Preliminary Technical Data

FEATURES

+2.5 V to +5.5 V Supply Operation
Fast Parallel Interface (10ns WR cycle)
10MHz Multiplying Bandwidth
+10V Reference Input
20-Lead TSSOP and Chip Scale ($4 \times 4 \mathrm{~mm}$) Packages
8, 10 and 12 Bit Current Output DACs
Pin compatible 8, 10 \& 12 Bit DACs in Chip Scale
Guaranteed Monotonic
Four Quadrant Multiplication
Power On Reset
Readback Function
5μ A typical Power Consumption

APPLICATIONS
Portable Battery Powered Applications
Waveform Generators
Analog Processing
Instrumentation Applications
Programmable Amplifiers and Attenuators
Digitally-Controlled Calibration
Programmable Filters and Oscillators
CompositeVideo
Ultrasound
Gain, offset and Voltage Trimming

GENERAL DESCRIPTION

The AD 5424/AD 5433/AD 5445 are CMOS 8, 10 and 12-bit current output digital-to-analog converters (DACs) respectively.
These devices operate from $\mathrm{a}+2.5 \mathrm{~V}$ to 5.5 V power supply, making them suited to battery powered applications and many other applications.
These DACs utilize Data readback allowing the user to read the contents of the DAC register via the DB pins. On power-up, the internal register and latches are filled with zeros and the DAC outputs are at zero scale.
As a result of manufacture on a CMOS sub micron process, they offer excellent four quadrant multiplication characteristics, with large signal multiplying bandwidths of up to 10 MHz .

*U S Patent Number 5,689,257

REV. PrH Dec 2002

PRELIMINARY TECHNICAL DATA

AD5424/AD5433/AD5445- SPECIFICATIONS ${ }^{1}$

$\left(\mathrm{V}_{D D}=2.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+10 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }} 2=0 \mathrm{~V}$. All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted. DC performance measured with OP1177, AC performance with AD811 unless otherwise noted.)

Parameter	Min	Typ	Max	Units	Conditions
STATIC PERFORMANCE AD 5424 Resolution Relative Accuracy Differential N onlinearity AD 5433 Resolution Relative Accuracy Differential N onlinearity AD 5445 Resolution Relative Accuracy Differential Nonlinearity Gain Error Gain Error Temp Coefficient ${ }^{2}$ Output Leakage Current Output Voltage Compliance Range		± 5 TBD	$\begin{aligned} & 8 \\ & \pm 0.5 \\ & \pm 1 \\ & 10 \\ & \pm 1 \\ & \pm 1 \\ & \\ & 12 \\ & \pm 2 \\ & \pm 1 \\ & \pm 2 \\ & \\ & \pm 10 \\ & \pm 50 \end{aligned}$	Bits LSB LSB Bits LSB LSB Bits LSB LSB mV ppm FSR/ $/{ }^{\circ} \mathrm{C}$ nA nA V	Guaranteed M onotonic Guaranteed M onotonic Guaranteed M onotonic D ata $=0000_{H}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {OUT } 1}$ D ata $=0000_{H}, I_{\text {OUT } 1}$
