Frequency Generator & Integrated Buffers for Celeron & PII/III™ #### **Recommended Application:** 440BX/VIA Apollo 133 style chipset. #### **Output Features:** - 2 CPUs @2.5V, up to 166MHz. - 1 IOAPIC @ 2.5V - 13 SDRAM @ 3.3V - 6 PCI @3.3V. - 1 48MHz, @3.3V fixed. - 1 24MHz @ 3.3V - 2 REF @3.3V, 14.318MHz. #### Features: - Up to 166MHz frequency support - Support power management: PCI, CPU stop and Mode - Spread spectrum for EMI control (0 to -0.5%, ± 0.25%). - Uses external 14.318MHz crystal #### **Skew Specifications:** - CPU CPU: <175ps - SDRAM SDRAM: <250ps - PCI PCI: <500ps - BUFFER_IN-SDRAM: <5ns - CPU(early)-PCI: Min=1.0ns, Typ=2.3ns, Max=4.0ns # **Pin Configuration** #### 48-Pin 300mil SSOP - * Internal Pull-up Resistor of 120K to VDD - ** Internal Pull-down resistor of 120K to GND # **Block Diagram** # **Functionality** | FS3 | FS2 | FS1 | FS0 | CPU
(MHz) | PCICLK
(MHz) | |-----|-----|-----|-----|--------------|-----------------| | 0 | 0 | 0 | 0 | 80.00 | 40.00 | | 0 | 0 | 0 | 1 | 75.00 | 37.50 | | 0 | 0 | 1 | 0 | 83.31 | 41.65 | | 0 | 0 | 1 | 1 | 66.82 | 33.41 | | 0 | 1 | 0 | 0 | 103.00 | 34.33 | | 0 | 1 | 0 | 1 | 112.01 | 37.34 | | 0 | 1 | 1 | 0 | 68.01 | 34.01 | | 0 | 1 | 1 | 1 | 100.23 | 33.41 | | 1 | 0 | 0 | 0 | 120.00 | 40.00 | | 1 | 0 | 0 | 1 | 114.99 | 38.33 | | 1 | 0 | 1 | 0 | 109.99 | 36.66 | | 1 | 0 | 1 | 1 | 105.00 | 35.00 | | 1 | 1 | 0 | 0 | 140.00 | 35.00 | | 1 | 1 | 0 | 1 | 150.00 | 37.50 | | 1 | 1 | 1 | 0 | 124.00 | 31.00 | | 1 | 1 | 1 | 1 | 132.99 | 33.25 | # **Pin Descriptions** | PIN NUMBER | PIN NAME | TYPE | DESCRIPTION | |--|----------------------|------|---| | 1 | VDD1 | PWR | REF, XTAL power supply, nominal 3.3V | | | REF0 | OUT | 14.318 Mhz reference clock. | | 2 | PCI_STOP#1 | IN | Halts PCICLK clocks at logic 0 level, when input low (In mobile mode, MODE=0) | | 3,9,16,22,
33,39,45 | GND | PWR | Ground | | 4 | X1 | IN | Crystal input, has internal load cap (36pF) and feedback resistor from X2 | | 5 | X2 | OUT | Crystal output, nominally 14.318MHz. Has internal load cap (36pF) | | 6,14 | VDD2 | PWR | Supply for PCICLK_F and PCICLK, nominal 3.3V | | 7 | PCICLK_F | OUT | Free running PCI clock not affected by PCI_STOP# for power management. | | , | MODE ^{1, 2} | IN | Pin 7 function select pin, 1=Desktop Mode, 0=Mobile Mode. Latched Input. | | | FS3 | IN | Frequency select pin. Latched Input. Internal Pull-down to GND | | 8 | PCICLK0 | OUT | PCI clock outputs. Syncheronous to CPU clocks with 1-4ns skew (CPU early) | | 13, 12, 11, 10 | PCICLK (4:1) | OUT | PCI clock outputs. Syncheronous to CPU clocks with 1-4ns skew (CPU early) | | 15 | BUFFER IN | IN | Input to Fanout Buffers for SDRAM outputs. | | 17, 18, 20, 21,
28, 29, 31, 32,
34, 35,37,38 | SDRAM (11:0) | OUT | SDRAM clock outputs, Fanout Buffer outputs from BUFFER IN pin (controlled by chipset). | | 19,30,36 | VDD3 | PWR | Supply for SDRAM and CPU PLL Core, nominal 3.3V. | | 23 | SDATA | I/O | Data pin for I ² C circuitry 5V tolerant | | 24 | SCLK | IN | Clock input of I ² C input, 5V tolerant input | | 25 | 24MHz | OUT | 24MHz output clock | | 25 | FS1 ^{1, 2} | IN | Frequency select pin. Latched Input. | | 26 | 48MHz | OUT | 48MHz output clock | | 20 | FS0 ^{1, 2} | IN | Frequency select pin. Latched