MEMORY

CMOS
MASK ROM CARD
PCMCIA Rel.2/JEIDA Ver. 4 conformable

MB98A51121/51221/51321/51421/51521-17

MASK ROM CARD 2 M/4 M/8 M/16 M/32 M-BYTE

■ DESCRIPTION

This card is a PCMCIA and JEIDA-compliant 68-pin two-piece Mask ROM card with the 16-bit mask ROM being installed on the common memory.
However, to use this card as PCMCIA Rel.2, JEIDA Ver.4, the card attribute information has to be stored in the Mask ROM.

■ FEATURES

- External dimensions: $85.6 \mathrm{~mm} \times 54.0 \mathrm{~mm} \times 3.3 \mathrm{~mm}$
- +5 V single power supply
- Usable in 8 bits $\times 16$ bits configuration
- Complete static operation
- I/O level TTL compatible
- Output tri-state
- Complete capacitive load without pull-up resistor or pull-down resistor except $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$.
-68-pin two-piece connector form

PACKAGE

(CRD-68P-M04)

PRODUCT CLASS

Part Number	Memory Device	Memory Configuration (word \times bit)	Access Time (ns) (max.)
MB98A51121	16-Mbit Mask ROM $\times 1 \mathrm{pcs}$	$2 \mathrm{M} \times 8 / 1 \mathrm{M} \times 16$	
MB98A51221	16-Mbit Mask ROM $\times 2 \mathrm{pcs}$	$4 \mathrm{M} \times 8 / 2 \mathrm{M} \times 16$	170
MB98A51321	16-Mbit Mask ROM $\times 4 \mathrm{pcs}$	$8 \mathrm{M} \times 8 / 4 \mathrm{M} \times 16$	
MB98A51421	16-Mbit Mask ROM $\times 8 \mathrm{pcs}$	$16 \mathrm{M} \times 8 / 8 \mathrm{M} \times 16$	
MB98A51521	16-Mbit Mask ROM $\times 16 \mathrm{pcs}$	$32 \mathrm{M} \times 8 / 16 \mathrm{M} \times 16$	

MB98A51121/51221/51321/51421/51521-17

PIN ASSIGNMENTS

(CONNECTOR SIDE)

- Pin Name

Symbol	I/O	Pin Name
A 0 to A_{25}	1	Address input
D ${ }_{0}$ to D_{15}	I/O	Data I/O
$\overline{C E}_{1}, \overline{C E}_{2}$	1	Card enable
$\overline{\mathrm{CD}}_{1}, \overline{\mathrm{CD}}_{2}$ *	O	Card detection
$\overline{\mathrm{VS}} 1_{1}, \mathrm{VS}_{2}$	O	Voltage sense
REG	I	Attribute memory space select
$\overline{\mathrm{OE}}$	1	Output enable
$\overline{W E}$	1	Write enable
BVD1, BVD2 *	O	Battery voltage detection
WP *	O	Write protect
Vcc	-	Supply voltage (+5 V)
GND	-	Ground
N.C.	-	No connection

*: Those pins are internally connected; use care when handling.

Pin No.	Symbol	Pin No.	Symbol
1	GND	35	GND
2	D_{3}	36	$\overline{C D}_{1}$
3	D4	37	D11
4	D5	38	D_{12}
5	D6	39	D_{13}
6	D7	40	D14
7	$\overline{\mathrm{CE}}_{1}$	41	D_{15}
8	A_{10}	42	$\overline{\mathrm{CE}} 2$
9	$\overline{\mathrm{OE}}$	43	$\overline{\mathrm{VS}}_{1}$ *
10	A_{11}	44	N.C.
11	A9	45	N.C.
12	A_{8}	46	A_{17}
13	A_{13}	47	A_{18}
14	A_{14}	48	A_{19} *
15	WE/N.C. *	49	A_{20} *
16	N.C.	50	$\mathrm{A}_{21} / \mathrm{N} . \mathrm{C}$. *
17	Vcc	51	Vcc
18	N.C.	52	N.C.
19	A_{16}	53	A22/N.C. *
20	A_{15}	54	$\mathrm{A}_{23} /$ N.C. *
21	A_{12}	55	A24/N.C. *
22	A_{7}	56	A25/N.C. *
23	A_{6}	57	$\overline{\mathrm{VS}}_{2}$ *
24	A_{5}	58	N.C.
25	A_{4}	59	N.C.
26	A_{3}	60	N.C.
27	A_{2}	61	$\overline{\mathrm{REG}} / \mathrm{N} . \mathrm{C} . *$
28	A_{1}	62	BVD2
29	A_{0}	63	BVD1
30	D_{0}	64	D8
31	D1	65	D9
32	D_{2}	66	D_{10}
33	WP	67	$\overline{C D}_{2}$
34	GND	68	GND