REFERENCE INPUT ${ }^{2}$ Reference Input Range $V_{\text {Ref }}$ Input Resistance	8	$\begin{aligned} & \pm 10 \\ & 10 \end{aligned}$	12	$\begin{aligned} & \mathrm{V} \\ & \mathrm{k} \Omega \end{aligned}$	Input resistance TC $=-50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
DIGITAL INPUTS/OUTPUT² Input High Voltage, V_{IH} Input Low Voltage, $\mathrm{V}_{\text {IL }}$ Input Leakage C urrent, $I_{I L}$ Input C apacitance $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 5.5 V Output Low Voltage, V_{OL} Output High Voltage, V_{OH} $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 3.6 V Output Low Voltage, V_{OL} Output High Voltage, V_{OH}	1.7 $\begin{aligned} & V_{D D}-1 \\ & V_{D D}-0.5 \end{aligned}$		$\begin{aligned} & 0.8 \\ & 0.7 \\ & 1 \\ & 10 \\ & 0.4 \\ & \\ & 0.4 \end{aligned}$	V V V $\mu \mathrm{A}$ pF V V V V	$\begin{aligned} & V_{D D}=2.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \\ & \\ & I_{\text {SINK }}=200 \mu \mathrm{~A} \\ & I_{\text {SOURCE }}=200 \mu \mathrm{~A} \\ & I_{\text {SINK }}=200 \mu \mathrm{~A} \\ & I_{\text {SOURCE }}=200 \mu \mathrm{~A} \end{aligned}$
DYNAMIC PERFORMANCE ${ }^{2}$ Reference M ultiplying BW Output Voltage Settling Time AD 5424 AD 5433 AD 5445 Slew Rate Digital to Analog Glitch Impulse M ultiplying Feedthrough Error O utput C apacitance Digital Feedthrough T otal Harmonic Distortion O utput N oise Spectral Density SFDR performance Intermodulation Distortion	$\begin{aligned} & 10 \\ & \text { TBD } \end{aligned}$	72 TBD	TBD TBD TBD -75 2 4	M Hz M Hz ns ns ns $\mathrm{V} / \mu \mathrm{s}$ nV-s dB pF pF nV -s dB dB $\mathrm{nV} / \sqrt{\mathrm{H}} \mathrm{z}$ dB dB	$\mathrm{V}_{\text {REF }}=100 \mathrm{mV} \mathrm{rms}, \mathrm{DAC}$ loaded all 1 s $\mathrm{V}_{\text {REF }}=6 \mathrm{~V} \mathrm{rms}, \mathrm{DAC}$ loaded all 1 s M easured to $1 / 2$ LSB. $R_{\text {LOAD }}=100 \Omega, C_{\text {LOAD }}=$ $15 p F$. DAC latch alternately loaded with 0 s and 1 s . 1 LSB change around M ajor C arry DAC latch loaded with all Os. Reference = 10kHz. DAC L atches Loaded with all Os DAC Latches Loaded with all 1s F eedthrough to DAC output with CS high and Alternate Loading of all 0 s and all 1 s . $\mathrm{V}_{\text {REF }}=6 \mathrm{~V} \mathrm{rms}$, All 1 s loaded, $\mathrm{f}=1 \mathrm{kHz}$ $V_{\text {REF }}=5 \mathrm{~V}$, Sinewave generated from digital code. @ 1kHz
POWER REQUIREMENTS Power Supply Range IDD Power Supply Sensitivity ${ }^{2}$	2.5		$\begin{aligned} & 5.5 \\ & 10 \\ & 0.001 \end{aligned}$	V $\mu \mathrm{A}$ \%/\%	$\begin{aligned} & \text { Logic Inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \Delta \mathrm{~V}_{\mathrm{DD}}= \pm 5 \% \end{aligned}$

