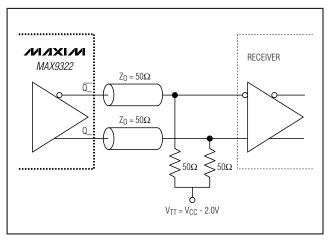
Features

LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver

General Description

The MAX9322 low-skew 1:15 differential clock driver reproduces or divides one of two differential input clocks at 15 differential outputs. An input multiplexer selects from one of two input clocks with input switching frequency in excess of 1.0GHz. The 15 outputs are arranged in four banks with 2, 3, 4, and 6 outputs, respectively. Each output bank is individually programmable to provide a divide-by-1 or divide-by-2 frequency function.


The MAX9322 operates in LVPECL systems with a +2.375V to +3.8V supply or in LVECL systems with a -2.375V to -3.8V supply. A VBB reference output provides compatibility with single-ended clock input signals and a master reset input provides a simultaneous reset on all outputs.

The MAX9322 is available in 52-pin TQFP and 68-pin QFN packages and is specified for operation over -40°C to +85°C. For 1:10 clock drivers, refer to the MAX9311/MAX9313 data sheet. For 1:5 clock drivers, refer to the MAX9316 data sheet.

Applications

Precision Clock Distribution Low-Jitter Data Repeaters Central-Office Backplane Clock Distribution **DSLAM** Backplane **Base Stations** ATE

Typical Operating Circuit


- ♦ 1.2ps (RMS) Maximum Random Jitter
- ♦ 300mV Differential Output at 1.0GHz
- ♦ 900ps Propagation Delay
- ♦ Selectable Divide-by-1 or Divide-by-2 Frequency Outputs
- ♦ Multiplexed 2:1 Input Function
- ♦ LVECL Operation from V_{EE} = -2.375V to -3.8V
- ♦ LVPECL Operation from V_{CC} = +2.375V to +3.8V
- ♦ ESD Protection: > 2kV Human Body Model

Ordering Information

PART	TEMP RANGE	PIN- PACKAGE
MAX9322ECY	-40°C to +85°C	52 TQFP
MAX9322ETK*	-40°C to +85°C	68 QFN

^{*}Future product—contact factory for availability.

Pin Configurations

NIXIN

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V _{CC} to V _{EE}
Single-Layer PC Board 52-Pin TQFP (derate 15.4mW/°C above +70°C)1230.8mW 68-Lead QFN (derate 27.8mW/°C above +70°C)2222.2mW Multilayer PC Board 52-Pin TQFP (derate 19.1mW/°C above +70°C)1529.6mW 68-Lead QFN (derate 38.5mW/°C above +70°C)3076.9mW
Junction-to-Ambient Thermal Resistance in Still Air Single-Layer PC Board 52-Pin TQFP+65°C/W
68-Lead QFN+36°C/W Multilayer PC Board
52-Pin TQFP+52.3°C/W 68-Lead QFN+26°C/W

Junction-to-Ambient Thermal Resistance with 5 Single-Layer PC Board	500 LFPM Airflow
52-Pin TQFP	+50°C/W
68-Lead QFN	+27°C/W
Multilayer PC Board	
52-Pin TQFP	+40°C/W
68-Lead QFN	
Junction-to-Case Thermal Resistance	•
52-Pin TQFP	+12.9°C/W
68-Lead QFN	
Operating Temperature Range	40°C to +85°C
Junction Temperature	+150°C
Storage Temperature Range	65°C to +150°C
ESD Protection	
Human Body Model (Q, Q, CLK_SEL,	
FSEL_, CLK_, MR, VBB)	±2kV
Soldering Temperature (10s)	
3 (32)	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $((V_{CC} - V_{EE}) = 2.375 V \ to \ 3.8 V, \ outputs \ loaded \ with \ 50 \Omega \ \pm 1\% \ to \ V_{CC} - 2 V; \ CLK_SEL, \ FSEL_ = high \ or \ low; \ MR = low; \ |V_{ID}| = 0.095 V \ to \ the \ lower \ of \ (V_{CC} - V_{EE}) \ and \ 3 V. \ Typical \ values \ are \ at \ (V_{CC} - V_{EE}) = 3.3 V, \ V_{IHD} = V_{CC} - 1 V, \ V_{ILD} = V_{CC} - 1.5 V.) \ (Notes \ 1-4)$