*: Whether a pin is an address pin or N.C. pin depends on the type of the models. See \square DIFFERENCE OF PIN FUNCTIONS.

DIFFERENCE OF PIN FUNCTIONS

Part Name	A 21	A_{22}	A_{23}	A_{24}	A_{25}	REG	WE	$\overline{V S}_{1}$	VS_{2}
MB98A51121	N.C.								
MB98A51221	A_{21}								
MB98A51321		A_{22}							
MB98A51421									
MB98A51521			A_{23}	A_{24}					

BLOCK DIAGRAM

1. 16-Mbit Mask ROM $\times 1 / \times 2 / \times 4$ Being Mounted

MB98A51121/51221/51321/51421/51521-17

2. 16-Mbit Mask ROM $\times 8 / \times 16$

*1, *2: Varies with the type of models.

Part Number	A_{22}	$\mathrm{~A}_{23}$	$\mathrm{~A}_{24}$	M0/1	M2/3	M4/5	M6/7	M8/9	M10/11	M12/13	M14/15
MB98A51421	A_{22}	$\mathrm{~A}_{23}$	$\mathrm{~N} . \mathrm{C}$.	$\mathrm{M} 0 / 1$	$\mathrm{M} 2 / 3$	$\mathrm{M} 4 / 5$	$\mathrm{M} 6 / 7$	-	-	-	-
MB98A51521	A_{22}	$\mathrm{~A}_{23}$	$\mathrm{~A}_{24}$	$\mathrm{M} 0 / 1$	$\mathrm{M} 2 / 3$	$\mathrm{M} 4 / 5$	$\mathrm{M} 6 / 7$	$\mathrm{M} 8 / 9$	$\mathrm{M} 10 / 11$	$\mathrm{M} 12 / 13$	$\mathrm{M} 14 / 15$

FUNCTIONAL TRUTH TABLE

$\overline{\mathbf{C E}}_{2}$	$\overline{\mathbf{C E}}_{\mathbf{1}}$	\mathbf{A}_{0} (BYTE)	$\overline{\mathbf{O E}}$	Operating Mode	Output Pin $\left(\mathrm{D}_{8}\right.$ to $\left.\mathrm{D}_{15}\right)$	Output Pin (Do to $\left.\mathrm{D}_{7}\right)$
H	H	\times	\times	Standby	High-impedance	High-impedance
\times	\times	\times	H	Output disable	High-impedance	High-impedance
H	L	L	L	Read $(\times 8$ bit)	High-impedance	Output data (even bytes)
H	L	H	L	Read $(\times 8$ bit)	High-impedance	Output data (odd bytes)
L	H	\times	L	Read $(\times 8$ bit)	Output data (odd bytes)	High-impedance
L	L	\times	L	Read $(\times 16$ bit)	Output data (odd bytes)	Output data (even bytes)

H: High level, L: Low level, \times : Don't care

ABSOLUTE MAXIMUM RATINGS (See WARNING)

Parameter	Symbol	Value		Unit
		Max.	Min.	
Supply Voltage *	Vcc	-0.3	+6.0	V
Input Voltage *	Vin	-0.3	$\mathrm{Vcc}+0.3$	V
Output Voltage *	Vout	-0.3	V cc +0.3	V
Ambient Temperature	T_{A}	-10	+60	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-30	+70	${ }^{\circ} \mathrm{C}$

