OKI Semiconductor

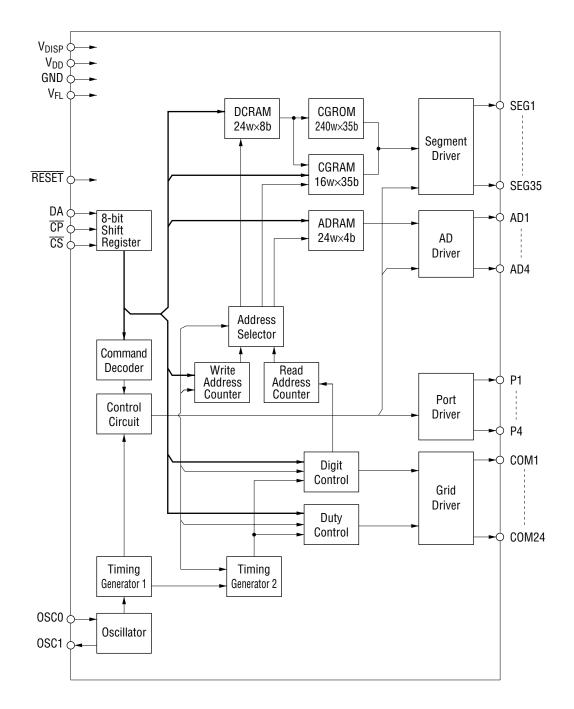
ML9205-xx

5×7 Dot Character \times 16-Digit Display Controller/Driver with Character RAM

GENERAL DESCRIPTION

The ML9205-xx is a dot matrix vacuum fluorescent display tube controller driver IC which displays characters, numerics and symbols.

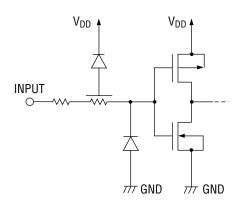
Dot matrix vacuum fluorescent display tube drive signals are generated by serial data sent from a micro-controller. A display system is easily realized by internal ROM and RAM for character display.

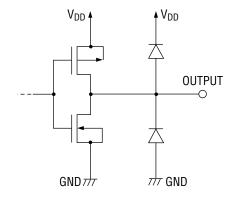

The ML9205-xx has low power consumption since it is made by CMOS process technology. -01 is available as a general-purpose code.

Custom codes are provided on customer's request.