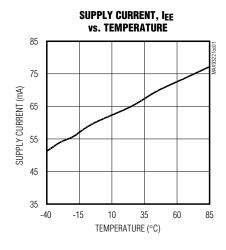
PARAMETER	SYMBOL	MBOL CONDITIONS		-40°C		+25°C			+85°C			UNITS
PANAMETER	STWIDOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
SINGLE-ENDED INPUT (MR, FSEL_, CLK_SEL)												
Input High Voltage	V _{IH1}	Figure 1	V _{CC} - 1.155		V _{CC} - 0.88	V _{CC} - 1.155		V _{CC} - 0.88	V _{CC} - 1.155		V _{CC} - 0.88	V
Input Low Voltage	VIL1	Figure 1	V _{CC} - 1.81		V _{CC} - 1.505	V _{CC} - 1.81		V _{CC} - 1.505	V _{CC} - 1.81		V _{CC} - 1.505	V
Input Current	l _{IN1}	MR, FSEL_, CLK_SEL = V _{IL} or V _{IH}	-15		+150	-15		+150	-15		+150	μΑ
DIFFERENTIAL INP	JT (CLK_,	CLK_)										
Single-Ended Input High Voltage	V _{IH2}	Figure 1	V _{CC} - 1.155		V _{CC} - 0.88	V _C C - 1.155		V _{CC} - 0.88	V _C C - 1.155		V _{CC} - 0.88	V
Single-Ended Input Low Voltage	V _{IL2}	Figure 1	V _{CC} - 1.81		V _{CC} - 1.505	V _{CC} - 1.81		V _{CC} - 1.505	V _{CC} - 1.81		V _{CC} - 1.505	V
High Voltage of Differential Input	V _{IHD}		V _{EE} + 1.2		Vcc	V _{EE} + 1.2		Vcc	V _{EE} + 1.2		Vcc	V
Low Voltage of Differential Input	V _{ILD}		VEE		V _{CC} - 0.095	VEE		V _{CC} - 0.095	VEE		V _{CC} - 0.095	V

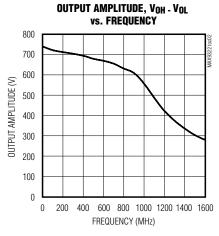
DC ELECTRICAL CHARACTERISTICS (continued)

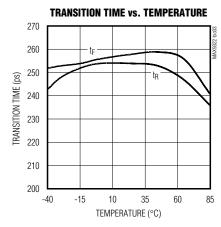
 $((V_{CC} - V_{EE}) = 2.375 V \text{ to } 3.8 V, \text{ outputs loaded with } 50 \Omega \pm 1\% \text{ to } V_{CC} - 2 V; \text{ CLK_SEL, FSEL_} = \text{high or low; MR} = \text{low; } IV_{ID}I = 0.095 V \text{ to the lower of } (V_{CC} - V_{EE}) \text{ and } 3 V. \text{ Typical values are at } (V_{CC} - V_{EE}) = 3.3 V, V_{IHD} = V_{CC} - 1 V, V_{ILD} = V_{CC} - 1.5 V.) \text{ (Notes } 1-4)$

