Features

- 6.5 μm x 6.5 μm Photodiode Pixel, at 6.5 μm Pitch
- 2 x 2 Outputs
- High Output Data Rate: 4 x 5 MHz
- High Dynamic Range: 10000: 1
- Antiblooming and Exposure Time Control
- Very Low Lag
- 56 lead 0.6" DIL Package

Description

Atmel's TH7834C is a linear sensor based on charge-coupled device (CCD) technology. It can be used in a wide range of applications thanks to operating mode flexibility, very high definition and high dynamic range (document scanning, digital photography, Art, Industrial and Scientific Applications).

Very Highresolution Linear CCD Image Sensor (12000 Pixels)

TH7834C

Rev. 1997A-IMAGE-05/02

Pin Description

Pin Number	Symbol	Designation			
1	V _{OS1}	Output 1 (Odd Pixels)			
2	V _{DR1}	Reset DC Bias (Output 1)			
3	V _{S1}	Amplifier Source Bias (Output 1)			
4	Φ_{R1-2}	Reset Clock (Outputs 1 and 2)			
5, 9, 14, 15, 20, 24, 33, 37, 42, 43, 48, 52	V _{SS}	Substrate Bias (Ground)			
6, 34	VST	Pixel Storage Gate DC Bias			
7	Ф _{А1-2}	Antiblooming and/or Exposure Time Control			
8	V _{GS1-2}	Output Gate DC Bias			
10	Φ_{3A}	Register Main Transport Clock			
11	Φ_{1A}	Register Main Transport Clock			
12	Φ_{4A}	Register Main Transport Clock			
13	Φ_{2A}	Register Main Transport Clock			
16	Φ_{2C}	Register Main Transport Clock			
17	Φ_{4C}	Register Main Transport Clock			
18	Φ_{1C}	Register Main Transport Clock			
19	Φ_{3C}	Register Main Transport Clock			
21	Ф _{РЗ-4}	Transfer Clock			
22	VA ₃₋₄	Antiblooming Diode Bias			
23	Φ_{LS3-4}	Register End Transport Clock			
25	V _{DD3-4}	Amplifier Drain Supplies (Outputs 3, 4)			
26	V _{S3}	Amplifier Source Bias (Output 3)			
27	V _{DR3}	Reset DC Bias (Output 3)			
28	V _{OS3}	Output 3 (Odd Pixels)			
29	V _{OS4}	Output 4 (Even Pixels)			
30	V _{DR4}	Reset DC Bias (Output 4)			
31	V _{S4}	Amplifier Source Bias (Output 4)			
32	Φ_{R3-4}	Reset Clock (Outputs 3 and 4)			
35	Ф _{АЗ-4}	Antiblooming and/or Exposure Time Control			
36	V _{GS3-4}	Output Gate DC Bias			
38	Φ_{3D}	Register Main Transport Clock			
39	Φ_{1D}	Register Main Transport Clock			
40	Φ_{4D}	Register Main Transport Clock			
41	Φ_{2D}	Register Main Transport Clock			
44	Φ_{2B}	Register Main Transport Clock			
45	Φ_{4B}	Register Main Transport Clock			

Pin Description (Continued)

Pin Number	Symbol	Designation				
46	Φ_{1B}	Register Main Transport Clock				
47	Φ_{3B}	Register Main Transport Clock				
49	Ф _{Р1-2}	Transfer Clock				
50	VA ₁₋₂	Antiblooming Diode Bias				
51	Φ_{LS1-2}	Register End Transport Clock				
53	V _{DD1-2}	Amplifier Drain Supplies (Outputs 1, 2)				
54	V _{S2}	Amplifier Source Bias (Output 2)				
55	V _{DR2}	Reset DC Bias (Output 2)				
56	V _{OS2}	Output 2 (Even Pixels)				

Notes: 1. Pins Φ_{A1-2} , V_{GS1-2} , Φ_{P1-2} , VA_{1-2} , Φ_{LS1-2} , V_{DD1-2} , Φ_{R1-2} and respectively, Φ_{A3-4} , V_{GS3-4} , Φ_{P3-4} , VA_{3-4} , Φ_{LS3-4} , V_{DD3-4} , Φ_{R3-4} are not connected together inside the package.