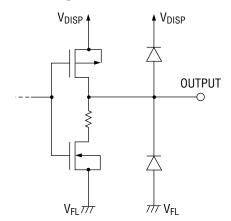
FEATURES

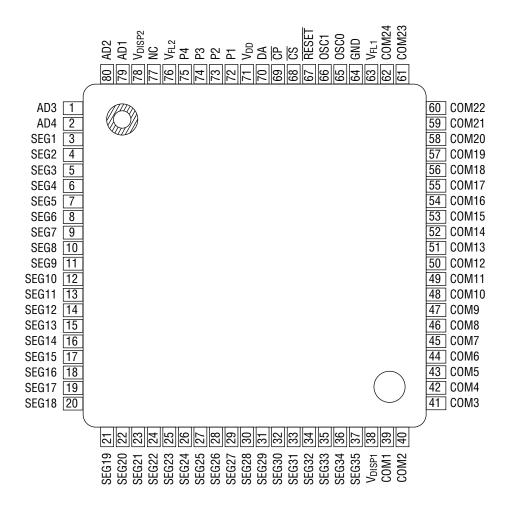
• Fluorescent display tube drive power supply (V _{FL}) : -20 to -60 V • VFD driver output current (VFD driver output can be connected directly to the fluorescent display tube. No pull-down resistor is required.) • Segment driver (SEG1 to SEG35) : -5.0 mA (V _{FL} = -60 V) • Segment driver (COM1 to AD4) : -10.0 mA (V _{FL} = -60 V) • Grid driver (COM1 to COM24) : -50.0 mA (V _{FL} = -60 V) • General output port output current • Output driver (P1 to P4) : ± 1.0 mA (V _{DD} = 3.3 V $\pm 10\%$) ± 2.0 mA (V _{DD} = 5.0 V $\pm 10\%$) • Content of display • CGROM 5 × 7 dots : 240 types (character data) • CGRAM 5 × 7 dots : 16 types (character data) • DCRAM 24 (display digit) × 4 bits (symbol data) • DCRAM 24 (display digit) × 8 bits (register for character data display) • General output port 4 bits (static operation) • Display control function • Display digit : 9 to 24 digits • Display digit : 9 to 24 digits • Display duty (brightness adjustment) : 8 stages • All lights ON/OFF • 3 interfaces with microcontroller : DA, \overline{CS} , \overline{CP} (4 interfaces when \overline{RESET} is added) • 1-byte instruction execution (excluding data write to RAM) • Built-in oscillation circuit (external R and C) • Package options: 80-pin QFP package (QFP80-P-1414-0.65-K) (Product name : ML9205-xxGP)				
		lifectly to the fi	uorescent display tube. No pun-down	
		: -5.0 mA	$(V_{\rm FI} = -60 \text{ V})$	
General outp	out port output current			
*	A A	: ±1.0 mA (V _D	$D = 3.3 \text{ V} \pm 10\%$	
1				
Content of di	isplay			
· CGROM	5×7 dots	: 240 types (cl	haracter data)	
		: 16 types (ch	aracter data)	
· ADRAM	24 (display digit) \times 4 bi	ts(symbol data)		
• Fluorescent display tube drive power supply (V_{DISP}) : 3.3 V±10% or 5.0 V±10% • Fluorescent display tube drive power supply (V_{FL}) : -20 to -60 V • VFD driver output current (VFD driver output can be connected directly to the fluorescent display tube. No pull-down resistor is required.) • Segment driver (SEG1 to SEG35) : -5.0 mA (V_{FL} = -60 V) • Segment driver (AD1 to AD4) : -10.0 mA (V_{FL} = -60 V) • Grid driver (COM1 to COM24) : -50.0 mA (V_{FL} = -60 V) • General output port output current • Output driver (P1 to P4) : ±1.0 mA (V_{DD} = 3.3 V±10%) ±2.0 mA (V_{DD} = 5.0 V±10%) • Content of display • CGROM 5 × 7 dots : 240 types (character data) • CGRAM 5 × 7 dots : 16 types (character data) • DCRAM 24 (display digit) × 4 bits (symbol data) • DCRAM 24 (display digit) × 8 bits (register for character data display) • General output port 4 bits (static operation) • Display control function • Display digit : 9 to 24 digits • Display digit : 9 to 24 digits • All lights ON/OFF • 3 interfaces with microcontroller : DA, \overline{CS} , \overline{CP} (4 interfaces when \overline{RESET} is added) • 1-byte instruction execution (excluding data write to RAM) • Built-in oscillation circuit (external R and C) • Package options:				
		ts (static operati	on)	
		0		
):8 stages		
 3 interfaces v 1-byte instru Built-in oscil Package opti 	vith microcontroller ction execution (excluding lation circuit (external R a ons:	g data write to l and C)	RAM)	
		80-BK)(Product	name : ML9205-xxGA)	


BLOCK DIAGRAM


INPUT AND OUTPUT CONFIGURATION

Schematic Diagrams of Logic Portion Input and Output Circuits


Input Pin


Output Pin

Schematic Diagram of Driver Output Circuit

PIN CONFIGURATION (TOP VIEW)

NC: No connection

80-Pin Plastic QFP (QFP80-P-1414-0.65-K)

(BIO Voisp2 739 NC 738 VFL2 737 P4 737 P4 736 P3 737 P4 737 P4 737 P4 735 P2 733 V _{DD} 663 RESET 663 V _{FL1} 653 V _{FL1}	
AD1 1 AD2 2 AD3 3 AD4 4 SEG1 5 SEG2 6 SEG3 7 SEG4 8 SEG5 9 SEG6 10 SEG7 11 SEG8 12 SEG9 13 SEG10 14 SEG11 15 SEG12 16 SEG13 17 SEG14 18 SEG15 19 SEG16 20 SEG17 21 SEG18 22 SEG19 23 SEG20 24		 64 COM24 63 COM23 62 COM22 61 COM21 60 COM20 59 COM19 58 COM18 57 COM17 56 COM16 55 COM15 54 COM14 53 COM13 52 COM12 51 COM11 50 COM10 49 COM9 48 COM8 47 COM7 46 COM6 45 COM5 44 COM4 43 COM3 42 COM2 41 COM1
	SEG21 [25 SEG22 [26 SEG22 [27 SEG23 [27 SEG24 [28 SEG26 [30 SEG26 [30 SEG26 [30 SEG26 [30 SEG26 [30 SEG28 [31 SEG29 [33] SEG31 [35 SEG31 [35 SEG31 [35 SEG33 [33] SEG33 [33 SEG33 [33] SEG33 [33] SEG33 [33] SEG33 [33]	~

NC: No connection

80-Pin Plastic QFP (QFP80-P-1420-0.80-BK)