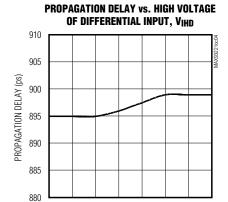
CVMDOL	CONDITIONS		-40°C			+25°C		+85°C			UNITS
STINBUL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
V _{IHD} -	For V _{CC} - V _{EE} < 3.0V	0.095		V _{CC} - V _{EE}	0.095		V _{CC} -	0.095		V _{CC} -	V
V _{ILD}	For V _{CC} - V _{EE} ≥ 3.0V	0.095		3.0	0.095		3.0	0.095		3.0	V
I _{IN2}	CLK_, CLK_ = V _{IHD} or V _{ILD}	-150		+150	-150		+150	-150		+150	μΑ
V _{OH}	Figure 1	V _{CC} - 1.085					V _{CC} - 0.880	V _{CC} - 1.025		V _{CC} - 0.880	V
VoL	Figure 1	V _{CC} - 1.810		V _{CC} - 1.52	V _{CC} - 1.810		V _{CC} - 1.620	V _{CC} - 1.810		V _{CC} - 1.620	V
V _{OH} - V _{OL}	Figure 1	500			600			600			mV
•								,			
V _{BB}	I _{BB} = ±0.5mA (Note 5)	V _{CC} - 1.41		V _{CC} - 1.25	V _{CC} - 1.41		V _{CC} - 1.25	V _{CC} - 1.41		V _{CC} - 1.25	V
•		•			•			•			
IEE	(Note 6)		50	85		66	115		80	130	mA
	VILD IIN2 VOH VOL VOBB	V _{IHD} - V _{ILD} For V _{CC} - V _{EE} < 3.0V For V _{CC} - V _{EE} ≥ 3.0V I _{IN2} C _{LK} , C _{LK} = V _{IHD} or V _{ILD} V _{OH} Figure 1 V _{OL} Figure 1 V _{OH} - V _{OL} Figure 1 V _{BB} I _{BB} = ±0.5mA (Note 5)	MIN V _{IHD} - V _{ILD} For V _{CC} - V _{EE} 0.095 For V _{CC} - V _{EE} ≥ 3.0V 0.095 I _{IN2} CLK_, CLK_ = V _{IHD} or V _{ILD} -150 V _{OH} Figure 1 V _{CC} - 1.085 V _{OL} Figure 1 V _{CC} - 1.810 V _{OH} - V _{OL} Figure 1 500 V _{BB} I _{BB} = ±0.5mA (Note 5) V _{CC} - 1.41	SYMBOL CONDITIONS VIHD - VILD For VCC - VEE < 3.0V	SYMBOL CONDITIONS MIN TYP MAX VIHD - VILD For VCC - VEE ≥ 3.0V 0.095 VCC - VEE VEE ≥ 3.0V 0.095 3.0 IIN2 CLK_, CLK_ = VIHD or VILD -150 +150 VOH Figure 1 VCC - 1.085 0.880 VOL Figure 1 VCC - 1.810 1.52 VOH - VOL Figure 1 500 VBB IBB = ±0.5mA (Note 5) VCC - 1.41 VCC - 1.25	SYMBOL CONDITIONS MIN TYP MAX MIN V _{IHD} - V _{ILD} For VCC - VEE 0.095 VCC - VEE 0.095 ≥ 3.0V 0.095 3.0 0.095 I _{IN2} CLK_, CLK_ = VIHD or VILD -150 +150 -150 VOH Figure 1 VCC - 1.085 0.880 1.025 VOL Figure 1 VCC - 1.810 VCC - 1.810 VCC - 1.810 VOH - VOL Figure 1 500 600 VBB IBB = ±0.5mA (Note 5) VCC - 1.41 VCC - 1.25 VCC - 1.41	SYMBOL CONDITIONS MIN TYP MAX MIN TYP VIHD - VILD For VCC - VEE < 3.0V	SYMBOL CONDITIONS MIN TYP MAX MIN TYP MAX VIHD - VILD For VCC - VEE < 3.0V	SYMBOL CONDITIONS MIN TYP MAX MIN TYP MAX MIN MIN TYP MAX MIN MIN TYP MAX MIN MIN TYP MAX MIN MIN MIN TYP MAX MIN MIN MIN MIN TYP MAX MIN MIN MIN MIN MIN TYP MAX MIN MIN	SYMBOL CONDITIONS MIN TYP MAX MIN TYP TYP	SYMBOL CONDITIONS MIN TYP MAX MIN T

AC ELECTRICAL CHARACTERISTICS

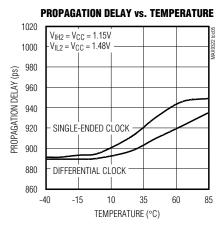

((V_{CC} - V_{EE}) = 2.375V to 3.8V; outputs loaded with 50 Ω ±1% to V_{CC} - 2V; input frequency ≤ 1000MHz; input transition time = 125ps (20% to 80%); CLK_SEL, FSEL_ = high or low, MR = low; V_{IHD} = V_{EE} + 1.2V to V_{CC}; V_{ILD} = V_{EE} to V_{CC} - 0.4V; V_{IHD} - V_{ILD} = 0.4V to 1V. Typical values are at (V_{CC} - V_{EE}) = 3.3V, V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V.) (Note 7)