2. Two Pins V_{ST} connected together inside the package.

Figure 1. TH7834 Block Diagram

Description

TH7834C high resolution linear array consists of 12000 useful pixel photosensitive line, associated with four CCD shift registers and four output amplifiers. Transfer gates on both sides of the photosensitive line enable delivery of charges, respectively:

- on one side, charge accumulated by odd pixels (1, 3, 5... 11999), to CCD shift registers A and C,
- on the other side, charge accumulated by even pixels (2, 4, 6... 12000), to CCD shift registers B and D.

Shift registers 1 and 2 collect charges generated by one half of the photosensitive line (pixel 1 to 6000), whereas shift registers 3 and 4 collect charges generated by the second half of the photosensitive line (pixels 12000 to 6001).

The four CCD shift registers have separated clocks. The output signal can be, then, delivered simultaneously or sequentially on the four outputs.

The four CCD shift registers are designed with 4 separated gates. According to the gate connection, the signal can be read through 2 or 4 output amplifiers.

According to gate connection, 2 or 4 output operating mode can be chosen. In the 4 output operating mode, signals associated to the end pixels of the array (either pixels number 1, 2 or pixels number 11999, 12000) are delivered first in time and signals corresponding to the center of the line (pixels number 5999, 6000 and 6001, 6002) are delivered last in time. Thus, external circuitry and processing are needed to combine the four video outputs and to restore the normal order of the pixels in accordance with their spatial distribution on the photosensitive line.

Terminal stages for every CCD shift register have separate clock control inputs in order to speed up the final charge to voltage conversion and reduce the video output settling time.

Antiblooming and exposure time control functions are provided.

Symmetrical TH7834 package PIN OUT allow to inverted pin 1 and 56 positions without damage.

To obtain optimal operating mode, separated driving circuits are recommended for each readout shift register (at least Φ LS and Φ R).

Figure 2. Driving Schematic

4

Readout Shift Register Clocking

All gates of the 4 CCD shift registers are separated, enabling two or four output readout modes.

To select 2 or 4 outputs operating mode, register main transport gates must be connected as described here after:

4 outputs mode:

 $V_{OS1}: \Phi_{L1} = \Phi_{2A} + \Phi_{3A}; \Phi_{L2} = \Phi_{1A} + \Phi_{4A}$ $V_{OS2}: \Phi_{L1} = \Phi_{2B} + \Phi_{3B}; \Phi_{L2} = \Phi_{1B} + \Phi_{4B}$ $V_{OS3}: \Phi_{L1} = \Phi_{2C} + \Phi_{3C}; \Phi_{L2} = \Phi_{1C} + \Phi_{4C}$ $V_{OS4}: \Phi_{L1} = \Phi_{2D} + \Phi_{3D}; \Phi_{L2} = \Phi_{1D} + \Phi_{4D}$

• 2 output mode: V_{OS}1 and V_{OS2}:

 $V_{OS1}: \Phi_{L1} = \Phi_{2A} + \Phi_{3A} + \Phi_{1C} + \Phi_{2C}$

$$\Phi_{\mathsf{L2}} = \Phi_{\mathsf{1A}} + \Phi_{\mathsf{4A}} + \Phi_{\mathsf{3C}} + \Phi_{\mathsf{4A}}$$

 $\mathsf{V}_{\mathsf{OS2}}\!\!:\Phi_{\mathsf{L1}}=\Phi_{\mathsf{2B}}+\Phi_{\mathsf{3B}}+\Phi_{\mathsf{1D}}+\Phi_{\mathsf{2D}}$

- $\Phi_{\mathsf{L2}} = \Phi_{\mathsf{1B}} + \Phi_{\mathsf{4B}} + \Phi_{\mathsf{3D}} + \Phi_{\mathsf{4D}}$
- 2 output mode: V_{OS3} and V_{OS4}:

 $V_{OS3}: \Phi_{L1} = \Phi_{1A} + \Phi_{2A} + \Phi_{2C} + \Phi_{3C}$

$$\Phi_{\mathsf{L2}} = \Phi_{\mathsf{3A}} + \Phi_{\mathsf{4A}} + \Phi_{\mathsf{1C}} + \Phi_{\mathsf{4C}}$$

 V_{OS4} : $\Phi_{L1} = \Phi_{1B} + \Phi_{2B} + \Phi_{2D} + \Phi_{3D}$

 $\Phi_{L2} = \Phi_{3B} + \Phi 4B + \Phi_{1D} + \Phi_{4D}$

Note: In 2 output mode, the unused outputs can be connected as following:

- $\Phi_{LS} = \Phi_{R} = V_{GS} = 0V$
- 10V < V_{DR} < 15V
- V_{DD} = 15V
- \bullet V_{S} not connected in order to cancel unused output amplifiers power consumption.