Input | | 27 | VDD4 | PWR | Power for 24 & 48MHz output buffers and fixed PLL core. | | 40 | SDRAM_F | OUT | Free running SDRAM clock output. Not affected by CLK_STOP# | | 41 | CLK_STOP# | IN | This asynchronous input halts CPUCLK, IOAPIC & SDRAM clocks at logic "0" level when driven low. | | 42 | VDDL2 | PWR | Supply for CPU clocks 2.5V nominal | | 43 | CPUCLK1 | OUT | CPU clock outputs, powered by VDDL2. Low if CLK_STOP# = Low | | 44 | CPUCLK_F | OUT | Free running CPU clock. Not affected by the CLK_STOP# | | 46 | REF1 | OUT | 14.318 MHz reference clock. | | 40 | FS2 ^{1, 2} | IN | Frequency select pin. Latched Input | | 47 | IOAPIC | OUT | IOAPIC clock output. 14.318 MHz Powered by VDDL1. | | 48 | VDDL1 | PWR | Supply for IOAPIC, 2.5V nominal | #### Notes: - Internal Pull-up Resistor of 120K to 3.3V on indicated inputs Bidirectional input/output pins, input logic levels are latched at internal power-on-reset. Use 10Kohm resistor to program logic Hi to VDD or GND for logic low. # **General Description** The ICS9248-98 is a single chip clock solution for Desktop designs. It provides all necessary clock signals for such a system. Spread spectrum may be enabled through I2C programming. Spread spectrum typically reduces system EMI by 8dB to 10dB. This simplifies EMI qualification without resorting board design iterations or costly shielding. The ICS9248- employs a proprietary closed loop design, which tightly controls the percentage of spreading over process and temperature variations. Serial programming I²C interface allows changing functions, stop clock programming and frequency selection. ### **Mode Pin - Power Management Input Control** | MODE, Pin 7
(Latched Input) | Pin 2 | |--------------------------------|----------------------| | 0 | PCI_STOP#
(Input) | | 1 | REF0
(Output) | # **Power Groups** VDD1 = REF, X1, X2 VDD2 = PCICLK_F, PCICLK VDD3 = SDRAM, supply for PLL core VDD4 = 24MHz, 48MHz VDDL1 = IOAPIC VDDL2 = CPUCLK 1, CPUCLK_F # General I²C serial interface information The information in this section assumes familiarity with I^2C programming. For more information, contact ICS for an I^2C programming application note. ### **How to Write:** - Controller (host) sends a start bit. - Controller (host) sends the write address D2 (H) - ICS clock will acknowledge - · Controller (host) sends a dummy command code - ICS clock will acknowledge - · Controller (host) sends a dummy byte count - ICS clock will acknowledge - Controller (host) starts sending first byte (Byte 0) through byte 5 - ICS clock will acknowledge each byte one at a time. - · Controller (host) sends a Stop bit | How to | Write: | |--------------------|----------------------| | Controller (Host) | ICS (Slave/Receiver) | | Start Bit | | | Address | | | D2 _(H) | | | | ACK | | Dummy Command Code | | | | ACK | | Dummy Byte Count | | | | ACK | | Byte 0 | | | | ACK | | Byte 1 | | | | ACK | | Byte 2 | | | | ACK | | Byte 3 | | | | ACK | | Byte 4 | | | | ACK | | Byte 5 | | | | ACK | | Stop Bit | | ### How to Read: - Controller (host) will send start bit. - Controller (host) sends the read address D3 (H) - ICS clock will acknowledge - ICS clock will send the *byte count* - Controller (host) acknowledges - ICS clock sends first byte (Byte 0) through byte 5 - Controller (host) will need to acknowledge each byte - Controller (host) will send a stop bit | How to Read: | | | | | | | |-------------------|----------------------|--|--|--|--|--| | Controller (Host) | ICS (Slave/Receiver) | | | | | | | Start Bit | | | | | | | | Address | | | | | | | | D3 _(H) | | | | | | | | | ACK | | | | | | | | Byte Count | | | | | | | ACK | | | | | | | | | Byte 0 | | | | | | | ACK | | | | | | | | | Byte 1 | | | | | | | ACK | | | | | | | | | Byte 2 | | | | | | | ACK | | | | | | | | | Byte 3 | | | | | | | ACK | | | | | | | | | Byte 4 | | | | | | | ACK | | | | | | | | | Byte 5 | | | | | | | ACK | | | | | | | | Stop Bit | | | | | | | #### **Notes:** - 1. The ICS clock generator is a slave/receiver, I²C component. It can read back the data stored in the latches for verification. **Read-Back will support Intel PIIX4 "Block-Read" protocol**. - 2. The data transfer rate supported by this clock generator is 100K bits/sec or less (standard mode) - 3. The input is operating at 3.3V logic levels. - 4. The data byte format is 8 bit bytes. - 5. To simplify the clock generator I²C interface, the protocol is set to use only "Block-Writes" from the controller. The bytes must be accessed in sequential order from lowest to highest byte with the ability to stop after any complete byte has been transferred. The Command code and Byte count shown above must be sent, but the data is ignored for those two bytes. The data is loaded until a Stop sequence is issued. - 6. At power-on, all registers are set to a default condition, as shown. $^{0313F-08/04/04}$ # Serial Configuration Command Bitmap Byte0: Functionality and Frequency Select Register (default = 0) | Bit | | Description PWD | | | | | | | |---------|--|---|-----|--------|-----|--------|--------|--------| | | | D:4 /O | 7.0 | | | CPUCLK | PCICLK | | | | Bit (2, 7, 6, 5, 4) | | | |) | (MHz) | (MHz) | | | | 0 | 0 | 0 | 0 | 0 | 80.00 | 40.00 | | | | 0 | 0 | 0 | 0 | 1 | 75.00 | 37.50 | | | | 0 | 0 | 0 | 1 | 0 | 83.31 | 41.65 | | | | 0 | 0 | 0 | 1 | 1 | 66.82 | 33.41 | | | | 0 | 0 | 1 | 0 | 0 | 103.00 | 34.33 | | | | 0 | 0 | 1 | 0 | 1 | 112.01 | 37.34 | | | | 0 | 0 | 1 | 1 | 0 | 68.01 | 34.01 | | | | 0 | 0 | 1 | 1 | 1 | 100.23 | 33.41 | | | | 0 | 1 | 0 | 0 | 0 | 120.00 | 40.00 | | | | 0 | 1 | 0 | 0 | 1 | 114.99 | 38.33 | | | | 0 | 1 | 0 | 1 | 0 | 109.99 | 36.66 | | | | 0 | 1 | 0 | 1 | 1 | 105.00 | 35.00 | | | | 0 | 1 | 1 | 0 | 0 | 140.00 | 35.00 | | | | 0 | 1 | 1 | 0 | 1 | 150.00 | 37.50 | 0,0101 | | Bit 2, | 0 | 1 | 1 | 1 | 0 | 124.00 | 31.00 | Note1 | | Bit 7:4 | 0 | 1 | 1 | 1 | 1 | 132.99 | 33.25 | | | | 1 | 0 | 0 | 0 | 0 | 135.00 | 33.75 | | | | 1 | 0 | 0 | 0 | 1 | 129.99 | 32.50 | | | | 1 | 0 | 0 | 1 | 0 | 126.00 | 31.50 | | | | 1 | 0 | 0 | 1 | 1 | 118.00 | 39.33 | | | | 1 | 0 | 1 | 0 | 0 | 115.98 | 38.66 | | | | 1 | 0 | 1 | 0 | 1 | 95.00 | 31.67 | | | | 1 | 0 | 1 | 1 | 0 | 90.00 | 30.00 | | | | 1 | 0 | 1 | 1 | 1 | 85.01 | 28.34 | | | | 1 | 1 | 0 | 0 | 0 | 166.00 | 41.50 | | | | 1 | 1 | 0 | 0 | 1 | 160.01 | 40.00 | | | | 1 | 1 | 0 | 1 | 0 | 154.99 | 38.75 | | | | 1 | 1 | 0 | 1 | 1 | 147.95 | 36.99 | | | | 1 | 1 | 1 | 0 | 0 | 145.98 | 36.50 | | | | 1 | 1 | 1 | 0 | 1 | 143.98 | 35.99 | | | | 1 | 1 | 1 | 1 | 0 | 141.99 | 35.50 | | | | 1 | 1 | 1 | 1 | 1 | 138.01 | 34.50 | | | Bit 3 | | 0 - Frequency is selected by hardware select, Latched | | | | | | | | DIL 3 | Inputs 1 - Frequency is selected by Bit 2, 7:4 | | | | | | 0 | | | Bit 1 | 0 - 1 | Vorma | al | | | | | 1 | | DIL I | | 1 - Spread Spectrum Enabled ± 0.25% Center Spread | | | | | | 1 | | Bit 0 | | Runni | | ultout | ts. | | | 0 | | | 1- Tristate all outputs | | | | | | | | Note1: Default at power-up will be for latched logic inputs to define frequency, as displayed by Bit 3. Byte 1: CPU, Active/Inactive Register (1= enable, 0 = disable) | BIT | PIN# | PWD | DESCRIPTION | |-------|------|-----|--------------| | Bit 7 | - | X | Latched FS2# | | Bit 6 | - | 1 | (Reserved) | | Bit 5 | - | 1 | (Reserved) | | Bit 4 | - | 1 | (Reserved) | | Bit 3 | 40 | 1 | SDRAM_F | | Bit 2 | - | 1 | (Reserved) | | Bit 1 | 43 | 1 | CPUCLK1 | | Bit 0 | 44 | 1 | CPUCLK_F | Byte 2: PCI, Active/Inactive Register (1= enable, 0 = disable) | BIT | PIN# | PWD | DESCRIPTION | |-------|------|-----|-------------| | Bit 7 | - | 1 | (Reserved) | | Bit 6 | 7 | 1 | PCICLK_F | | Bit 5 | - | 1 | (Reserved) | | Bit 4 | 13 | 1 | PCICLK4 | | Bit 3 | 12 | 1 | PCICLK3 | | Bit 2 | 11 | 1 | PCICLK2 | | Bit 1 | 10 | 1 | PCICLK1 | | Bit 0 | 8 | 1 | PCICLK0 | Byte 3: SDRAM, Active/Inactive Register (1= enable, 0 = disable) | BIT | PIN# | PWD | DESCRIPTION | |-------|-------------------|-----|--------------| | Bit 7 | - | 1 | (Reserved) | | Bit 6 | - | X | Latched FS0# | | Bit 5 | 26 | 1 | 48MHz | | Bit 4 | 25 | 1 | 24 MHz | | Bit 3 | - | 1 | (Reserved) | | Bit 2 | 17, 18,
20, 21 | 1 | SDRAM (11:8) | | Bit 1 | 28, 29,
31, 32 | 1 | SDRAM (7:4) | | Bit 0 | 34, 35,
37, 38 | 1 | SDRAM (3:0) | Byte 4: Reserved , Active/Inactive Register (1= enable, 0 = disable) | BIT | PIN# | PWD | DESCRIPTION | |-------|------|-----|--------------| | Bit 7 | - | 1 | (Reserved) | | Bit 6 | - | 1 | (Reserved) | | Bit 5 | - | 1 | (Reserved) | | Bit 4 | - | 1 | (Reserved) | | Bit 3 | - | X | Latched FS1# | | Bit 2 | - | 1 | (Reserved) | | Bit 1 | - | X | Latched FS3# | | Bit 0 | - | 1 | (Reserved) | Byte 5: Peripheral , Active/Inactive Register (1= enable, 0 = disable) | BIT | PIN# | PWD | DESCRIPTION | |-------|------|-----|-------------| | Bit 7 | - | 1 | (Reserved) | | Bit 6 | - | 1 | (Reserved) | | Bit 5 | - | 1 | (Reserved) | | Bit 4 | 47 | 1 | IOAPIC0 | | Bit 3 | - | 1 | (Reserved) | | Bit 2 | - | 1 | (Reserved) | | Bit 1 | 46 | 1 | REF1 | | Bit 0 | 2 | 1 | REF0 | Byte 6: Peripheral , Active/Inactive Register (1= enable, 0 = disable) | BIT | PIN# | PWD | DESCRIPTION | |------|------|-----|-----------------| | Bit7 | - | 0 | Reserved (Note) | | Bit6 | - | 0 | Reserved (Note) | | Bit5 | - | 0 | Reserved (Note) | | Bit4 | - | 0 | Reserved (Note) | | Bit3 | - | 0 | Reserved (Note) | | Bit2 | - | 1 | Reserved (Note) | | Bit1 | - | 1 | Reserved (Note) | | Bit0 | - | 0 | Reserved (Note) | Note: Don't write into this register, writing into this register can cause malfunction #### Notes: - Inactive means outputs are held LOW and are disabled from switching. - 2. Latched Frequency Selects (FS#) will be inverted logic load of the input frequency select pin conditions. # CLK_STOP# Timing Diagram CLK_STOP# is an