Proposal Specification
 TO-BIDI* Transceiver Optical Module Coax-BIDITM 1300/1550 nm with DIL10 Adaptation Board and Receiver Preamplifier

- Designed for application in passive-optical networks
- Integrated Wavelength Division Multiplexer
- Bidirectional Transmission in 2nd and 3rd optical window
- Laser diode with Multi-Quantum Well structure
- Suitable for bit rates up to OC-3 and STM-1
- Ternary Photodiode at rear mirror for monitoring and control of radiant power
- Low noise/high bandwidth PIN diode
- Hermetically sealed subcomponents, similar to TO 18
- With singlemode fiber pigtail
- DIL10 adaptation board with receiver preamplifier

Applications

Stable Operation with High Capacitance Detectors Low Noise Preamplifiers Single-Ended to Differential Conversion I-to-V Converters

Preamp description

The TIA is a wide bandwidth, single supply transimpedance amplifier optimized for use in a fiber optic receiver circuit. It is a complete, single chip solution for converting photodiode current into a differential voltage output. The 240 MHz bandwidth enables application in FDDI receivers and SONET/SDH receivers with data rates up to 155 Mbps. The differential outputs drive ECL directly, or can drive a comparator/ fiber optic post amplifier.
The IC can be used with a standard ECL power supply (-5.2 V) or a PECL (+5 V) power supply; the common mode at the output is ECL compatible.

Maximum Ratings

Module	Symbol	Values	Unit
Operating Temperature range at case	T^{C}	$-40 \ldots+85$	${ }^{\circ} \mathrm{C}$
Storage Temperature range	$\mathrm{T}_{\text {stg }}$	$-40 \ldots+85$	${ }^{\circ} \mathrm{C}$
Soldering Temperature $\mathrm{T}_{\max }=10 \mathrm{~s}$, 2 mm distance from bottom edge of case	T_{S}	260	${ }^{\circ} \mathrm{C}$

Laserdiode	Symbol	Values	Unit
Direct forward current	$\mathrm{I}_{\mathrm{max}}$	120	mA
Radiant power CW	Φ_{e}	1	mW
Reverse Voltage	V_{R} max	2	V

Monitor Diode	Symbol	Values	Unit
Reverse Voltage	$\mathrm{V}_{\mathrm{R}} \max$	10	V

Characteristics

All optical data refer to the optical port (10/125 $\mu \mathrm{m}$ SM fiber), $\mathrm{T}_{\mathrm{C}}=-40 \ldots+85^{\circ} \mathrm{C}$

Laser Diode	Symbol	Values	Unit
Optical Peak Output Power	Φ_{e}	>0.4	mW
Emission wavelength center of range $\Phi_{\mathrm{e}}=0.2 \mathrm{~mW}$	λ	$1260 \ldots 1360$	nm
Spectral bandwidth $\Phi_{\mathrm{e}}=0.2 \mathrm{~mW}(\mathrm{RMS})$	$\Delta \lambda$	<5	nm
Threshold current	I_{th}	$2 \ldots 55$	mA
Forward voltage $\Phi_{\mathrm{e}}=0.2 \mathrm{~mW}$	$\mathrm{~V}_{\mathrm{F}}$	<1.5	V
Slope Efficiency	η	$10 \ldots 150$	$\mathrm{~mW} / \mathrm{A}$
Differential series resistance	R_{S}	<8	Ω
Rise Time/Fall Time	$\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$	<1	ns

Monitor Diode	Symbol	Values	Unit
Dark Current, $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}, \Phi_{\mathrm{e}}=0$	I_{R}	<200	nA
Photocurrent, $\Phi_{\mathrm{e}}=0.2 \mathrm{~mW}$		$100 \ldots 800$	$\mu \mathrm{~A}$
Capacitance, $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	C_{5}	<10	pF
Tracking Error, $\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$ (see note 1)	TE	$-1 \ldots 1$	dB

Detector + Preamplifier	Symbol	Values			Unit
		Min.	Typ.	Max.	
Power Supply $\mathrm{T}_{\text {min }}$ to $\mathrm{T}_{\text {max }}$ Operating range single supply Current		+4.5	$\begin{aligned} & +5 \\ & 25 \end{aligned}$	$\begin{aligned} & +11 \\ & 26 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \mathrm{mA} \end{aligned}$
Bandwidth 3dB		180	240		MHz
Overload				-6	dBm
$\begin{aligned} & \text { Sensitivity }\left(\mathrm{BER}>10^{-10} ;\right. \\ & \left.\mathrm{P}_{\text {opt }}(\text { Transmitter })<-7 \mathrm{dBm} ; \mathrm{I}_{\bmod }<40 \mathrm{~mA}\right) \\ & \text { under discussion } \end{aligned}$		-25			dBm
Output Noise: (Minimum S/N > 10 (2.4 V/mW / $0.2 \mathrm{~V} / \mathrm{mW})$-> equivalent to $\mathrm{BER}>10^{-10}$) Signal: Output voltage to optical power (Input power < $100 \mu \mathrm{~W}$ tbd) Single Ended $S \lambda$ * Rtrs Differential $S \lambda$ * Rtrs		$\begin{aligned} & 2.4 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 6 \\ & 12 \end{aligned}$	0.2	V/mW V/mW V / mW