[^0]PRELIMINARY TECHNICAL DATA
Single Supply Operation (Biased Mode)
AD5424/AD5433/AD5445
($\mathrm{V}_{\text {DD }}=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=+2 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}{ }^{2}=1 \mathrm{~V}$. All specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted. DC performance measured with OP1177, AC performance with AD811 unless otherwise noted.)

Parameter	Min	Typ	Max	Units	Conditions
STATIC PERFORMANCE AD 5424 Resolution Relative Accuracy Differential N onlinearity AD 5433 Resolution Relative Accuracy Differential N onlinearity AD 5445 Resolution Relative Accuracy Differential N onlinearity Gain Error Gain Error Temp C oefficient ${ }^{2}$ Output Leakage Current Output Voltage Compliance Range		± 5 T BD	8 ± 0.5 ± 1 10 ± 1 ± 1 12 ± 2 ± 1 ± 2 ± 10 ± 50	Bits LSB LSB Bits LSB LSB Bits LSB LSB mV ppm FSR/ ${ }^{\circ} \mathrm{C}$ nA nA V	Guaranteed M onotonic Guaranteed M onotonic Guaranteed M onotonic D ata $=0000_{\mathrm{H}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {OUT } 1}$ D ata $=0000_{H}, I_{\text {OUT } 1}$
REFERENCE INPUT ${ }^{2}$ Reference Input Range $V_{\text {REF }}$ Input Resistance	8	$\begin{aligned} & \text { tbd } \\ & 10 \end{aligned}$	12	$\begin{aligned} & \mathrm{V} \\ & \mathrm{k} \Omega \end{aligned}$	Input resistance TC $=-50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
DIGITAL INPUTS/OUTPUT² Input High Voltage, $\mathrm{V}_{1 \text { H }}$ Input Low Voltage, VIL Input Leakage Current, IIL Input C apacitance $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 5.5 V Output Low Voltage, V_{OL} Output High Voltage, $\mathrm{V}_{\text {OH }}$ $\mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V}$ to 3.6 V Output Low Voltage, VoL Output High Voltage, V_{OH}	1.7 $\begin{aligned} & V_{D D}-1 \\ & V_{D D}-0.5 \end{aligned}$		0.8 0.7 1 10 10 0.4 0.4	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \end{aligned}$ $\begin{aligned} & I_{\text {SINK }}=200 \mu \mathrm{~A} \\ & I_{\text {SOURCE }}=200 \mu \mathrm{~A} \end{aligned}$ $\mathrm{I}_{\text {SINK }}=200 \mu \mathrm{~A}$ $I_{\text {SOURCE }}=200 \mu \mathrm{~A}$
DYNAMIC PERFORMANCE ${ }^{2}$ Reference M ultiplying BW Output Voltage Settling Time AD 5424 AD 5433 AD 5445 Slew Rate Digital to Analog Glitch Impulse M ultiplying F eedthrough Error Output C apacitance Digital Feedthrough Total Harmonic Distortion Output Noise Spectral Density SFDR performance Intermodulation Distortion	$\begin{aligned} & 10 \\ & \text { TBD } \end{aligned}$	$\begin{aligned} & 15 \\ & 22 \\ & 30 \\ & 100 \\ & 3 \end{aligned}$ 5 -85 -85 25 72 TBD	$\begin{aligned} & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \\ & \\ & -75 \\ & 2 \\ & 4 \end{aligned}$	M Hz M Hz ns ns ns V/us nV -s dB pF pF nV-s dB dB $\mathrm{nV} / \mathrm{NHz}$ dB dB	$V_{\text {REF }}=100 \mathrm{mV}$ rms, DAC loaded all 1s $\mathrm{V}_{\text {REF }}=1 \mathrm{Vrms}$, DAC loaded all 1 s M easured to $1 / 2$ LSB. $^{\text {LOAD }}=100 \Omega, C_{\text {LOAD }}=$ 15 pF . DAC latch alternately loaded with 0 s and 1 s . 1 LSB change around M ajor C arry DAC latch loaded with all Os. Reference $=$ 10kH z. DAC Latches Loaded with all Os DAC Latches Loaded with all 1s F eedthrough to DAC output with CS high and Alternate Loading of all 0 s and all 1 s . $V_{\text {Ref }}=2 \mathrm{Vp}-\mathrm{p}, 1 \mathrm{~V}$ Bias, All 1 s loaded, $\mathrm{f}=1 \mathrm{kHz}$ $\mathrm{V}_{\text {REF }}=2 \mathrm{~V}$, Sinewave generated from digital code. @ 1kHz
POWER REQUIREMENTS Power Supply Range ID Power Supply Sensitivity ${ }^{2}$	2.5		$\begin{aligned} & 5.5 \\ & 10 \\ & 0.001 \end{aligned}$	V $\mu \mathrm{A}$ \%/\%	$\begin{aligned} & \text { Logic Inputs }=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{DD}} \\ & \Delta \mathrm{~V}_{\mathrm{DD}}= \pm 5 \% \end{aligned}$

NOTES

${ }^{1} \mathrm{~T}$ emperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
${ }^{2} \mathrm{G}$ uaranteed by design, not subject to production test.
Specifications subject to change without notice.

AD5424/AD5433/AD5445- SPECIFICATIONS ${ }^{1}$

Parameter	Limit at $\mathbf{T}_{\text {MIN }}, \mathbf{T}_{\text {MAX }}$	Units	Conditions/Comments
t_{1}	0	ns min	R/W to CS Setup Time
t_{2}	0	ns \min	R/W to CS Hold Time
t_{3}	10	ns min	CS Low Time (W rite Cycle)
t_{4}	6	ns min	D ata Setup Time
t_{5}	0	ns min	D ata Hold Time
t_{6}	5	ns min	R/W high to CS low
t_{7}	7	ns min	CS Min H igh Time
t_{8}	5	ns typ	Data Acess Time
	t_{9}	25	ns max
	5	ns typ	Bus Relinquish Time

NOTES

${ }^{1}$ See F igure 1. T emperature range is as follows: B V ersion: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. Guaranteed by design and characterisation, not subject to production test.
${ }^{2}$ All input signals are specified with $\operatorname{tr}=\mathrm{tf}=5 \mathrm{~ns}\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{I L}+\mathrm{V}_{I H}\right) / 2$. Digital Output timing measured with L oad circuit in Figure 2.

Specificationssubject to changewithout notice.

Figure 1. Timing Diagram.