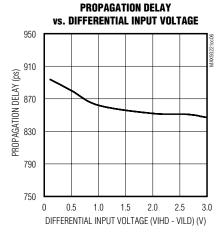

PARAMETER	CVMBOL	SYMBOL CONDITION		-40°C		+25°C			+85°C			UNITS
FANAMETER	STWIBUL	CONDITION	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Differential Input-to- Output Delay	tpLHD, tpHLD	Figure 2	700	900	1150	725	900	1180	750	950	1225	ps
Single-Ended CLK_/CLK_ to Output Delay	t _{PHLS} , t _{PLHS}	Figure 1	700	700 900 1170 700 900 1175			725	950	1250	ps		
MR to Output Delay	t _{PD}	Figure 3	450		930	450		930	450		930	ps
Output-to-Output Skew	tskoo	(Note 8)			85			56			50	ps
Added Random Jitter	t _{RJ}	f _{IN} = 1.0GHz clock pattern (Note 9)			1.2			1.2			1.2	ps (RMS)
Added Deterministic Jitter	tDJ	1Gbps 2 ²³ - 1 PRBS pattern (Note 9)			61			61			61	psp-p
Switching Frequency	fMAX	V _{OD} > 300mV	1.0			1.0			1.0			GHz
Differential Output Rise and Fall Time (20% to 80%)	t _R , t _F	Figure 2	200	260	400	200	260	400	200	240	400	ps


- Note 1: Measurements are made with the device in thermal equilibrium.
- Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative.
- **Note 3:** Single-ended CLK_, $\overline{\text{CLK}}$ input operation is limited to V_{CC} V_{EE} = 3.0V to 3.8V.
- **Note 4:** DC parameters are production tested at $T_A = +25$ °C and guaranteed by design over the full operating temperature range.
- **Note 5:** Use V_{RR} as a reference for inputs of the same device only.
- Note 6: All pins open except VCC and VEE.
- Note 7: Guaranteed by design and characterization. Limits are set at ±6 sigma.
- Note 8: Measured between outputs of the same parts at the signal crossing points under identical conditions for a same-edge transition.
- Note 9: Device jitter added to a jitter-free input signal.


Typical Operating Characteristics

 $(V_{CC} - V_{EE} = 3.3V, V_{IHD} = V_{CC} - 1V, V_{ILD} = V_{CC} - 1.5V, V_{ID} = 500 \text{mV}, CLK_SEL = 0, FSEL_ = 0, f_{IN} = 600 \text{MHz}, T_A = +25 ^{\circ}\text{C}, unless otherwise noted.})$





V_{IHD} - V_{FF} (V)