* : The voltage values are with reference to GND $=0 \mathrm{~V}$.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value			Unit
		Min.	Typ.	Max.	
Supply Voltage *	V cc	4.75	5.0	5.25	V
	GND	-	0	-	V
Low Level Input Voltage *	$\mathrm{~V}_{\mathrm{IH}}$	2.4	-	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
Ambient Temperature	V_{IL}	-0.3	-	0.8	V

[^0]WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.
Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

ELECTRICAL CHARACTERISTICS

1. DC Characteristics

(On the recommended conditions)

Parameter	Notes	Symbol	Test Conditions	Value			Unit
				Min.	Typ.	Max.	
Standby Supply Current		Isb1	$\begin{aligned} & \overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2} \geqq \mathrm{~V}_{\mathrm{cc}}-0.2 \mathrm{~V} \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$	-	10	1600	$\mu \mathrm{A}$
		Isb2	$\begin{aligned} & \overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}=\mathrm{V}_{\mathrm{H}} \\ & \text { lout }=0 \mathrm{~mA} \end{aligned}$	-	-	10	mA
Averaging Operation Supply Current		Icc	$\begin{aligned} & \text { Cycle }=\text { min. } \\ & \text { Duty cycle }=100 \% \\ & \text { lout }=0 \mathrm{~mA}, \overline{O E}=\mathrm{V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{H}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	-	-	220	mA
Input Leak Current	*1	IL	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ to V_{cc}	-40	± 0.1	40	$\mu \mathrm{A}$
Output Leak Current	*2	ILo	Vout $=0 \mathrm{~V}$ to V cc , $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}=\mathrm{V}_{\mathrm{IH}}$ or $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{H}}$	-10	-	10	$\mu \mathrm{A}$
High Level Output Voltage	*2	Vон	$\mathrm{I} \mathrm{O}=-1 \mathrm{~mA}$	2.4	-	-	V
Low Level Output Voltage	*2	VoL	$\mathrm{loL}=2.1 \mathrm{~mA}$	-	-	0.4	V

Notes: *1. Excluding $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ pins.
${ }^{*}$ 2. Excluding WP, BVD1, BVD2, $\overline{C D}_{1}$ and $\overline{C D}_{2}$ pins.

2. AC Characteristics

(1) Common Memory read cycle
(On the recommended conditions)

Parameter	Notes	Symbol	Test Conditions	Value		Unit
				Min.	Max.	
Read Cycle Time		trc	-	170	-	ns
Address Cycle Time		tacc	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{H}}, \mathrm{~V}_{\mathrm{IL}} \\ & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	-	170	ns
Card Enable Access Time		tce	$\overline{\mathrm{OE}}=\mathrm{V}_{\text {IL }}$	-	170	ns
Output Enable Access Time	*1	toe	$\overline{\mathrm{CEx}}=\mathrm{V}_{\text {IH }}, \mathrm{V}_{\mathrm{IL}}$	-	75	ns
Output Disable Time	*2	tof	-	-	60	ns
Output Hold Time		tон	$\begin{aligned} & \overline{\mathrm{CE}} \mathrm{x}=\mathrm{V}_{\mathrm{H}}, \mathrm{~V}_{\mathrm{IL}} \\ & \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}} \end{aligned}$	0	-	ns

Notes: *1. The maximum delay of $\overline{O E}$ is $t_{A C C}$ - toE within the ranges in which the $t_{A C c}$ is not affected.
*2. tDF is determined by either $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$, whichever is faster with rise time.
The decision level is determined by the time the output is in a high-impedance state.
3. Input/output Terminal Capacitance

Parameter	Notes	Symbol	$\left(\mathrm{Vin}^{\prime}, \mathrm{V}_{\text {out }}=\mathrm{GND}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right)$		
			Value		Unit
			Min.	Max.	
Input Terminal Capacitance	*1	Cin	-	75	pF
Output Terminal Capacitance	*2	Cıo	-	50	pF