Figure 2. Load Circuit for Data Output Timing Specifications

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
$V_{D D}$ to GND -0.3 V to +7 V
$V_{\text {REf, }} \mathrm{R}_{\mathrm{Fb}}$ to $G N D$ -12 V to +12 V
-0.3 V to +7 V
lout $1, l_{\text {OUt }} 2$ to GND
Logic Inputs \& Output ${ }^{2}$
O perating Temperature Range Industrial (B Version)
Storage Temperature Range
Junction Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

16 lead TSSOP $\theta_{\text {T }}$ Thermal Impedance
20 lead TSSOP $\theta_{\text {JA }}$ Thermal Impedance $143^{\circ} \mathrm{C} / \mathrm{W}$
20 lead CSP $\theta_{\text {JA }}$ Thermal Impedance $135^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering (10seconds) $300^{\circ} \mathrm{C}$
IR Reflow, Peak Temperature (< 20 seconds) $+235^{\circ} \mathrm{C}$
NOTES
${ }^{1}$ Stresses abovethoselisted under "AbsoluteM aximum Ratings" may causepermanent damageto thedevice. Thisisastress rating only and functional operation of the device at theseor any other conditions abovethose listed in theoperational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periodsmay affect devicereliability. Only oneabsolutemaximum rating may be applied at any one time.
${ }^{2} O$ vervoltages at $D B x, C S$ and W / R, will beclamped by internal diodes. C urrent should be limited to the maximum ratings given.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD 5424BRU	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	TSSOP (Thin Shrink Small Outline Package)	RU-16
AD 5424BCP	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	CSP (Chip Scale Package)	$\mathrm{CP}-20$
AD 5433BRU	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	T SSOP (Thin Shrink Small Outline Package)	RU-20
AD 5433BCP	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	CSP (Chip Scale Package)	$\mathrm{CP}-20$
AD 5445BRU	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	T SSOP (Thin Shrink Small Outline Package)	RU-20
AD 5445BC P	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	CSP (Chip Scale Package)	$\mathrm{CP}-20$

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD5424/AD5433/AD 5445 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper
 ESD precautions are recommended to avoid performance degradation or loss of functionality.

AD5424/AD5433/AD5445

AD5424 PIN FUNCTION DESCRIPTION

| Pin
 TSSOP | CSP |
| :--- | :--- | :--- | :--- | Mnemonic | Function |
| :--- |
| 1 |
| 2 |

PIN CONFIGURATIONS

TSSOP \& CSP

AD5433 PIN FUNCTION DESCRIPTION

$\begin{aligned} & \hline \text { Pin } \\ & \text { TSSOP } \end{aligned}$	CSP	Mnemonic	Function
1	19	Iout 1	DAC Current Output.
2	20	$\mathrm{l}_{\text {OUT }} 2$	DAC Analog Ground. This pin should normally be tied to the analog ground of the system.
3	1	G N D	Ground Pin.
4-13	2-11	DB9-DB0	Parallel Data Bits 7 through 0.
14, 15	12, 13	N C	N ot internally connected.
16	14	CS	Chip Select Input. Active Low. Used in conjunction with R/W to load parallel data to the input latch or to read data from the DAC register.
17	15	R/W	Read/Write. When low, used in conjunction with CS to load parallel data. When high, used in conjunction with CS to readback contents of DAC Register.
18	16	$V_{D D}$	Positive power supply input. These parts can be operated from a supply of +2.5 V to +5.5 V.
19	17	$V_{\text {REF }}$	DAC reference voltage input terminal.
20	18	$\mathrm{R}_{\text {FB }}$	DAC feedback resistor pin. Establish voltage output for the DAC by connecting to external amplifier output.

PIN CONFIGURATIONS
 TSSOP \& CSP

PRELIMINARY TECHNICAL DATA

AD5424/AD5433/AD5445

AD 5445 PIN FUNCTION DESCRIPTION

$\begin{aligned} & \hline \text { Pin } \\ & \text { TSSOP } \end{aligned}$	CSP	Mnemonic	Function
1	19	$\mathrm{I}_{\text {OUT }} 1$	DAC Current Output.
2	20	$\mathrm{I}_{\text {OUT }} 2$	DAC Analog Ground. This pin should normally be tied to the analog ground of the system.
3	1	G N D	Ground Pin.
4-15	2-13	D B11-D B0	Parallel Data Bits 7 through 0.
16	14	CS	Chip Select Input. Active Low. Used in conjunction with R/W to load parallel data to the input latch or to read data from the DAC register.
17	15	R/W	Read/Write. When low, used in conjunction with CS to load parallel data. When high, used in conjunction with CS to readback contents of DAC Register.
18	16	$V_{D D}$	Positive power supply input. These parts can be operated from a supply of +2.5 V to +5.5 V.
19	17	$V_{\text {REF }}$	DAC reference voltage input terminal.
20	18	$\mathrm{R}_{\text {FB }}$	DAC feedback resistor pin. Establish voltage output for the DAC by connecting to external amplifier output.