1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3

Pin Description

	PIN		FUNCTION						
TQFP	QFN	NAME	FUNCTION						
1	2, 3	Vcc	Positive Power Supply. Powers input circuitry. Bypass each V_{CC} to V_{EE} with a $0.01\mu F$ and $0.1\mu F$ capacitor. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.						
2	4	MR	Single-Ended Master Reset. A high on MR sets all outputs to differential zero. A low on MR enables all outputs. MR is pulled to V_{EE} through a 75k Ω resistor.						
3	5	FSELA	Single-Ended Frequency Select A. Selects the output frequency for bank A. Bank A consists of two differential outputs. A low on FSELA selects divide-by-1. A high on FSELA selects divide-by-2. FSELA is pulled to V_{EE} through a 75k Ω resistor.						
4	6	FSELB	Single-Ended Frequency Select B. Selects the output frequency for bank B. Bank B consists of three differential outputs. A low on FSELB selects divide-by-1. A high on FSELB selects divide-by-2. FSELB is pulled to VEE through a $75k\Omega$ resistor.						
5	7	CLK0	Noninverting Clock 0 Input. $\overline{\text{CLK0}}$ is pulled to VEE through 75k Ω resistors.						
6	8	CLK0	Inverting Clock 0 Input. CLK0 is pulled to V_{CC} and to V_{EE} through a 75k Ω resistor.						
7	9	CLK_SEL	Single-Ended Clock Selector Input. A low on CLK_SEL selects CLK0. A high on CLK_SEL selects CLK1. CLK_SEL is pulled to V_{EE} through a 75k Ω resistor.						
8	10	CLK1	Noninverting Clock 1 Input. CLK1 is pulled to V_{EE} through a 75k Ω resistor.						
9	11	CLK1	Inverting Clock 1 Input. $\overline{\text{CLK1}}$ is pulled to V _{CC} and to V _{EE} through 75k Ω resistors.						
10	12	VBB	Reference Voltage Output. Connect V _{BB} to CLK_ or CLK_ to provide a reference for single-ended operation. When used, bypass with a 0.01µF ceramic capacitor to V _{CC} ; otherwise leave open.						
11	13	FSELC	Single-Ended Frequency Select C. Selects the output frequency for bank C. Bank C consists of four differential outputs. A low on FSELC selects divide-by-1. A high on FSELC selects divide-by-2. FSELC is pulled to VEE through a $75k\Omega$ resistor.						
12	14	FSELD	Single-Ended Frequency Select D. Selects the output frequency for bank D. Bank D consists of six differential outputs. A low on FSELD selects divide-by-1. A high on FSELD selects divide-by-2. FSELD is pulled to V_{EE} through a 75k Ω resistor.						
13	15, 16	VEE	Negative Power-Supply Input						
14, 27, 30, 39, 40, 47, 52	19, 20, 33, 36, 37, 40, 49, 50, 53, 54, 61, 66, 67	Vcco	Output Driver Positive Power Supply. Powers device output drivers. Bypass each V_{CCO} to V_{EE} with a $0.01\mu F$ and $0.1\mu F$ capacitor. Place the capacitors as close to the device as possible with the smaller value capacitor closest to the device.						
15	21	QD5	Inverting QD5 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
16	22	QD5	Noninverting QD5 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
17	23	QD4	Inverting QD4 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						
18	24	QD4	Noninverting QD4 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.						

Pin Description (continued)

PIN			
TQFP	QFN	NAME	FUNCTION
19	25	QD3	Inverting QD3 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
20	26	QD3	Noninverting QD3 Output. Typically terminate with 50Ω resistor to V _{CC} - 2V.
21	27	QD2	Inverting QD2 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
22	28	QD2	Noninverting QD2 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
23	29	QD1	Inverting QD1 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
24	30	QD1	Noninverting QD1 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
25	31	QD0	Inverting QD0 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
26	32	QD0	Noninverting QD0 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
28, 29	1, 17, 18, 34, 35, 38, 39, 51, 52, 68	N.C.	No Connection. Not internally connected.
31	41	QC3	Inverting QC3 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
32	42	QC3	Noninverting QC3 Output. Typically terminate with 50Ω resistor to V_{CC} - 2V.
33	43	QC2	Inverting QC2 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
34	44	QC2	Noninverting QC2 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
35	45	QC1	Inverting QC1 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
36	46	QC1	Noninverting QC1 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
37	47	QC0	Inverting QC0 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
38	48	QC0	Noninverting QC0 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
41	55	QB2	Inverting QB2 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
42	56	QB2	Noninverting QB2 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
43	57	QB1	Inverting QB1 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
44	58	QB1	Noninverting QB1 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
45	59	QB0	Inverting QB0 Output. Typically terminate with 50Ω resistor to VCC - 2V.
46	60	QB0	Noninverting QB0 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
48	62	QA1	Inverting QA1 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
49	63	QA1	Noninverting QA1 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
50	64	QA0	Inverting QA0 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
51	65	QA0	Noninverting QA0 Output. Typically terminate with 50Ω resistor to V_{CC} - $2V$.
_	EP	VEE	The exposed pad of the QFN package is internally connected to V _{EE} . Refer to Application Note HFAN-08.1.