Absolute Maximum Ratings*

Storage Temperature
Operating Temperature 0°C to + 70°C
Thermal Cycling15°C/mm
Maximum Voltage:
• Pins: 4, 6, 7, 8, 10, 11, 12, 13, 16, 17, 18, 19, 21, 23, 32, 34, 35, 36, 38, 39, 40, 41, 44, 45, 46, 47, 49, 510.3V to + 15V
• Pins: 2, 3, 22, 25, 26, 27, 30, 31, 50, 53, 54, 550.3V to + 15.5V
• Pins: 5, 9, 14, 15, 20, 24, 33, 37, 42, 43, 48, 52 Ground 0V

*NOTICE: Stresses above those listed under absolute maximum ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect reliability.

Operating Range

Operating range defines the temperature limits between which the functionality is guaranteed: 0°C to 70°C.

Operating Precautions

Shorting the video outputs to VSS or VDD, even temporarily, can permanently damage the output amplifiers.

Operating Conditions (T = 25°C)

Table 1. DC Characteristics

		Value			
Parameter	Symbol	Min.	Тур.	Max.	Unit
Output Amplifier Drain Supply	V _{DD1-2} , V _{DD3-4}	14.5	15	15.5	V
Substrate Voltage	V _{SS}	0	0		V
Reset DC Bias	$V_{DR1}, V_{DR2}, V_{DR3}, V_{DR4}$		V _{DD} - 0.5		V
Output Amplifier Source Bias	V _{S1} , V _{S2} , V _{S3} , V _{S4}		0		V
Output Gate DC Bias	V _{GS1-2} , V _{GS3-4}	2.2	2.4	2.6	V
Photosensitive Zone DC Bias	V _{ST}	3.5	4	4.5	V
Antiblooming Diode Bias	VA ₁₋₂ , VA ₃₋₄	14	14.5	15	V

Note: If no exposure time control is required, Φ_{A1-2} and Φ_{A3-4} must be connected to an adjustable DC bias (see Figure 7). Typical current in V_{DR} , $V_A < 10 \ \mu$ A; in V_{GS} , $V_{ST} < 1 \ \mu$ A.

Timing Diagram

Figure 3. Line Timing Diagram

For data rate of 5 MHz: Ti min = $\frac{3043}{5 \text{ MHz}}$ = 608.6 µs.

Note: It is better to clean the shift registers (with running clocks) and not to stop clocking them after readout time.

6

- Each video line in four output operating mode consists in: .
 - 30 inactive pre-scan, (not connected to pixels), _
 - 6 dark references,
 - 4 isolation elements, (inactive, not connected to pixels),
 - 3 non-useful pixels,
 - 3 000 useful pixels of the line. _

N = number of pixel periods (T_p) during readout period (see Figure 5).

Four output operating mode: $N \ge 3043$.

Two output operating mode: $N \ge 6086$.

 $(\Phi_{1S} \text{ can be clocked during the line blancking}).$

Figure 4. Detailed Timing Diagram For Transfer From Photosite To Register

Figure 5. Detailed Pixel Timing Diagram

Rise and fall time:

 Φ_{R1-2}, Φ_{R3-4} : 5% of T_P (min. 5 ns), $\Phi_{LS1-2}, \Phi_{LS3-4}$: 5% of T_P (min. 5 ns), $\Phi_{1,1}, \Phi_{1,2}$: 25% of TP (min. 30 ns), Φ_{P1-2}, Φ_{P3-4} : 100 ns (min 20 ns).

Cross over of complementary clocks (Φ_{L1} and Φ_{L2}) preferably at 50% of their amplitude.

- Note: Generally, the difference between the floating diode level and signal level is the sum of several signals:
 - Register clock feedthrough
 - Average CCD register dark signal proportional to CCD clock period, mode, temperature
 - Pixel dark signal (depending upon temperature and exposure time)
 - Pixel signal under illumination

Table 2.