asychronous input to the clock synthesizer. It is used to turn off the CPU clocks for low power operation. CLK_STOP# is synchronized by the ICS9248-98. The minimum that the CPU clock is enabled (CLK_STOP# high pulse) is 100 CPU clocks. All other clocks will continue to run while the CPU clocks are disabled. The CPU clocks will always be stopped in a low state and start in such a manner that guarantees the high pulse width is a full pulse. CPU clock on latency is less than 4 CPU clocks and CPU clock off latency is less than 4 CPU clocks. #### Notes: - 1. All timing is referenced to the internal CPU clock. - 2. CLK_STOP# is an asynchronous input and metastable conditions may exist. This signal is synchronized to the CPU clocks inside the ICS9248-98. - 3. IOAPIC output is Stopped Glitch Free by CLK_STOP# going low. - SDRAM-F output is controlled by Buffer in signal, not affected by the ICS9248-98 CLK_STOP# signal. SDRAM's are controlled as shown. - 5. All other clocks continue to run undisturbed. # PCI_STOP# Timing Diagram PCI_STOP# is an asynchronous input to the **ICS9248-98**. It is used to turn off the PCICLK clocks for low power operation. PCI_STOP# is synchronized by the **ICS9248-98** internally. The minimum that the PCICLK clocks are enabled (PCI_STOP# high pulse) is at least 10 PCICLK clocks. PCICLK clocks are stopped in a low state and started with a full high pulse width guaranteed. PCICLK clock on latency cycles are only one rising PCICLK clock off latency is one PCICLK clock. #### Notes: - 1. All timing is referenced to the Internal CPUCLK (defined as inside the ICS9248-98 device.) - 2. PCI_STOP# is an asynchronous input, and metastable conditions may exist. This signal is required to be synchronized inside the ICS9248-98. - 3. All other clocks continue to run undisturbed. - 4. CPU_STOP# is shown in a high (true) state. # Shared Pin Operation - Input/Output Pins The I/O pins designated by (input/output) on the ICS9248-98 serve as dual signal functions to the device. During initial power-up, they act as input pins. The logic level (voltage) that is present on these pins at this time is read and stored into a 5-bit internal data latch. At the end of Power-On reset, (see AC characteristics for timing values), the device changes the mode of operations for these pins to an output function. In this mode the pins produce the specified buffered clocks to external loads. To program (load) the internal configuration register for these pins, a resistor is connected to either the VDD (logic 1) power supply or the GND (logic 0) voltage potential. A 10 Kilohm (10K) resistor is used to provide both the solid CMOS programming voltage needed during the power-up programming period and to provide an insignificant load on the output clock during the subsequent operating period. Figure 1 shows a means of implementing this function when a switch or 2 pin header is used. With no jumper is installed the pin will be pulled high. With the jumper in place the pin will be pulled low. If programmability is not necessary, than only a single resistor is necessary. The programming resistors should be located close to the series termination resistor to minimize the current loop area. It is more important to locate the series termination resistor close to the driver than the programming resistor. Fig. 1 # **Absolute Maximum Ratings** Supply Voltage..... 