

SPX2840

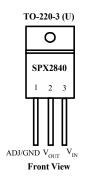
4A Low Dropout Voltage Regulator Adjustable & Fixed 3.3V

FEATURES

- Adjustable Output Down To 1.25V Or Fixed 3.3V
- Output Current Of 4A
- Low Dropout Voltage
- Extremely Tight Load And Line Regulation
- Current & Thermal Limiting
- Standard 3-Terminal Low Cost TO-220

APPLICATIONS

- Powering Intel Pentium[™] µP from +5V Supplies
- Power PC[™] Supplies
- SMPS Post-Regulator
- High Efficiency "Green" Computer Systems
- High Efficiency Linear Power Supplies
- Portable Instrumentation
- Constant Current Regulators
- Adjustable Power Supplies
- Battery Charger


PRODUCT DESCRIPTION

The SPX2840 is a low power 4A Adjustable Voltage Regulator that is very easy to use. It requires only 2 external resistors to set the output voltage. This device is an excellent choice for use in Powering IntelTM Microprocessor to convert from +5V to 3.3V supplies and as a post regulator for switching supplies applications. The SPX2840 features low dropout of a maximum 1.3 volts.

The SPX2840 offers over-current limit and full protection against reversed input polarity, reversed load insertion, over temperature operation, and positive and negative transient voltage. On-Chip trimming adjusts the reference voltage to 1%. The I_Q of this device flows in to the load, which increases the efficiency.

The SPX2840 is offered in a 3-pin TO-220 package compatible with other 3 terminal regulators. For a 3A low dropout regulator refer to the SPX2830 data sheet.

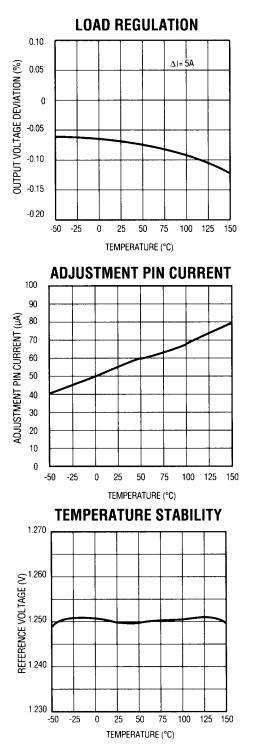
ORDERING INFORMATION

ABSOLUTE MAXIMUM RATINGS

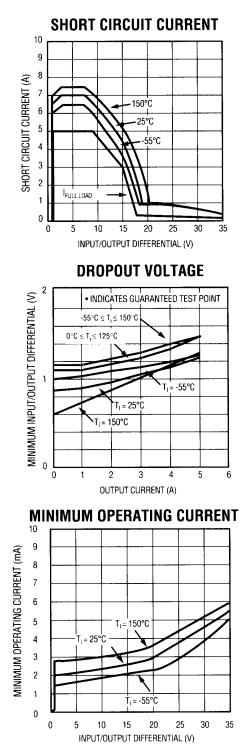
Power Dissipation	Internally Limited
Lead Temp. (Soldering, 10 Seconds)	300°C
Storage Temperature Range	65° to +150°C
Operating Junction Temperature Range	
SPX2840 Control Section	$\dots 0^{\circ}$ to $+125^{\circ}$ C
SPX2840 Power Transistor	0C° to +150°C

Input Supply Voltage+10V Input to Output Voltage Differential+10V

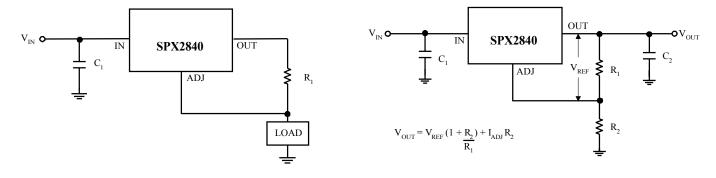
ELECTRICAL CHARACTERISTICS.(NOTE 1) at I_{OUT} = 10mA, T_A=25°C, unless otherwise specified.