Elements	Inactive	Dark	Isolation	Non Useful	Useful Pixels	
Signals	Prescan	References	Elements	Pixels		
Register Clock Feedthrough	Х	Х	Х	Х	Х	
Average CCD Register Dark Signal	Х	Х	Х	Х	Х	
Pixel Dark Signal		Х		Х	Х	
Pixel Signal Under Illumination				Х	Х	

Table 3. Drive Clock Voltage Swings

			Value			
Parameter	Symbol	Logic	Min.	Тур.	Max.	Unit
Register Main Transport Clock ⁽¹⁾	<u>м</u> м	High	8.5	9	11	V
	Ψ_{L1}, Ψ_{L2}	Low	0	0.4	0.6	V
Desister End Trenenert Clask ⁽¹⁾	$\Phi_{1,S1-2},$	High	8.5	9	11	V
	Φ_{LS3-4}	Low	0	0.2	0.4	V
	Φ_{A1-2}, Φ_{A3-4}	High	9.5	10	10.5	V
Exposure Time Control (High Level) ⁽¹⁾		Low	0	To be adjusted		V
Deast Clask ⁽¹⁾	<u>ж</u> ж	High	10.5	11	12.5	V
Reset Clock**	$\Phi_{R1\text{-}2}, \Phi_{R3\text{-}4}$	Low	0	1.5	2	V
	<u>ж</u> ж	High	10.5	11	11.5	V
	Ψ_{P1-2}, Ψ_{P3-4}	Low	0	0.4	0.6	V

Note: 1. Transients under 0.0V in the clock pulses will lead to charge injection, causing a localized increase of the dark signal. If such spurious negative transients are present, they can be removed by inserting a serial resistor of appropriate value (typically 20 Ω to 100 Ω) at the relevant driver output.

8

Symbol	Function/Clock	Capacitive Network	Total	Max. Frequency
Φ_{L1}, Φ_{L2}	Register Main Transport Clock	ΦL1 ΦL2 160pF 250pF ↓ 320pF	Φ_{L1} : 570 pF Φ_{L2} : 640 pF for one CCD ⁽¹⁾	10 MHz
$\Phi_{\text{LS1-2}}, \Phi_{\text{LS3-4}}$	Register End Transfer Clock		\leq 50 pF per phase	10 MHz
Φ _{P1-2} , Φ _{P3-4}	Transfer Clock	$V_{\text{ST}} \circ \begin{array}{c} \Phi P \\ 15pF \circ \\ 15pF \\ 15pF \\ 15pF \\ 50pF \\ \hline V_{\text{SS}} \end{array} $	80 pF per phase	Pulse duration ≥ 2 µs Period: ≥ 608.6 µs (4 outputs mode)
Φ _{A1-2} , Φ _{A3-4}	Antiblooming And Exposure Time Control	$\Phi A^{\circ} \xrightarrow{15pF} V_{ST}$	100 pF per phase	
Φ_{R1-2}, Φ_{R3-4}	Reset Clock		\leq 50 pF per phase	10 MHz

Table 4. Drive Clock Capacitances Operating Frequencies⁽¹⁾

1. For ¼ of total CCD register. Note:

Table 5. Static and Dynamic Electrical Characteristics

		Value				
Parameter	Symbol	Min.	Тур.	Max.	Unit	Remarks
DC Output Level (Pins: 1, 28, 29, 56)	V _{ref}		10		V	
Output Impedance (Pins: 1, 28, 29, 56)	Z _S		400	600	Ω	
Maximum Data Output Frequency Per Channel	F _s max		5	10	MHz	(Note:)
Input Current On Active Pins 4, 6, 7, 8, 10, 11, 12, 13, 16, 17, 18, 19, 21, 23, 32, 34, 35, 36, 38, 39, 40, 41, 44, 45, 46, 47, 49, 51	l _e		<< 1	2	μΑ	$V_{in} = 15V$ with all other pins = 0V
Amplifier Drain Supply Current (Per V_{DD})	I _{DD1-2} , I _{DD3-4}		10	16	mA	V _{DD} = 15V
Static Power Dissipation (Per V _{DD})	P _{D1-2} , P _{D3-4}		165	240	mW	

The maximum clock frequency is limited by the dark signal increase. Full performance for 5 MHz. Note:

Electro-optical Performance

- General measurement conditions: $Tc = 25^{\circ}C$; Ti = 1 ms; $F\Phi_{LA}$, $F\Phi_{LB}$, $F\Phi_{LC}$, $F\Phi_{LD} = 5 \text{ MHz}$, readout through 4 outputs.
- Light source: tungsten filament lamp (2,854 K) + BG 38 filter (2 mm thick) + F/3.5 aperture. The BG 38 filter limits the spectrum to 700 nm. In these conditions, 1 μJ/cm² corresponds to 3.5 lux.s.
- Typical operating conditions (see Table 1, 2, 3 and 4). First and last pixels of the photosensitive line, as well as reference elements, are excluded from the specification.
- Test without antiblooming, except for AE max.