PIN CONFIGURATIONS

TSSOP \& CSP

AD5424/AD5433/AD5445

TERMINOLOGY

Relative Accuracy

Relative accuracy or endpoint nonlinearity is a measure of the maximum deviation from a straight line passing through the endpoints of the DAC transfer function. It is measured after adjusting for zero and full scale and is normally expressed in LSBs or as a percentage of full scale reading.

Differential Nonlinearity

Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of ± 1 LSB max over the operating temperature range ensures monotonicity.

Gain Error

Gain error or full-scale error is a measure of the output error between an ideal DAC and the actual device output. For these DACs, ideal maximum output is $\mathrm{V}_{\text {REF }}$ - 1 LSB. Gain error of the DACs is adjustable to zero with external resistance.

Output Leakage Current

Output leakage current is current which flows in the DAC ladder switches when these are turned off. For the I IUT1 terminal, it can be measured by loading all $0 s$ to the DAC and measuring the $I_{\text {OUti }}$ current. Minimum current will flow in the Iout2 line when the DAC is loaded with all is

Output Capacitance

Capacitance from $I_{\text {OUT1 }}$ or $I_{\text {OUT2 }}$ to AGND.

Output Current Settling Time

This is the amount of time it takes for the output to settle to a specified level for a full scale input change. For these devices, it is specifed with a 100Ω resistor to ground.

Digital to Analog Glitch Impulse

The amount of charge injected from the digital inputs to the analog output when the inputs change state. This is normally specified as the area of the glitch in either pA -secs or nV -secs depending upon whether the glitch is measured as a current or voltage signal.

Digital Feedthrough

When the device is not selected, high frequency logic activity on the device digital inputs is capacitivelly coupled through the device to show up as noise on the lout pins and subsequently into the following circuitry. This noise is digital feedthrough.

Multiplying Feedthrough Error

This is the error due to capacitive feedthrough from the DAC reference input to the DAC IOUti terminal, when all o0s are loaded to the DAC.

Harmonic Distortion

The DAC is driven by an ac reference. The ratio of the rms sum of the harmonics of the DAC output to the fundamental value is the THD. Usually only the lower order harmonices are included, such as second to fifth.
$T H D=20 \log \frac{\sqrt{ }\left(V_{2}{ }^{2}+V_{3}{ }^{2}+V_{4}{ }^{2}+V_{5}{ }^{2}\right)}{V_{1}}$

Intermodulation Distortion

The DAC is driven by two combinded sine waves references of frequencies fa and fb. Distortion products are produced at sum and difference frequencies of mfa \pm nfb where $m, n=0,1,2,3 \ldots$ Intermodulation terms are those for which m or n is not equal to zero. The second order terms include ($\mathrm{fa}+\mathrm{fb}$) and ($\mathrm{fa}-\mathrm{fb}$) and the third order terms are $(2 f \mathrm{fa}+\mathrm{fb})$, $(2 \mathrm{fa}-\mathrm{fb}),(\mathrm{f}+2 \mathrm{fa}+2 \mathrm{fb})$ and $(\mathrm{fa}-$ $2 \mathrm{fb})$. IMD is defined as
$I M D=20 \log$ (rms sum of the sum and diff distortion products)
rms amplitude of the fundamental

Compliance Voltage Range

The maximum range of (output) terminal voltage for which the device will provide the specified characteristics.

GENERAL DESCRIPTION

DAC Section
The AD5424, AD5433 and AD5445 are 8, 10 and 12 bit current output DACs consisting of a standard inverting R2R ladder configuration. A simplified diagram for the 8Bit AD5424 is shown in Figure 3. The feedback resistor $R_{F B}$ has a value of R. The value of R is typically $10 k \Omega$ (minimum $8 \mathrm{k} \Omega$ and maximum $12 \mathrm{k} \Omega$). If $\mathrm{I}_{\text {OUT } 1}$ and $\mathrm{I}_{\text {OUT2 }}$ are kept at the same potential, a constant current flows in each ladder leg, regardless of digital input code.
Therefore, the input resistance presented at $\mathrm{V}_{\text {REF }}$ is always constant.