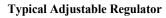

Parameter	Conditions	SPX2840			Units
		Min	Тур	Max	
Reference Voltage		1.238	1.250	1.262	V
	$\begin{array}{l} 10 \text{ mA} \leq I_{OUT} \leq I_{FULLLOAD} \\ 1.5V {\leq} (V_{IN} \ - \ V_{OUT} \leq 7V \ (\ Over \ Temperature) \end{array}$	1.225	1.250	1.270	v
Min. Load Current	$(V_{IN}-V_{OUT}) + 25V$		5	10	mA
Line Regulation	$\begin{array}{c c} 1.5V \leq V_{IN} - V_{OUT} \leq 7V\\ I_{LOAD} = 10mA\\ 15V \leq V_{IN} - V_{OUT} \leq 7V \end{array}$		0.015 0.035 0.05	0.2 0.2 0.5	% % %
Load Regulation	$10 \text{ mA} \leq I_{\text{OUT}} \leq I_{\text{FULLLOAD}}$ $(V_{\text{IN}} - V_{\text{OUT}})=3V$		0.1 0.2	0.3 0.4	% %
Dropout Voltage	$I_{OUT}=I_{FULLLOAD}$, $\Delta V_{REF}=1\%$		1.1	1.3	V
Current Limit	$V_{IN} - V_{OUT} = 5V$ $V_{IN} - V_{OUT} = 25V$	5.5 0.3	6.5 0.6		A A
Long Term Stability	T _A =125°C, 1000 Hrs.		0.3	1	%
Adjust Pin Current	T _A =25°C		55	120	μA μA
Adjust Pin Current Change			0.2	5	μΑ
Thermal Regulation	30 ms pulse		0.003	0.015	%/W
Temperature Stability			0.5		%
Ripple Rejection Ratio	$V_{IN} - V_{OUT} = 3V$ $I_{OUT} = 3A, C_{OUT} = 25\mu F, C_{ADJ} = 25\mu F, f = 120Hz$	60	75		dB
Output Noise, RMS	10Hz to 10kHz		0.003		% V ₀

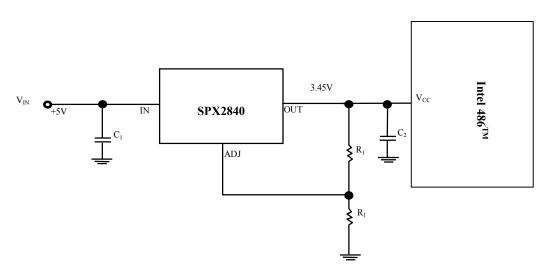
The Bold specifications apply to the full operating temperature range.


Note 1: Changes in output voltage due to heating effects are covered under the specification for thermal regulation.

Note 2: A 10µF output capacitor is required on SPX2840.


TYPICAL CHARACTERISTICS


TYPICAL PERFORMANCE CHARACTERISTICS



TYPICAL APPLICATIONS

4A Current output Regulator

Powering Intel PentiumTM with SPX2840

Pentium Processor is a trademark of Intel Corp. Power PC is a trademark of Motorola Corp.

Ordering No.	Precision	Output Voltage	Packages
SPX2840AU	2%	Adj	3 Lead TO-220
SPX2840AU-3.3	2%	3.3V	3 Lead TO-220

ORDERING INFORMATION

SIGNAL PROCESSING EXCELLENCE

Sipex Corporation

Headquarters and Main Offices: 22 Linnell Circle Billerica, MA 01821 TEL: (978) 667-8700 FAX: (978) 670-9001 e-mail: sales@sipex.com

233 South Hillview Drive Milpitas, CA 95035 TEL: (408) 935-7600 FAX: (408) 934-7500

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described hereing; neither does it convey any license under its patent rights nor the rights of others.