		Value				
Parameter	Symbol	Min.	Тур.	Max.	Unit	Remarks
Saturation Output Voltage With Antiblooming OFF	V _{SAT}	2	3		V	(1)(2)(3)
Saturation Exposure	E _{SAT}		0.6		µJ/cm ²	
Responsitivity	R	3.5	5		V/µJ/cm ²	
Photo Response Non-uniformity Excluding Single Defects	PRNU		± 6	± 10	% VOS	$\overline{\text{VOS}} = 1.0 \text{V}^{(4)}$
Contrast Transfer Function At Nyquist Frequency (77 lp/mm)						
at 500 nm			75		%	VOS = 1.5V
at 600 nm	CTF		62		%	For white level
at 700 nm			47		%	
Temporal Noise In Darkness (rms)			300		μV	(5)
Dynamic Range (Relative to rms Noise)	D _R		10000			
Pixel Average Dark Signal	V _{DS}		110	250	µV/ms	(6)
Dark Signal Non-uniformity	DSNU		90	400	µV/ms	Peak to peak ⁽⁶⁾
Register Single Stage Transfer Efficiency	1 - ε	0.99998	0.999998			$\overline{\text{VOS}} = 1\text{V}$
Lag (Vertical Charge Transfer Efficiency)	VCTE		0.1	0.5	%	(7)
Antiblooming Efficiency	AE max		<1	15	mV	(8)

Table 6. Electro-optical Performance

Notes: 1. Value measured with respect to zero reference level.

2. Conversion factor is typically: 6 μ V/e-.

3. Without antiblooming: $\Phi_{A1-2} = \Phi_{A3-4} = 0V$.

4. VOS = average output voltage; PRNU for each output, in 4 output operating mode.

5. Measured in Correlated Double Sampling (C.D.S.) mode.

6. V_{DS} and DSNU vary with temperature.

7. Residual signal after line readout, at \overline{VOS} = 1V.

8. Line acquisition with Phi-A at high level. AE max = maximum signal along the line (to test all the antiblooming sites).

Figure 7. V_{SAT} versus Φ_A Low Level Typical Curve

Exposure Time Reduction (See Figure 8)

TH7834 allows a reduction in the exposure time without changing the readout time. It thus provides a function which is equivalent to an optical iris.

The exposure time reduction consists in increasing the Φ_A gate bias in order to remove continuously, during period 2, the photoelectrons from the pixel and to inject them into the antiblooming diode V_A. When Φ_A returns to the normal bias, electrons are integrated in the pixel.

Only excess electrons are evacuated into V_A (blooming control). Thus, the actual integration time is ti instead of T_i , without any change in the readout sequence. Register transfer and reset clocks (Φ_L , Φ_{LS} and Φ_R) must be pulsed during the T_i integration time.

Table 7. Exposure Time Reduction Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit
Antiblooming Diode Bias	VA ₁₋₂ . VA ₃₋₄	14	15.5	15	V
Antiblooming And Expose Time Control	$\Phi_{\text{A1-2}},\Phi_{\text{A3-4}}$		to be adjusted		V
Period 1					
Period 2		9.5	10	10.5	V

Figure 8. Timing Diagram For Exposure Time Control

Note: It is better to have $\Phi_{\rm A}$ falling/rising edge outside the useful readout period.

Ordering Code

12

TH7834C

The ordering code is TH7834CCC-RB

Outline Drawing

Atmel Headquarters

Corporate Headquarters

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 487-2600

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland TEL (41) 26-426-5555 FAX (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131 TEL 1(408) 441-0311 FAX 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France TEL (33) 2-40-18-18-18 FAX (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France TEL (33) 4-42-53-60-00 FAX (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland TEL (44) 1355-803-000 FAX (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany TEL (49) 71-31-67-0 FAX (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL 1(719) 576-3300 FAX 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/ High Speed Converters/RF Datacom

Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France TEL (33) 4-76-58-30-00 FAX (33) 4-76-58-34-80

e-mail

literature@atmel.com

Web Site http://www.atmel.com

© Atmel Corporation 2002.

Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

ATMEL[®] is the registered trademarks of Atmel.

Other terms and product names may be the trademarks of others.