PIN DESCRIPTION

Pi	in		-		2						
QFP-1*	QFP-2*	Symbol	Туре	Connects to	Description						
3 to 37	5 to 39	SEG1 to 35	0	Fluorescent tube anode electrode	Fluorescent display tube anode electrode drive output. Directly connected to fluorescent display tube and a pull-down resistor is not necessary. $I_{OH} > -5.0$ mA						
39 to 62	41 to 64	COM1 to 24	0	Fluorescent tube grid electrode	Fluorescent display tube grid electrode drive output. Directly connected to fluorescent display tube and a pull-down resistor is not necessary. $I_{OH} > -50.0$ mA						
1, 2, 79, 80	1 to 4	AD1 to AD4	0	Fluorescent tube anode electrode	Fluorescent display tube anode electrode drive output. Directly connected to fluorescent display tube and a pull-down resistor is not necessary. $I_{OH} > -10.0$ mA						
72 to 75	74 to 77	P1 to P4	0	LED anode electrode	General port output. Output of these pins in static operation, so these pins can drive the LED. $I_{OH}{>}{-}2.0$ mA						
71	73	V _{DD}			V _{DD} -GND are power supplies for internal logic.						
38, 78	40, 80	V _{DISP1 to 2}		Power	V _{DISP} -V _{FL} are power supplies for driving fluorescent tubes.						
64	66	GND		supply	Use the same power supply for V_{DD} and V_{DISP} .						
63, 76	65, 78	V _{FL1 to 2}									
70	72	DA	Ι	Micro- controller	Serial data input (positive logic). Input from LSB.						
69	71	CP	Ι	Micro- controller	Shift clock input. Serial data is shifted on the rising edge of $\overline{\text{CP}}$.						
68	70	CS	Ι	Micro- controller	Chip select input. Serial data transfer is disabled when $\overline{\text{CS}}$ pin is "H" level.						
67	69	RESET	I	Micro- controller or C ₂ , R ₂	Reset input."Low" initializes all the functions.Initial status is as follows.• Address of each RAM• Data of each RAM• Display digit• Display digit• Address adjusment• All lights ON or OFF• All outputs• RESET• C2• R2• Circuit when R and C are connected externally) See Application Circuit.						
65	67	OSCO	I	C. D	External RC pin for RC oscillation. Connect R and C externally. The RC time constant depends on the V_{DD} voltage used. Set the target oscillation frequency to 2 MHz.						
66	68	OSC1	0	C ₁ , R ₁	OSCO R ₁ OSC1 C ₁ (RC oscillation circuit) See Application Circuit.						

* QFP-1: QFP80-P-1414-0.65-K

* QFP-2: QFP80-P-1420-0.80-BK

Parameter	Symbol	C	Condition	Rating	Unit																						
Supply Voltage (1)	V _{DD}	*1		-0.3 to +6.5	V																						
Supply Voltage (1)	V _{DISP}	*1		-0.3 to +6.5	V																						
Supply Voltage (2)	V _{FL}	_		_				_		_				_		—		—		—				_		-80 to V _{DISP} +0.3	V
Input Voltage	V _{IN}	—		–0.3 to V _{DD} +0.3	V																						
Dower Dissinction	D	Ta≥25°C	QFP80-P-1414-0.65-K	637	— mW																						
Power Dissipation	PD	Ta220 0	QFP80-P-1420-0.80-BK	764	IIIVV																						
Storage Temperature	T _{STG}			-55 to +150	°C																						
	I ₀₁	COI	V1 to COM24	-60 to 0.0																							
Output Current	I ₀₂	A	AD1 to AD4	-20 to 0.0	— mA																						
Output Current	I ₀₃	SE	SEG1 to SEG35 -10 to 0.0		IIIA																						
	I ₀₄		P1 to P4	-4.0 to +4.0]																						

ABSOLUTE MAXIMUM RATINGS

*1: Use the same power supply for V_{DD} and V_{DISP} .