Module	Symbol	Values	Unit
Optical Crosstalk (see note 2)	CRT	<-30	dB

Note 1: The tracking error TE is the variation rate of Φ_{e} at constant current I mon over a specified temperature range and relative to the reference point: $I_{\text {mon }, r e f}=I_{\text {mon }}\left(T=25^{\circ} \mathrm{C}, \Phi_{\mathrm{e}}=0.2 \mathrm{~mW}\right)$. Thus, TE is given by:
$T E[d B]=10 \times 1 \operatorname{og} \frac{\phi_{e}\left[T_{c}\right]-\phi_{e}\left[25^{\circ} C\right]}{\phi_{e}\left[25^{\circ} C\right]}$
Note 2: Optical Crosstalk is defined as CRT $=10 * \log \left(I_{\text {Det, }, 0} / I_{\text {Det }, 1}\right)$ with: $I_{\text {Det }, 0}$ the photo-current with $\Phi_{\mathrm{e}}=0.2$ mW, CW laser operation, $\mathrm{V}_{\mathrm{R}}=2 \mathrm{~V}$, with minimum optical return loss from fiber end and $\mathrm{I}_{\text {Det, } 1}$ the photocurrent without Φ_{e}, but 0.2 mW optical input power, $\lambda=1300 \mathrm{~nm}$.

Proposal for Measuring Crosstalk

Needed equipment:

- Average Voltmeter (R\&S URV5)
- Lowpassfilter 125 MHz
- Signal generator (Pseudorandom Word generator 155 Mbit/s or Sine wave frequency tbd)

Measuring

Connect the preamplifier output (perhaps with an additional amplifier - not limiting!!!) with Average Voltmeter
Step 1 Output voltage without any incoming optical signal, BIDI internal transmitter off -> Uo
Step 2 Output voltage with incoming optical signal $1 \mu \mathrm{~W} 100 \%$ modulated
(Pseudorandom Word $155 \mathrm{Mbit} / \mathrm{s}$) light, BIDI internal transmitter off -> U1
Step 3 Output voltage without any incoming optical signal, BIDI internal transmitter modulated (Pseudorandom Word $155 \mathrm{Mbit} / \mathrm{s}) 10 \mathrm{mApp}$ bias 5 mA (below threshold) $>$ U3
Step 4 Output voltage without any incoming optical signal, BIDI internal transmitter modulated (Pseudorandom Word $155 \mathrm{Mbit} / \mathrm{s}$) 10 mApp bias 25 mA (over threshold) $>$ U4

Calculations:

Check the difference U3 (only electrical crosstalk) and U4 electrical + optical crosstalk (electrical crosstalk is dominating if $\mathrm{U} 4=\mathrm{U} 3$; optical crosstalk is dominating if $\mathrm{U} 4>\mathrm{U} 3$)
Check the needed modulation current for W 100\% modulated light (EOL max temp) $I_{\text {mod max }}$ and change U3 to $\mathrm{U} 3 \mathrm{corr}=\mathrm{U} 3^{*} I_{\bmod \max }[\mathrm{mA}] / 10$.
The same procedure for U4.

TO_BIDI Performance

U1 should be > 10 * Uo
Normally the sensitivity will be limited by crosstalk. The needed optical power is $P_{\text {optical }} \min [\mu \mathrm{W}]=10^{*} \mathrm{U} 4$ corr/U1

Accompanying Information

$T=25^{\circ} \mathrm{C}$: Threshold current, current above threshold for 0.2 mW output power, monitor current for 0.2 mW output power, peak wavelength.
$T=85^{\circ} \mathrm{C}$: Threshold current, current above threshold for 0.2 mW output power, monitor current for 0.2 mW output power.

End of Life Values

Parameter	Symbol	Values	Unit
Threshold current at $T=85^{\circ} \mathrm{C}$	I_{th}	80	mA
Slope efficiency $\left(-40 \ldots+85^{\circ} \mathrm{C}\right)$	S	>5	$\mathrm{~mW} / \mathrm{A}$
Tracking error (see note 1)	TE	$-1.0 \ldots 1.0$	dB
Detector dark current, $V_{\mathrm{R}}=2 \mathrm{~V}, T=85^{\circ} \mathrm{C}$	I_{R}	<400	nA
Monitor dark current, $V_{\mathrm{R}}=2 \mathrm{~V}, T=85^{\circ} \mathrm{C}$	I_{R}	<1	$\mu \mathrm{~A}$

Fiber Pigtail

Type: single mode, silica

Parameter	Values	Unit
Mode field diameter	9 ± 1	$\mu \mathrm{~m}$
Cladding diameter	125 ± 2	$\mu \mathrm{~m}$
Mode field/cladding concentricity error	<1	$\mu \mathrm{~m}$
Cladding non-circularity	<2	$\%$
Mode field non-circularity	<6	$\%$
Cut-off wavelength	>1270	nm
Jacket diameter	0.9 ± 0.1	mm
Bending radius	>30	Mm
Allowed Tensile strength fiber/case	max .5	N
Length	1 ± 0.2	m

Laser Diode

Radiant Power in Singlemode Fiber

Laser Forward Current

$I_{F}=f\left(V_{F}\right)$

Forward Voltage in V

Relative Radiant Power

$\Phi_{\mathrm{e}}=f(\lambda)$

Monitor Diode Dark Current $I_{\text {R }}=$

$f\left(T_{\mathrm{A}}\right) \Phi_{\text {port }}=0, V_{\mathrm{R}}=5 \mathrm{~V}$

Package Outlines (Dimensions in mm):
Coaxial modules have to be mechanically fixed. Only soldered pins do not fulfill mechanical connection of the coaxial module. Preferred for mechanical connection is our laser flange.

