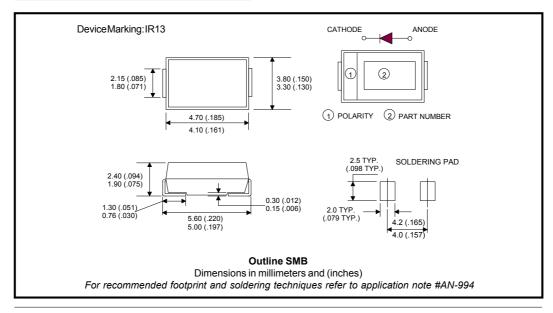

# International Rectifier

# MBRS130TR

# SCHOTTKY RECTIFIER

1 Amp




#### **Major Ratings and Characteristics**

| Cha                | racteristics                  | MBRS130TR   | Units |
|--------------------|-------------------------------|-------------|-------|
| I <sub>F(AV)</sub> | Rectangular waveform          | 1.0         | А     |
| V <sub>RRM</sub>   |                               | 30          | V     |
| I <sub>FSM</sub>   | $@t_p = 5 \mu s \text{ sine}$ | 230         | А     |
| V <sub>F</sub>     | @1.0Apk,T <sub>J</sub> =125°C | 0.42        | V     |
| T <sub>J</sub>     | range                         | - 55 to 125 | °C    |

#### **Description/Features**

The MBRS130TR surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability



# Voltage Ratings

| Partnumber                                             | MBRS130TR |  |
|--------------------------------------------------------|-----------|--|
| V <sub>R</sub> Max. DC Reverse Voltage (V)             | 30        |  |
| V <sub>RWM</sub> Max. Working Peak Reverse Voltage (V) |           |  |

#### Absolute Maximum Ratings

|                    | Parameters                      | Value | Units | Conditions                                        |                                        |
|--------------------|---------------------------------|-------|-------|---------------------------------------------------|----------------------------------------|
| I <sub>F(AV)</sub> | Max. Average Forward Current    | 1.0   | Α     | 50% duty cycle@T <sub>L</sub> =147°C, re          | ectangular waveform                    |
| I <sub>FSM</sub>   | Max.PeakOneCycleNon-Repetitive  | 870   | Α     | 5μs Sine or 3μs Rect. pulse                       | Following any rated load condition and |
|                    | SurgeCurrent                    | 50    |       | 10ms Sine or 6ms Rect. pulse                      | with rated V <sub>RRM</sub> applied    |
| E <sub>AS</sub>    | Non-Repetitive Avalanche Energy | 5.0   | mJ    | T <sub>J</sub> =25°C,I <sub>AS</sub> =0.5A,L=10mH |                                        |
| I <sub>AR</sub>    | Repetitive Avalanche Current    | 0.2   | Α     |                                                   |                                        |

# **Electrical Specifications**

| Parameters                               |                                          | Value | Units | Conditions                                                                |                           |
|------------------------------------------|------------------------------------------|-------|-------|---------------------------------------------------------------------------|---------------------------|
| V <sub>FM</sub>                          | Max. Forward Voltage Drop (1)            | 0.6   | V     | @ 1A                                                                      | T,= 25 °C                 |
|                                          |                                          | 0.67  | V     | @ 2A                                                                      | 1 <sub>J</sub> = 23 0     |
|                                          |                                          | 0.42  | V     | @ 1A                                                                      | T,= 125 °C                |
|                                          |                                          | 0.52  | V     | @ 2A                                                                      | ., .20 0                  |
| I <sub>RM</sub>                          | Max. Reverse Leakage Current (1)         | 0.5   | mA    | T <sub>J</sub> = 25 °C                                                    |                           |
|                                          |                                          | 5.0   | mA    | T <sub>J</sub> = 100 °C                                                   | $V_R = \text{rated } V_R$ |
|                                          |                                          | 15    | mA    | T <sub>J</sub> = 125 °C                                                   |                           |
| C <sub>T</sub>                           | C <sub>T</sub> Max. Junction Capacitance |       | pF    | V <sub>R</sub> = 5V <sub>DC</sub> (test signal range 100KHz to 1Mhz) 25°C |                           |
| L <sub>S</sub> Typical Series Inductance |                                          | 2.0   | nΗ    | Measured lead to lead 5mm from package body                               |                           |
| dv/dt                                    | Max. Voltage Rate of Change              | 10000 | V/µs  |                                                                           |                           |
|                                          | $(Rated V_R)$                            |       |       |                                                                           |                           |

