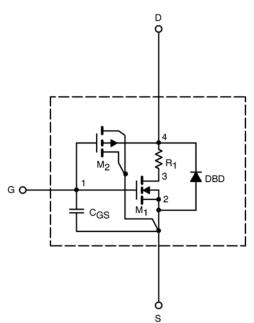


SPICE Device Model Si4684DY Vishay Siliconix

N-Channel 30-V (D-S) MOSFET

CHARACTERISTICS

- N-Channel Vertical DMOS
- Macro Model (Subcircuit Model)
- Level 3 MOS


- Apply for both Linear and Switching Application
- Accurate over the -55 to 125°C Temperature Range
- Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics

DESCRIPTION

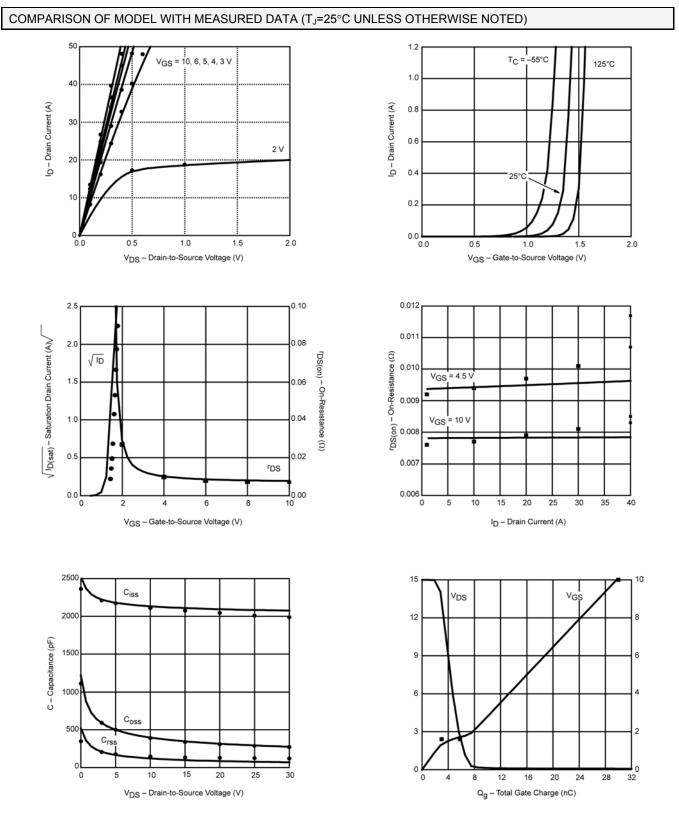
The attached spice model describes the typical electrical characteristics of the n-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125° C temperature ranges under the pulsed 0-V to 10-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage.

SUBCIRCUIT MODEL SCHEMATIC

A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched C_{gd} model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device.

This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits.

SPECIFICATIONS (T _J = 25°C UN	NLESS OTHERWI	SE NOTED)			
Parameter	Symbol	Test Condition	Simulated Data	Measured Data	Unit
Static			-		
Gate Threshold Voltage	V _{GS(th)}	V_{DS} = V_{GS} , I_D = 250 μ A	0.82		V
On-State Drain Current ^a	I _{D(on)}	$V_{\text{DS}} \geq 5 \text{ V}, V_{\text{GS}} \text{ = } 10 \text{ V}$	598		А
Drain-Source On-State Resistance ^a	r _{DS(on)}	V_{GS} = 10 V, I _D = 12 A	0.0078	0.0078	Ω
		V_{GS} = 4.5 V, I _D = 9.5 A	0.0094	0.0092	
Forward Transconductance ^a	g _{fs}	V_{DS} = 15 V, I_{D} = 12 A	34	45	S
Diode Forward Voltage ^a	V _{SD}	I _S = 2.3 A	0.82	0.70	V
Dynamic ^b	• • •				
Input Capacitance	C _{iss}	V_{DS} = 15 V, V_{GS} = 0 V, f = 1 MHz	2111	2080	pF
Output Capacitance	C _{oss}		348	340	
Reverse Transfer Capacitance	C _{rss}		99	135	
Total Gate Charge	Qg	V_{DS} = 15 V, V_{GS} = 10 V, I_D = 11 A	30	30	nC
		V_{DS} = 15 V, V_{GS} = 4.5 V, I_{D} = 11 A	14	14	
Gate-Source Charge	Q _{gs}		3	3	
Gate-Drain Charge	Q _{gd}		2.8	2.8	


Notes

a. Pulse test; pulse width \leq 300 µs, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing.

SPICE Device Model Si4684DY

Vishay Siliconix

Note: Dots and squares represent measured data.