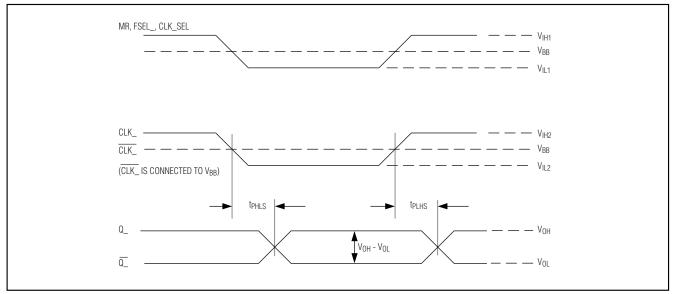


Figure 1. Timing Diagram for Single-Ended Inputs

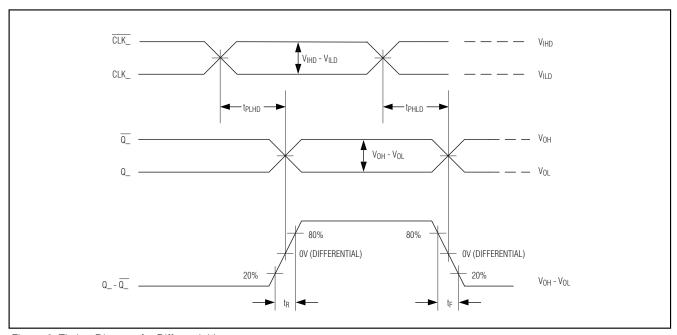


Figure 2. Timing Diagram for Differential Inputs

8 ______ /N/X//N

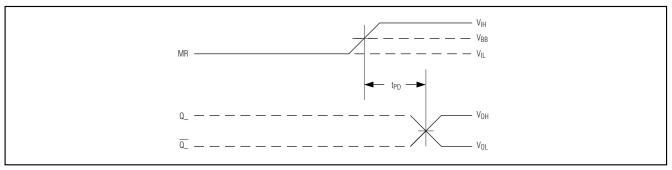


Figure 3. Timing Diagram for MR

Detailed Description

The MAX9322 low-skew 1:15 differential clock driver reproduces or divides one of two differential input clocks at 15 differential outputs. An input multiplexer selects from one of two input clocks with input frequency operation in excess of 1.0GHz. The 15 outputs are arranged into four banks with 2, 3, 4, and 6 outputs, respectively. Each output bank is individually programmable to provide a divide-by-1 or divide-by-2 frequency function.

LVECL/LVPECL Operation

Output levels are referenced to $V_{\rm CC}$ and are LVPECL or LVECL, depending on the level of the $V_{\rm CC}$ supply. With $V_{\rm CC}$ connected to a positive supply and $V_{\rm EE}$ connected to ground, the outputs are LVPECL. The outputs are LVECL when $V_{\rm CC}$ is connected to ground and $V_{\rm EE}$ is connected to a negative supply. When interfacing to differential LVPECL signals, the $V_{\rm CC}$ range is 2.375V to 3.8V ($V_{\rm EE}$ = 0), allowing high-performance clock distribution in systems with nominal 2.5V and 3.3V supplies. When interfacing to differential LVECL, the $V_{\rm EE}$ range is -2.375V to -3.8V ($V_{\rm CC}$ = 0).

Control Inputs (FSEL_, CLK_SEL, MR)

The MAX9322 provides four output banks: A, B, C, and D. Bank A consists of two differential output pairs. Bank B consists of three differential output pairs. Bank C consists of four differential output pairs. Bank D consists of six differential output pairs. FSEL_ selects the output clock frequency for a bank. A low on FSEL_ selects divide-by-1 frequency operation while a high on FSEL_ selects divide-by-2 operation. CLK_SEL selects CLKO or CLK1 as the input signal. A low on CLK_SEL selects CLKO while a high selects CLK1.

Master reset (MR) enables all outputs. CLK_SEL and FSEL_ are asynchronous. Changes to the control inputs (CLK_SEL, FSEL_) or on power-up cause indeterminate output states requiring a MR assertion to resynchronize any divide-by-2 outputs (Figure 4). A low on MR activates

all outputs for normal operation. A high on MR resets all outputs to differential low condition. See Table 1.