<sup>(1)</sup> Pulse Width < 300µs, Duty Cycle < 2%

# Thermal-Mechanical Specifications

|                   | Parameters                                   | Value       | Units  | Conditions        |
|-------------------|----------------------------------------------|-------------|--------|-------------------|
| T <sub>J</sub>    | Max.JunctionTemperatureRange (*)             | -55 to 125  | °C     |                   |
| T <sub>stg</sub>  | Max. Storage Temperature Range               | -55 to 150  | °C     |                   |
| R <sub>thJL</sub> | Max.Thermal Resistance Junction to Lead (**) | 25          | °C/W   | DCoperation       |
| R <sub>thJA</sub> | Max.Thermal Resistance Junction to Ambient   | 80          | °C/W   | DCoperation       |
| wt                | Approximate Weight                           | 0.10(0.003) | g(oz.) |                   |
|                   | Case Style                                   | SMB         |        | SimilartoDO-214AA |
|                   | Device Marking                               |             |        |                   |

 $<sup>\</sup>frac{\text{(*)}}{\text{dTj}} < \frac{1}{\text{Rth(j-a)}} \text{ thermal runaway condition for a diode on its own heatsink}$ 

<sup>(\*\*)</sup> Mounted 1 inch square PCB

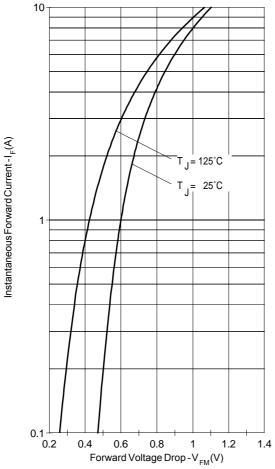



Fig. 1-Maximum Forward Voltage Drop Characteristics

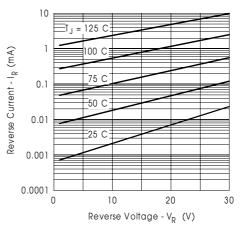



Fig. 2-Typical Peak Reverse Current Vs. Reverse Voltage

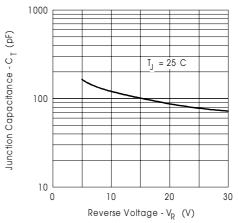



Fig. 3-Typical Junction Capacitance Vs. Reverse Voltage

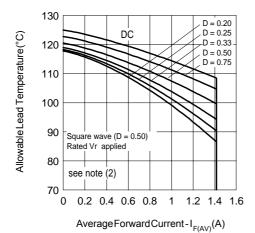



Fig. 4-Maximum Average Forward Current Vs. Allowable Lead Temperature

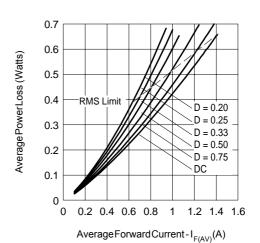



Fig. 5-Maximum Average Forward Dissipation Vs. Average Forward Current

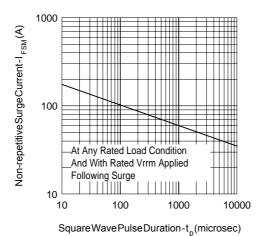
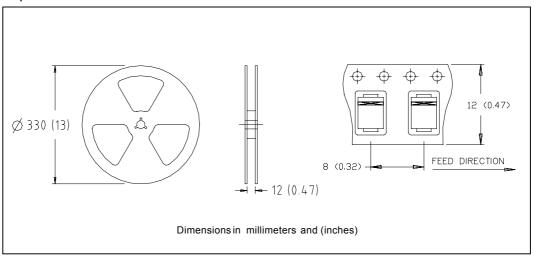




Fig. 6-Maximum Peak Surge Forward Current Vs. Pulse Duration

(2) Formula used:  $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$ ;  $Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D)$  (see Fig. 6);  $Pd_{REV} = Inverse Power Loss = V_{R1} \times I_R (1 - D)$ ;  $I_R @ V_{R1} = 80\%$  rated  $V_R$ 

Tape & Reel Information



#### Marking & Identification

 $\label{lem:eq:condition} Each \, device \, has \, marking \, and \, identification \, on \, two \, rows.$ 

- The first row designates the device as manufactured by International Rectifier as indicated by the letters "IR", then Current and Voltage.
- -The second row shows the data code: Year and Week.

See below marking diagram

FIRST ROW

IR 13

SECOND ROW

Date Code YY WW

# Ordering Information

#### MBRS130TR - TAPE AND REEL

WHENORDERING, INDICATE THE PART NUMBER AND THE QUANTITY (IN MULTIPLES OF 3000 PIECES).

EXAMPLE: MBRS130TR - 6000 PIECES

MBRS130TR
Bulletin PD-20584 rev. B 02/02

Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level.

Qualification Standards can be found on IR's Web site.



IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7309 Visit us at www.irf.com for sales contact information. 02/02