5.5 V Logic Inputs GND -0.5 V to V_{DD} +0.5 V Ambient Operating Temperature 0°C to +70°C Storage Temperature -65°C to +150°C Stresses above those listed under *Absolute Maximum Ratings* may cause permanent damage to the device. These ratings are stress specifications only and functional operation of the device at these or any other conditions above those listed in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. # **Recommended Operating Conditions** Operating Voltage, VDD Supply........... 2.5 to 3.7V Operating Voltage, VDDL Supply.......... 1.8 to 3.7V ## **Electrical Characteristics - Input/Supply/Common Output Parameters** $T_A = 0 - 70$ °C; Supply Voltage $V_{DD} = V_{DDL} = 3.3 \text{ V} + /-5\%$ (unless otherwise stated) | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |--------------------------------|-------------------------|---|-----------------------|--------|----------------|-------| | Input High Voltage | V_{IH} | | 2 | | $V_{DD} + 0.3$ | V | | Input Low Voltage | V_{IL} | | V _{SS} - 0.3 | | 0.8 | V | | Input High Current | I _{IH} | $V_{IN}=V_{DD}$ | | | 5 | uA | | Input Low Current | I _{IL1} | $V_{IN} = 0 \text{ V}$; Inputs with no pull-up resistors | -5 | | | uA | | Input Low Current | $I_{\rm IL2}$ | $V_{IN} = 0 \text{ V}$; Inputs with pull-up resistors | -200 | | | uA | | Operating Supply Current | I _{DD3.3OP66} | C _L = 0 pF; Select @ 66.8 MHz | | 94 | 180 | m ^ | | Operating Supply Current | I _{DD3.3OP100} | C _L = 0 pF; Select @ 100 MHz | | 130 | 100 | mA | | Input frequency | F_{i} | $V_{DD} = 3.3 \text{ V}$ | 12 | 14.318 | 16 | MHz | | Input Capacitance ¹ | C_{IN} | Logic Inputs | | | 5 | рF | | | C_{INX} | X1 & X2 pins | 27 | | 45 | рF | | Clk Stabilization ¹ | T_{STAB} | From $V_{DD} = 3.3 \text{ V}$ to 1% target Freq. | | | 3 | ms | ¹Guaranteed by design, not 100% tested in production. # **Electrical Characteristics - Input/Supply/Common Output Parameters** $T_A = 0 - 70$ °C; Supply Voltage $V_{DD} = 3.3 \text{ V +/-5\%}$, $V_{DDL} = 2.5 \text{V +/- 5\%}$ (unless otherwise stated) | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |--------------------------|-------------------------|---|-----|------|-----|-------| | Operating Supply Current | I _{DD2.5OP66} | C _L = 0 pF; Select @ 66.8 MHz | | 12 | 72 | mΛ | | Operating Supply Current | I _{DD2.5OP100} | C _L = 0 pF; Select @ 100 MHz | | 9 | 100 | mA | | Skew ¹ | T _{CPU-PCI} | $V_T = 1.5 \text{ V}; V_{TL} = 1.25 \text{V}$ | 1 | 2.46 | 4 | ns | ¹Guaranteed by design, not 100% tested in production. ## **Electrical Characteristics - CPUCLK** $T_A = 0 - 70$ °C; $V_{DD} = 3.3 V + -5\%$, $V_{DDL} = 2.5 V + -5\%$; $C_L = 20$ pF (unless otherwise stated) | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |-------------------------------------|-------------------------|--|-----|------|-----|-------| | Output High Voltage | V_{OH2B} | $I_{OH} = -8 \text{ mA}$ | 2 | 2.4 | | V | | Output Low Voltage | V_{OL2B} | I _{OL} = 12 mA | | 0.17 | 0.4 | V | | Output High Current | I_{OH2B} | $V_{OH} = 1.7 \text{ V}$ | | -58 | -16 | mA | | Output Low Current | I_{OL2B} | $V_{OL} = 