Input Termination Resistors

Differential inputs CLK_ and $\overline{\text{CLK}}$ are biased to guarantee a known state (differential low) if the inputs are left open. CLK_ is internally pulled to VEE through a 75k Ω resistor. $\overline{\text{CLK}}$ is internally pulled to VCC and to VEE through 75k Ω resistors.

Single-ended inputs FSEL_, MR, and CLK_SEL are internally pulled to VEE through a 75k Ω resistor.

Differential Clock Input

The MAX9322 accepts two differential or single-ended clock inputs, CLK0/CLK0 and CLK1/CLK1. CLK_SEL selects between CLK0/CLK0 and CLK1/CLK1. A low on CLK_SEL selects CLK0/CLK0. A high on CLK_SEL selects CLK1/CLK1. See Table 1.

Differential CLK_ inputs must be at least VBB ± 95 mV to switch the outputs to the VOH and VOL levels specified in the *DC Electrical Characteristics* table. The maximum magnitude of the differential signal applied to the differential clock input is the lower of (VCC - VEE) and 3.0V. This limit also applies to the difference between any reference voltage input and a single-ended input. Specifications for the high and low voltages of a differential input (VIHD and VILD) and the differential input voltage (VIHD - VILD) apply simultaneously.

Table 1. Function Table

PIN	FUNC	TION
PIN	LOW OR OPEN	HIGH
FSEL_	Divide-by-1	Divide-by-2
CLK_SEL	CLK0	CLK1
MR*	Active	Reset

^{*}A master reset is required following power-up or changes to input functions to prevent indeterminant output states.

Single-Ended Inputs and VBB

The differential clock input can be configured to accept a single-ended input when operating at V_{CC} - V_{EE} = 3.0V to 3.8V. Connect V_{BB} to the inverting or noninverting input of the differential input as a reference for single-ended operation. The differential CLK_ input is converted to a noninverting, single-ended input by connecting V_{BB} to \overline{CLK} _ and connecting the single-ended input signal to CLK. Similarly, an inverting configuration is obtained by connecting V_{BB} to CLK_ and connecting the single-ended input to \overline{CLK} _.

The single-ended inputs FSEL_, CLK_SEL, and MR are internally referenced to VBB. All single-ended inputs (FSEL_, CLK_SEL, MR, and any CLK_ in single-ended mode) can be driven to VCC and VEE or with a single-ended LVPECL/LVECL signal. The single-ended input must be at least VBB $\pm 95 \text{mV}$ to switch the outputs to the VOH and VOL levels specified in the DC Electrical Characteristics table. When using the VBB reference output, bypass VBB with a 0.01µF ceramic capacitor to VCC. Leave VBB open when not used. The VBB reference can source or sink 0.5mA. Use VBB as a reference for the same device only.

Applications Information

Supply Bypassing

Bypass each VCC and VCCO to VEE with high-frequency surface-mount ceramic $0.01\mu F$ and $0.1\mu F$ capacitors in parallel as close to the device as possible, with the $0.01\mu F$ capacitor closest to the device. Use multiple parallel vias to minimize parasitic inductance. When using the VBB reference output, bypass VBB to VCC with a $0.01\mu F$ ceramic capacitor.

Controlled-Impedance Traces

Input and output trace characteristics affect the performance of the MAX9322. Connect input and output signals with 50Ω characteristic impedance traces. Minimize the number of vias to prevent impedance discontinuities. Reduce reflections by maintaining the 50Ω characteristic impedance through cables and connectors. Reduce skew within a differential pair by matching the electrical length of the traces.

Output Termination

Terminate outputs with 50Ω to VCC - 2V or use an equivalent Thevenin termination. When a single-ended signal is taken from a differential output, terminate both outputs. For example, if QA0 is used as a single-ended output, terminate both QA0 and $\overline{\rm QA0}$.