RECOMMENDED OPERATING CONDITIONS

When the power supply voltage is 5V (typ.)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage (1)	V _{DD} , V _{DISP}	—	4.5	5.0	5.5	V
Supply Voltage (2)	V _{FL}	—	-60	—	-20	V
High Level Input Voltage	VIH	All input pins excluding OSCO pin	0.7V _{DD}	_	_	V
Low Level Input Voltage	VIL	All input pins excluding OSCO pin	_		0.3V _{DD}	V
CP Frequency	f _C	—	—	—	2.0	MHz
Oscillation Frequency	f _{OSC}	R ₁ =3.3kΩ, C ₁ =47pF	1.5	2.0	2.5	MHz
Frame Frequency	f _{FR}	DIGIT=1 to 24, R ₁ = $3.3k\Omega$, C ₁ = $47pF$	122	163	204	Hz
Operating Temperature	T _{op}	—	-40	_	+85	°C

When the power supply voltage is 3.3V (typ.)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply Voltage (1)	V _{DD} , V _{DISP}	—	3.0	3.3	3.6	V
Supply Voltage (2)	V _{FL}	—	-60	—	-20	V
High Level Input Voltage	VIH	All input pins excluding OSCO pin	0.8V _{DD}		_	V
Low Level Input Voltage	VIL	All input pins excluding OSCO pin		—	0.2V _{DD}	V
CP Frequency	f _C	—			2.0	MHz
Oscillation Frequency	f _{OSC}	R ₁ =3.3kΩ, C ₁ =39pF	1.5	2.0	2.5	MHz
Frame Frequency	f _{FR}	DIGIT=1 to 24, R_1 =3.3k Ω , C_1 =39pF	122	163	204	Hz
Operating Temperature	T _{op}	_	-40		+85	°C

ELECTRICAL CHARACTERISTICS

DC Characteristics-1

(V_{DD}, V_{DISP}=5.0 V \pm 10%, V_{FL}=-60 V, Ta=-40 to +85°C, unless otherwise specified)

Parameter	Symbol	Applied pin		Condition	Min.	Max.	Unit
High Level Input Voltage	V	CS, CP, DA,			0.7\/		V
nıgli Level iliput voltage	V _{IH}	RESET			0.7V _{DD}		v
Low Level Input Voltage	M	CS, CP, DA,				0.3V _{DD}	v
Low Level Input voltage	V _{IL}	RESET		—		0.3000	v
High Lovel Input Current		CS, CP, DA,		V V	-1.0	+1.0	
High Level Input Current	I ^{IH}	RESET		V _{IH} =V _{DD}	-1.0	+1.0	μA
Low Lovel Input Current	1	CS, CP, DA,		V 0.0V	-1.0	+1.0	
Low Level Input Current	Ι _{ΙL}	RESET	V _{IL} =0.0V		-1.0	+1.0	μA
	V _{OH1}	COM1 to 24	lc	_{H1} =–50.0 mA	V _{DISP} -2.0		V
High Level Output	V _{0H2}	AD1 to AD4	١ _C	I _{0H2} =–10.0 mA			V
Voltage	V _{OH3}	SEG1 to 35	l	_{DH3} =-5.0 mA	V _{DISP} -1.5	—	V
	V _{OH4}	P1 to P4	l	I _{0H4} =-2.0 mA V _{DISP} -1.0			V
		COM1 to 24					
Low Level Output	V _{OL1}	AD1 to AD4		—	—	V _{FL} +1.0	V
Voltage		SEG1 to 35					
	V _{OL2}	P1 to P4		I _{OL1} =2 mA	_	1.0	V
				Duty=15/16			
	I _{DD1}		faaa	Digit=1 to 24	—	4	mA
Supply Current			fosc=	All output lights ON			
Supply Current		V _{DD} , V _{DISP}	2 MHz, no load	Duty=8/16			
	I _{DD2}		no iodu	Digit=1 to 9	_	3	mA
				All output lights OFF			

Parameter	Symbol	Applied pin		Condition	Min.	Max.	Unit
Farameter	Symbol			Condition	IVIII1.	IVIAX.	Unit
High Level Input Voltage	V _{IH}	CS, CP, DA,		_	0.8V _{DD}	_	v
	٩IH	RESET			0.0100		·
		CS, CP, DA,				0.01/	
Low Level Input Voltage	V _{IL}	RESET		—		0.2V _{DD}	V
		CS, CP, DA,			-1.0		
High Level Input Current	IIH	RESET		V _{IH} =V _{DD}		+1.0	μA
		CS, CP, DA,					
Low Level Input Current	IIL	RESET	V _{IL} =0.0V		-1.0	+1.0	μA
	V _{OH1}	COM1 to 24	١ ₀	_{H1} =–50.0 mA	V _{DISP} -2.0		V
High Level Output	V _{0H2}	AD1 to AD4	01 to AD4 I _{0H2} =-10.0 mA		V _{DISP} -1.5	—	V
Voltage	V _{OH3}	SEG1 to 35	l l	_{DH3} =–5.0 mA	V _{DISP} -1.5	_	V
	V _{OH4}	P1 to P4	l l	_{DH4} =–1.0 mA	V _{DD} -1.0	—	V
		COM1 to 24					
Low Level Output	V _{0L1}	AD1 to AD4		—	—	V _{FL} +1.0	V
Voltage		SEG1 to 35					
	V _{OL2}	P1 to P4		I _{0L1} =1mA		1.0	V
				Duty=15/16			
	I _{DD1}		f	Digit=1 to 24	—	3	mA
Cupply Current			f _{OSC} = 2 MHz,	All output lights ON			
Supply Current		V _{DD} , V _{DISP}	no load	Duty=8/16			
	I _{DD2}		10 IUdu	Digit=1 to 9	—	2	mA
				All output lights OFF			