0.7 V$ | 19 | 46 | | mA | | Rise Time ¹ | t _{r2B} | $V_{OL} = 0.4 \text{ V}, V_{OH} = 2.0 \text{ V}$ | | 1.08 | 1.6 | ns | | Fall Time ¹ | t _{f2B} | $V_{OH} = 2.0 \text{ V}, V_{OL} = 0.4 \text{ V}$ | | 0.96 | 1.6 | ns | | Duty Cycle ¹ | d_{t2B} | $V_T = 1.25 \text{ V}$ | 45 | 49.4 | 55 | % | | Skew window ¹ | t _{sk2B} | $V_T = 1.25 \text{ V}$ | | 62 | 175 | ps | | Jitter, Cycle-to-cycle ¹ | t _{jcyc-cyc2B} | $V_T = 1.25 \text{ V}$ | · | 216 | 250 | ps | ¹Guaranteed by design, not 100% tested in production. ## **Electrical Characteristics - PCICLK** $T_A = 0 - 70$ °C; $V_{DD} = 3.3$ V +/-5%, $V_{DDL} = 2.5$ V +/-5%; $C_L = 30$ pF (unless otherwise stated) | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |-------------------------------|--------------------|--|------|------|-----|-------| | Output High Voltage | V_{OH1} | $I_{OH} = -11 \text{ mA}$ | 2.4 | 3.15 | | V | | Output Low Voltage | V_{OL1} | $I_{OL} = 9.4 \text{ mA}$ | | 0.13 | 0.4 | V | | Output High Current | I _{OH1} | $V_{OH} = 2.0 \text{ V}$ | | -97 | -40 | mA | | Output Low Current | I _{OL1} | $V_{OL} = 0.8 \text{ V}$ | 41 | 69 | | mA | | Rise Time ¹ | t _{r1} | $V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$ | | 1.42 | 2.0 | ns | | Fall Time ¹ | t _{f1} | $V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$ | | 1.35 | 2.0 | ns | | Duty Cycle ¹ | d_{t1} | $V_T = 1.5 V$ | 45 | 51 | 55 | % | | Skew window ¹ | t _{sk1} | $V_T = 1.5 V$ | | 251 | 500 | ps | | Jitter, Absolute ¹ | t _{jabs1} | $V_T = 1.5 \text{ V}$ | -500 | 180 | 500 | ps | ¹Guaranteed by design, not 100% tested in production. ## **Electrical Characteristics - SDRAM** $T_A = 0 - 70$ °C; $V_{DD} = 3.3V + /-5\%$, $V_{DDL} = 2.5V + /-5\%$; $C_L = 30$ pF (unless otherwise stated) | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |---|------------------|--|-----|------|-----|-------| | Output High Voltage | V_{OH3} | I _{OH} = -28 mA | 2.4 | 3 | | V | | Output Low Voltage | V_{OL3} | I _{OL} = 20 mA | | 0.18 | 0.4 | V | | Output High Current | I _{OH3} | V _{OH} = 2.0 V | | -110 | -40 | mA | | Output Low Current | I_{OL3} | $V_{OL} = 0.8 \text{ V}$ | 41 | 86 | | mA | | Rise Time ¹ | t _{r3} | $V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$ | | 1.13 | 2 | ns | | Fall Time ¹ | t _{f3} | $V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$ | | 1.11 | 2 | ns | | Duty Cycle ¹ | d _{t3} | $V_T = 1.5 \text{ V}$ | 45 | 53.1 | 55 | % | | Skew window ¹ | t _{sk3} | $V_T = 1.5 \text{ V}$ | | 215 | 250 | ps | | Propagation Time ¹ (Buffer In to Output) | Tprop | V _T = 1.5 V | | 3.26 | 5 | ns | ¹Guaranteed by design, not 100% tested in production. ## **Electrical Characteristics - IOAPIC** $T_A = 0 - 70$ °C; $V_{DD} = 3.3$ V +/- 5%, $V_{DDL} = 2.5$ V +/- 5%; $C_L = 20$ pF (unless otherwise stated) | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | |-------------------------------|---------------------|--|-----|------|-----|-------| | Output High Voltage | V_{OH4B} | $I_{OH} = -8 \text{ mA}$ | 2 | 2.4 | | V | | Output Low Voltage | V_{OL4B} | I _{OL} = 12 mA | | 0.17 | 0.4 | V | | Output High Current | I _{OH4B} | V _{OH} = 1.7 V | | -58 | -16 | mA | | Output Low Current | I_{OL4B} | $V_{OL} = 0.7 V$ | 19 | 46 | | mA | | Rise Time ¹ | t _{r4B} | $V_{OL} = 0.4 \text{ V}, V_{OH} = 2.0 \text{ V}$ | | 1.14 | 2 | ns | | Fall Time ¹ | t _{f4B} | $V_{OH} = 2.0 \text{ V}, V_{OL} = 0.4 \text{ V}$ | | 1.07 | 2 | ns | | Duty Cycle ¹ | d _{t4B} | $V_T = 1.25 \text{ V}$ | 45 | 52.7 | 55 | % | | Jitter, Absolute ¹ | t _{jabs4B} | V _T = 1.25 V | -1 | 0.27 | 1 | ps | ¹Guaranteed by design, not 100% tested in production. # **Electrical Characteristics - REF, 48MHz, 24MHz** $T_A = 0 - 70$ °C; $V_{DD} = 3.3V + /-5\%$, $V_{DDL} = 2.5V + /-5\%$; $C_L = 20$ pF (unless otherwise stated) | - | | • • | | | | | |-------------------------------|--------------------|--|-----|------|-----|-------| | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | | Output High Voltage | V_{OH5} | _{OH} = -12 mA | | 3.03 | | V | | Output Low Voltage | V_{OL5} | _{OL} = 10 mA | | 0.23 | 0.4 | V | | Output High Current | I _{OH5} | $V_{OH} = 2.0 \text{ V}$ | | -50 | -22 | mA | | Output Low Current | I _{OL5} | $V_{OL} = 0.8 \text{ V}$ | 16 | 40 | | mA | | Rise Time ¹ | t _{r5} | $V_{OL} = 0.4 \text{ V}, V_{OH} = 2.4 \text{ V}$ | | 1.26 | 4.0 | ns | | Fall Time ¹ | t _{f5} | $V_{OH} = 2.4 \text{ V}, V_{OL} = 0.4 \text{ V}$ | | 1.57 | 4.0 | ns | | Duty Cycle ¹ | d_{t5} | $V_T = 1.5 \text{ V}$ | 45 | 53.3 | 55 | % | | Jitter, Absolute ¹ | t _{jabs5} | $V_T = 1.5 \text{ V}$ | -1 | | 1 | ns | ¹Guaranteed by design, not 100% tested in production. #### **General Layout Precautions:** - Use a ground plane on the top layer of the PCB in all areas not used by traces. - Make all power traces and vias as wide as possible to lower inductance. #### Notes: - All clock outputs should have series terminating resistor. Not shown in all places to improve readibility of diagram - readibility of diagram 2 Optional EMI capacitor should be used on all CPU, SDRAM, and PCI outputs. - 3 Optional crystal load capacitors are recommended. # Capacitor Values: C1, C2: Crystal load values determined by user C3: 100pF ceramic All unmarked capacitors are 0.01µF ceramic = Ground Plane Connection = Power Plane Conncetion ☐ = Solder Pads | SYMBOL | In Millir | neters | In Inches | | | | | |--------|-----------|-----------|------------------|-------|--|--|--| | | COMMON D | IMENSIONS | COMMON DIMENSION | | | | | | | MIN | MAX | MIN | MAX | | | | | Α | 2.413 | 2.794 | .095 | .110 | | | | | A1 | 0.203 | 0.406 | .008 | .016 | | | | | b | 0.203 | 0.343 | .008 | .0135 | | | | | С | 0.127 | 0.254 | .005 | .010 | | | | | D | SEEVAF | RIATIONS | SEE VARIATIONS | | | | | | Е | 10.033 | 10.668 | .395 | .420 | | | | | E1 | 7.391 | 7.595 | .291 | .299 | | | | | е | 0.635 | BASIC | 0.025 | BASIC | | | | | h | 0.381 | 0.635 | .015 | .025 | | | | | L | 0.508 | 1.016 | .020 | .040 | | | | | N | SEEVAF | RIATIONS | SEE VARIATIONS | | | | | | α | 0° | 8° | 0° | 8° | | | | #### **VARIATIONS** | N | Dn | nm. | D (inch) | | | |----------|--------|--------|--------------|--------|--| | IN | MIN | MAX | MIN | MAX | | | 28 | 9.398 | 9.652 | .370 | .380 | | | 34 | 11.303 | 11.557 | .445 | .455 | | | 48 | 15.748 | 16.002 | .620 | .630 | | | 56 | 18.288 | 18.542 | .720 | .730 | | | 64 | 20.828 | 21.082 | .820 | .830 | | | <u> </u> | • | | JEDEC MO-118 | 6/1/00 | | DOC# 10-0034 REVB # **Ordering Information** ICS9248yF-98LF-T