1/O ₁₅ 1/O ₂₄ O V _{CC} O 1/O ₃₁ O
	$ \bigcirc I/O_{9} \bigcirc \overline{CS}_{2} \bigcirc I/O_{14} \qquad I/O_{25} \bigcirc \overline{CS}_{4} \bigcirc I/O_{30} \bigcirc $
WE1 128K x 8 I/O ₀₋₇	○ 1/0 ₁₀ ○ GND ○ 1/0 ₁₃ 1/0 ₂₆ ○ WE ₄ ○ 1/0 ₂₉ ○
	O A ₁₃ O I/O ₁₁ O I/O ₁₂ A ₆ O I/O ₂₇ O I/O ₂₈ O
WE2 128K x 8 / 1/O ₈₋₁₅	○ A ₁₄ ○ A ₁₀ ○ ○ A ₇ ○ A ₃ ○ A ₀ ○
	○ A ₁₅ ○ A ₁₁ ○ GND GND ○ A ₄ ○ A ₁ ○
	$\bigcirc A_{16} \bigcirc A_{12} \bigcirc \overline{WE}_1 \qquad A_8 \bigcirc A_5 \bigcirc A_2 \bigcirc$
$\frac{\overline{WE}_3}{\overline{CS}_3} \xrightarrow{\qquad \qquad \qquad } 128K \times 8 \\ SRAM \\ 8 \\ RAM $	O GND ○ V _{CC} ○ I/O ₇ A ₉ ○ WE ₃ ○ I/O ₂₃ ○
WE4 128K x 8 //O24-31	○ 1/01 ○ GND ○ 1/05 1/017 ○ GND ○ 1/021 ○
CS ₄ 1838-1	
1838-1	11 22 33 44 55 66 1838–2

Selection Guide

		1838-20	1838-25	1838-35
Maximum Access Time (ns)		20	25	35
Maximum Operating Current (mA)	Commercial	720	720	
	Military	720	720	720
Maximum Standby Current (mA)	Commercial	240	240	
	Military	240	240	240

Maximum Ratings

DC Input Voltage-0.5V to +7.0V

(Above which the useful life may be impaired.) Storage Temperature-65°C to +150°C Supply Voltage to Ground Potential.....-0.5V to +7.0V DC Voltage Applied to Outputs in High Z State-0.5V to +7.0V

Electrical Characteristics Over the Operating Range

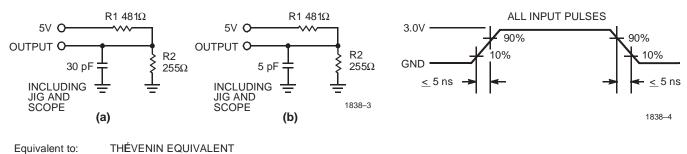
1 5

Operating Range

Ambient Range Temperature		v _{cc}
Commercial	0°C to +70°C	5V ± 10%
Military	–55°C to +125°C	5V ± 10%

				1838	
Parameter	Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = -4.0 mA	2.4		V
V _{OL}	Output LOW Voltage	V _{CC} = Min., I _{OL} = 8.0 mA		0.4	V
V _{IH}	Input HIGH Voltage		2.2	6.0	V
V _{IL}	Input LOW Voltage		-0.3	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}, V_{CC} = Max.$	-20	+20	μΑ
I _{OZ}	Output Leakage Current	$GND \leq V_O \leq V_{CC}$, Output Disabled	-10	+10	μΑ
I _{CCx32}	V _{CC} Operating Supply Current by 32 Mode	$V_{CC} = Max., I_{OUT} = 0 mA, \overline{CS} \le V_{IL}$		720	mA
I _{CCx16}	V _{CC} Operating Supply Current by 16 Mode	$V_{CC} = Max., I_{OUT} = 0 mA, \overline{CS} \le V_{IL}$		480	mA
I _{CCx8}	V _{CC} Operating Supply Current by 8 Mode	$V_{CC} = Max., I_{OUT} = 0 mA, \overline{CS} \le V_{IL}$		360	mA
I _{SB1}	Automatic CS Power-Down Current ^[1]	Max. V_{CC} ; $\overline{CS} \ge V_{IH}$, Min. Duty Cycle = 100%		240	mA
I _{SB2}	Automatic CS Power-Down Current ^[1]	$ \begin{array}{l} \text{Max. V}_{\text{CC}}; \ \overline{\text{CS}} \geq \text{V}_{\text{CC}} - 0.2\text{V}, \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.2\text{V} \text{ or } \text{V}_{\text{IN}} \leq 0.2\text{V} \end{array} $		40	mA