Notes: *1. Excluding $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ pins.
*2. Excluding WP, BVD1, BVD2, $\overline{C D}_{1}$, and $\overline{C D}_{2}$ pins.
4. AC Characteristics Test Conditions

Input voltage
Input pulse rise time, fall time
Timing measurement reference voltage

Output load

$$
\text { : Input } \quad: \mathrm{V}_{H}=2.4 \mathrm{~V}
$$

$$
\begin{aligned}
& : \mathrm{V}_{\mathrm{IH}}=2.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.6 \mathrm{~V} \\
& : \mathrm{tr}, \mathrm{tf}=5 \mathrm{~ns}(0.8 \mathrm{~V} \text { to } 2.4 \mathrm{~V}) \\
& : \mathrm{V}_{\mathrm{H}}=2.4 \mathrm{~V} \\
& : \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V} \\
& : \mathrm{VoH}^{2}=2.2 \mathrm{~V} \\
& : \mathrm{VoL}^{2}=0.8 \mathrm{~V} \\
& : 1 \mathrm{TTL}+\mathrm{CL}_{\mathrm{L}}(100 \mathrm{pF})
\end{aligned}
$$

- Output load circuit

TIMING DIAGRAM

1. Common Memory Read Cycle

(Continued)
(Continued)

*: tDF is determined by either $\overline{\mathrm{OE}}$ or $\overline{\mathrm{CE}}_{1}=\overline{\mathrm{CE}}_{2}$, whichever is faster with rise time.
The decision level is determined by the time the output is in a high-impedance state.

DATA RELEASE METHOD

Data release is accepted by the 8 -Mbit EPROM (1 Mword $\times 8$ bits).
To prevent erroneous writing of data, provide three samples per piece of data. Also indicate the card memory address for writing.

- Mapping between release data EPROM address and memory card address (16 Mbit Mask ROM $\times 1 / \times 2 / \times 4$ being mounted)
The range of the address for the MB98A51121 is 000000 to 1FFFFF (2 Mbytes).
The range of the address for the MB98A51221 is 000000 to 3FFFFF (4 Mbytes).
The range of the address for the MB98A51321 is 000000 to 7FFFFF (8 Mbytes).

- Mapping between release data EPROM address and memory card address (16 Mbit Mask ROM $\times 8 / \times 16$ being mounted)

The range of the address for the MB98A51421 is 000000 to FFFFFF (16 Mbytes).
The range of the address for the MB98A51521 is 0000000 to1FFFFFF (32 Mbytes)

(Continued)

MB98A51121/51221/51321/51421/51521-17

AUXILIARY CAPABILITIES

1. Card Detection Pins ($\overline{\mathrm{CD}}_{1}, \overline{\mathrm{CD}}_{2}$)

These pins verify a card is correctly inserted into the system.
The two pins are internally connected to the ground; with the system side connection being pulled up to the Vcc , detection of the voltage of these pins allows the system to check the state of connectivity of a card (See the diagram below).

2. Write Protection Pin (WP)

The Mask ROM Card, whose common memory is write-protected, outputs a high-level write-protection signal.

DEVICE HANDLING PRECAUTIONS

The device in composed of fine electronic parts, so take care in handling or keeping it as below.

- The card is made fine, so do not keep it in the high temperature nor high humiditly, place line in the direct sunshine nor near the heater.
- The card should not be bent, scratched, dropped nor be shocked violently.
- This device should never be taken a part. It could destroy the card or your personal computer hardware.
- To help you handle this device safely, request us the device specifications when purchasing this device.

MB98A51121/51221/51321/51421/51521-17

PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-88, Japan
Tel: (044) 754-3763
Fax: (044) 754-3329

North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, U.S.A.
Tel: (408) 922-9000
Fax: (408) 432-9044/9045

Europe

FUJITSU MIKROELEKTRONIK GmbH
Am Siebenstein 6-10
63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LIMITED \#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

[^0]: *: The voltage values are with reference to the GND $=0 \mathrm{~V}$.