Figure 3. Simplified Ladder
Access is provided to the $\mathrm{V}_{\text {REF }}, \mathrm{R}_{\mathrm{FB}}, \mathrm{I}_{\text {OUT1 }}$ and $\mathrm{I}_{\text {OUT2 }}$ terminals of the DAC, making the device extremely versatile and allowing it to be configured in several different operating modes, for example, to provide a unipolar output, bipolar output or in single supply modes of operation. in unipolar mode or four quadrant multiplication in bipolar mode.

Unipolar Mode

Using a single op amp, these devices can easily be configured to provide 2 quadrant multiplying operation or a unipolar output voltage swing as shown in Figure 4.
When an output amplifier is connected in unipolar mode, the output voltage is given by:
$V_{\text {OUT }}=-D \times V_{\text {REF }}$
Where D is the fractional representation of the digital word loaded to the DAC.

AD5424/AD5433/AD5445

```
D = 0 to 256 (8-Bit AD 5424)
    = 0 to 1024 (10-Bit AD 5433)
    = 0 to 4096 (12-Bit AD 5445)
```


Figure 4. Unipolar Operation
With a fixed 10 V reference, the circuit shown above will give an unipolar 0V to -10V output voltage swing. When $\mathrm{V}_{\text {IN }}$ is an ac signal, the circuit performs two-quadrant multiplication.
The following table shows the relationship between digital code and expected output voltage for unipolar operation. (AD 5424, 8-Bit device).

Bipolar Operation

In some applications, it may be necessary to generate full 4-Quadrant multplying operation or a bipolar output swing. This can be easily accomplished by using another external amplifier and some external resistors as shown in Figure 5.
When $\mathrm{V}_{\text {IN }}$ is an ac signal, the circuit performs fourquadrant multiplication.
Table II. shows the relationship between digital code and the expected output voltage for bipolar operation (AD 5426, 8-Bit device).

Table II. Bipolar Code Table

Digital Input	Analog Output (V)
11111111	$+\mathrm{V}_{\text {REF }}(127 / 128)$
10000000	0
00000001	$-\mathrm{V}_{\text {REF }}(127 / 128)$
00000000	$-\mathrm{V}_{\text {REF }}(128 / 128)$

Table I. Unipolar Code Table

Digital Input	Analog Output (V)
11111111	$-V_{\text {REF }}(255 / 256)$
10000000	$-V_{\text {REF }}(128 / 256)=-V_{\text {REF }} / 2$
00000001	$-V_{\text {REF }}(1 / 256)$
00000000	$-V_{\text {REF }}(0 / 256)=0$

Figure 5. Bipolar Operation (4 Quadrant Multiplication)

AD5424/AD5433/AD5445

Overview of AD54xx devices

Part No	Resolution	\#D AC s	INL	Settling Time	Interface	Package	Features
AD 5424	8	1	± 0.5	20ns	Parallel	RU-16, CP-20	$10 \mathrm{MHz}, 10 \mathrm{~ns} \mathrm{CS} \mathrm{Pulse} \mathrm{Width}$
AD 5425	8	1	± 0.5	20 ns	Serial	R M - 10	Byte Load, $10 \mathrm{MHz} \mathrm{BW}$,50 MHz Serial
AD 5426	8	1	± 0.5	20ns	Serial	R M - 10	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ Serial
AD 5432	10	1	± 1	25ns	Serial	R M -10	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ Serial
AD 5433	10	1	± 1	25 ns	Parallel	RU-20, CP-20	$10 \mathrm{MHz}, 10 \mathrm{~ns} \mathrm{CS} \mathrm{Pulse} \mathrm{Width}$
AD 5443	12	1	± 2	30 ns	Serial	R M -10	$10 \mathrm{MHz} \mathrm{BW}, 50 \mathrm{MHz}$ Serial
AD 5445	12	1	± 2	30 ns	Parallel	RU-20, CP-20	$10 \mathrm{MHz}, 10 \mathrm{~ns} \mathrm{CS} \mathrm{Pulse} \mathrm{Width}$

PRELIMINARY TECHNICAL DATA

AD5424/AD5433/AD5445

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

20 Lead CSP
(CP-20)

16 Lead TSSOP
(RU-16)

20 Lead TSSOP
(RU-20)

[^0]: NOTES
 ${ }^{1} \mathrm{~T}$ emperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
 ${ }^{2} \mathrm{G}$ uaranteed by design, not subject to production test.
 Specifications subject to change without notice.