Capacitance^[2]


Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_{A} = 25^{\circ}C$, f = 1 MHz,	50	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	50	pF

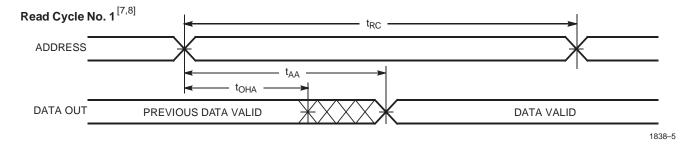
Notes:

1. A pull-up resistor to V_{CC} on the CS input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.

2. Tested on a sample basis.

AC Test Loads and Waveforms

1670


OUTPUT **Ο** 167Ω 1.73V

Switching Characteristics Over the Operating Range [3]

		183	1838-20		1838-25		1838-35	
Parameter	Description	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ CYCLE	É				•	•	•	
t _{RC}	Read Cycle Time	20		25		35		ns
t _{AA}	Address to Data Valid		20		25		35	ns
t _{OHA}	Data Hold from Address Change	3		3		3		ns
t _{ACS}	CS LOW to Data Valid		20		25		35	ns
t _{DOE}	OE LOW to Data Valid		10		12		15	ns
t _{LZOE}	OE LOW to Low Z	0		0		0		ns
t _{HZOE}	OE HIGH to High Z		10		10		20	ns
t _{LZCS}	CS LOW to Low Z ^[4]	0		0		0		ns
t _{HZCS}	CS HIGH to High Z ^[4,5]		12		15		20	ns
WRITE CYCL	E ^[6]					•		•
t _{WC}	Write Cycle Time	20		25		35		ns
t _{SCS}	CS LOW to Write End	15		20		30		ns
t _{AW}	Address Set-Up to Write End	15		20		30		ns
t _{HA}	Address Hold from Write End	1.5		1.5		1.5		ns
t _{SA}	Address Set-Up to Write Start	2.0		2.0		2.0		ns
t _{PWE}	WE Pulse Width	15		17		25		ns
t _{SD}	Data Set-Up to Write End	10		12		15		ns
t _{HD}	Data Hold from Write End	2		2		2		ns
t _{LZWE}	WE HIGH to Low Z	0		0		0		ns
t _{HZWE}	WE LOW to High Z ^[5]	0	10	0	10	0	15	ns

Switching Waveforms

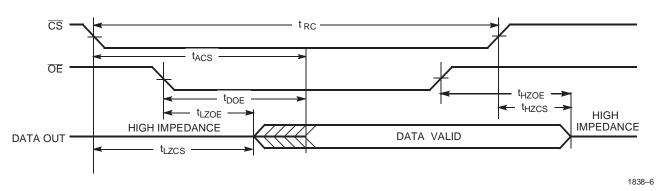
Notes:

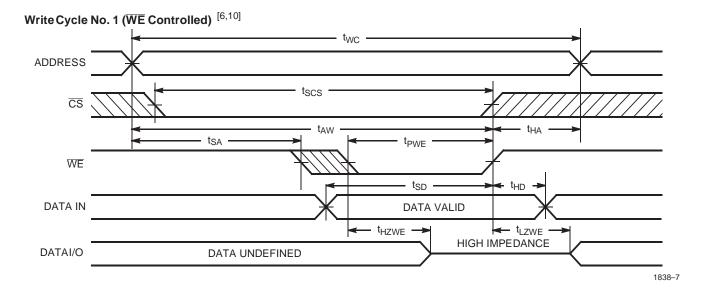
Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.