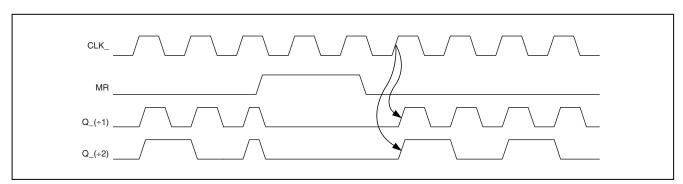
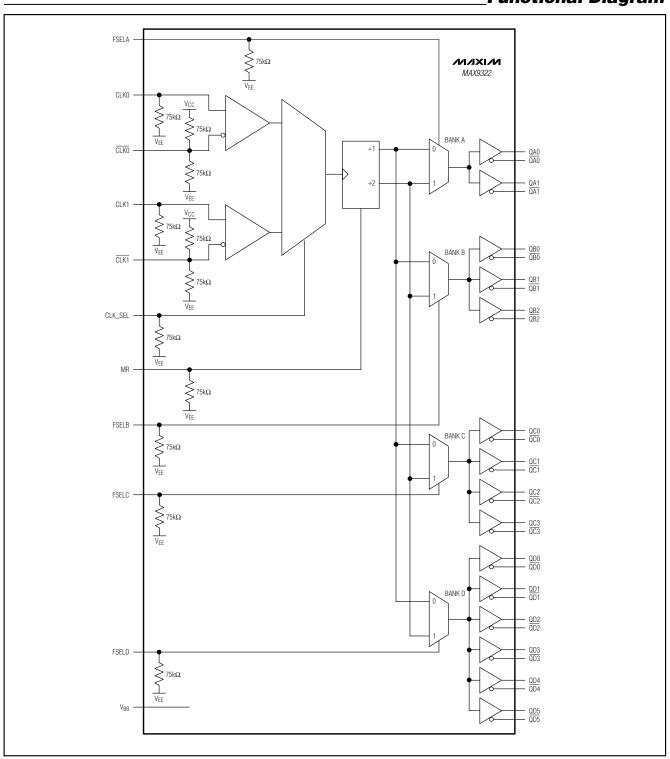
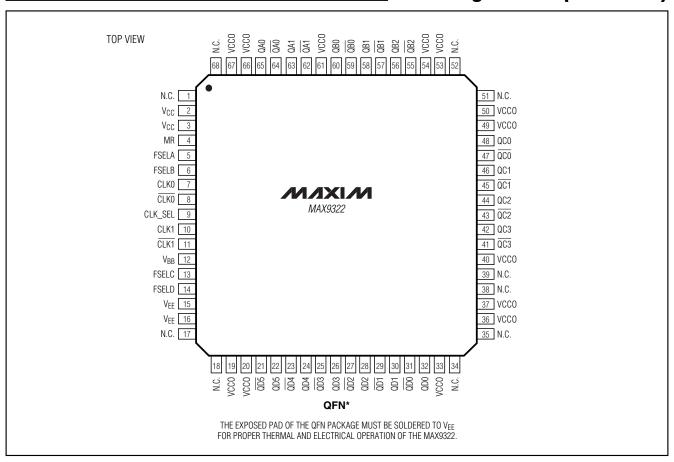



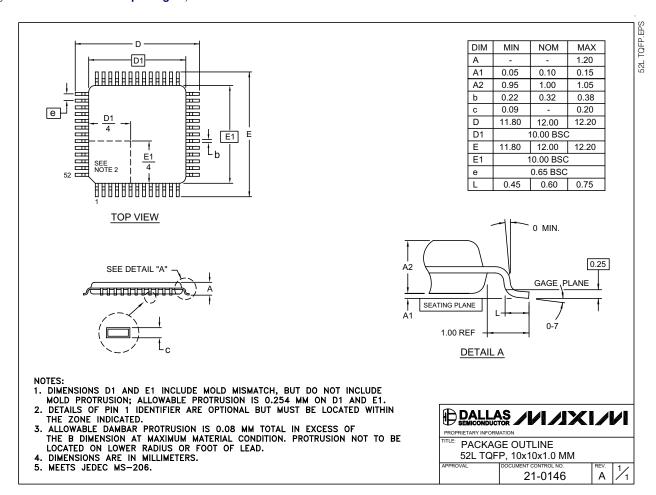
Figure 4. Timing Diagram for MR Resynchronization


Functional Diagram

12

LVECL/LVPECL 1:15 Differential Divide-by-1/Divide-by-2 Clock Driver

Pin Configurations (continued)


Chip Information

TRANSISTOR COUNT: 2063

PROCESS: Bipolar

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to **www.maxim-ic.com/packages**.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.