At any given temperature and voltage condition, t_{HZCS} is less than t_{LZCS} for any given device. These parameters are guaranteed by design and not 100% tested.

^{5.} t_{HZCE} and t_{HZWE} are specified with $C_L = 5 \text{ pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured ±500 mV from steady-state voltage. 6. The internal write time of the memory is defined by the overlap of \overline{CS} LOW and \overline{WE} LOW. Both signals must be LOW to initiate a write and either signal can

terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. 7. WE_N is HIGH for read cycle.

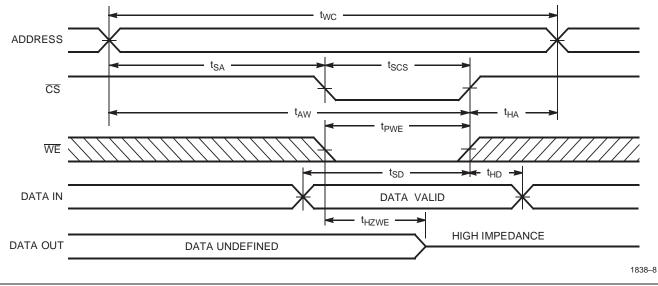

^{8.} Device is continuously selected, $\overline{CS} = V_{IL}$ and $\overline{OE} = V_{IL}$.



PRELIMINARY

Switching Waveforms (continued)

Read Cycle No. 2 ^[7,9]


Note:

9. Address valid prior to or coincident with \overline{CS} transition LOW. 10. Data I/O will be high impedance if $\overline{OE} = V_{IH}$.

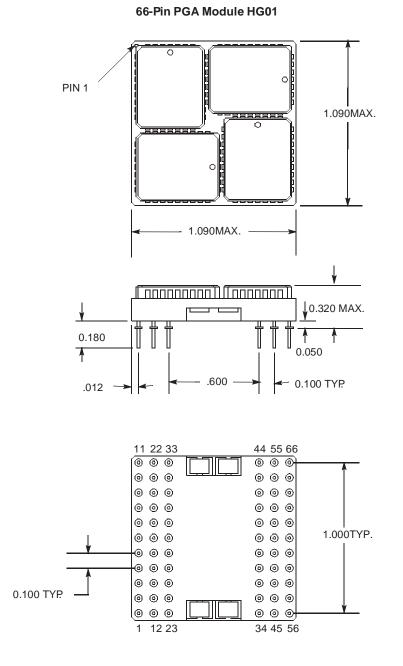
Switching Waveforms (continued)

Note:

11. If CS goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.

Truth Table

CS _N	OE	WE _N	Input/Output	Mode
Н	Х	Х	High Z	Deselect/Power-Down
L	L	Н	Data Out	Read
L	Х	L	Data In	Write
L	Н	Н	High Z	Deselect


Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
20	CYM1838HG-20C	HG01	66-Pin PGA Module	Commercial
	CYM1838HG-20M	HG01	66-Pin PGA Module	Military
	CYM1838HG-20MB	HG01	66-Pin PGA Module	
25	CYM1838HG-25C	HG01	66-Pin PGA Module	Commercial
	CYM1838HG-25M	HG01	66-Pin PGA Module	Military
	CYM1838HG-25MB	HG01	66-Pin PGA Module	
35	CYM1838HG-35C	HG01	66-Pin PGA Module	Commercial
	CYM1838HG-35M	HG01	66-Pin PGA Module	Military
	CYM1838HG-35MB	HG01	66-Pin PGA Module	

Document #: 38-M-00046-C

Package Diagram

© Cypress Semiconductor Corporation, 1997. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.