DC Characteristics-2

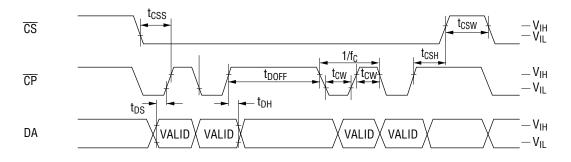
(V_{DD}, V_{DISP}=3.3 V \pm 10%, V_{FL}=-60 V, Ta=-40 to +85°C, unless otherwise specified)

AC Characteristics-1

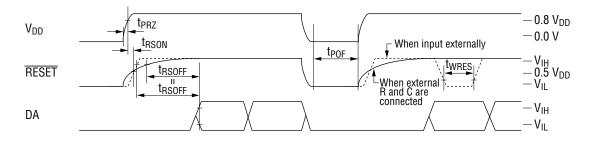
(V_DD, V_DISP=5.0V \pm 10%, V_{FL}=-60 V, Ta=-40 to +85°C, unless otherwise specified)

Parameter	Symbol	Cond	dition	Min.	Max.	Unit
CP Frequency	f _C	-	_	_	2.0	MHz
CP Pulse Width	t _{CW}	-	_	250		ns
DA Setup Time	t _{DS}	-	_	250		ns
DA Hold Time	t _{DH}	-	_	250	—	ns
CS Setup Time	t _{CSS}	-	_	250	—	ns
CS Hold Time	t _{CSH}	R ₁ =3.3 kΩ	e, C ₁ =47 pF	16		μs
CS Wait Time	t _{CSW}	-	_	250		ns
Data Processing Time	t _{DOFF}	R ₁ =3.3 kΩ	e, C ₁ =47 pF	8		μs
RESET Pulse Width	t _{WRES}	When RESET si microcontrolle	250	_	ns	
RESET Time	t _{RSON}		nal is input from r, etc. externally	250	_	ns
		R ₂ =1.0 kΩ	, C ₂ =0.1 μF	—	200	μs
DA Wait Time	t _{RSOFF}	-	_	250		ns
All Output Claw Data	t _R	0 100-5	t _R =20% to 80%	_	2.0	μs
All Output Slew Rate	t _F	C _I =100pF	t _F =80% to 20%	_	2.0	μs
V _{DD} Rise Time	t _{PRZ}	When mount	ed in the unit	—	100	μs
V _{DD} Off Time	t _{POF}	When mounted in	the unit, V _{DD} =0.0 V	5.0		ms

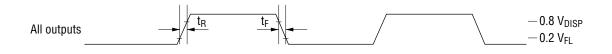
AC Characteristics-2

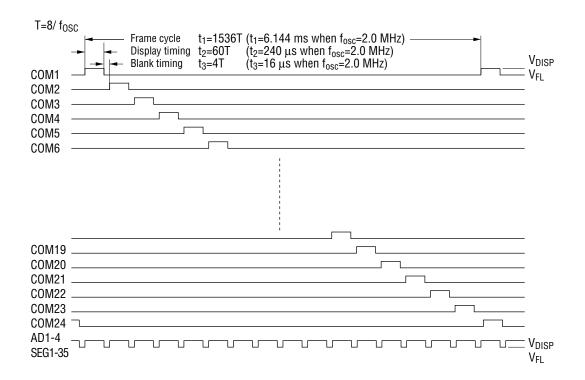

(V_{DD}, V_{DISP}=3.3V±10%, V_{FL}=-60V, Ta=-40 to +85°C, unless otherwise specified)

	•	-				
Parameter	Symbol	Cone	dition	Min.	Max.	Unit
CP Frequency	f _C	-	_	_	2.0	MHz
CP Pulse Width	t _{CW}	-	_	250	—	ns
DA Setup Time	t _{DS}	-	_	250	—	ns
DA Hold Time	t _{DH}	-	_	250	—	ns
CS Setup Time	t _{CSS}	-	_	250	_	ns
CS Hold Time	t _{CSH}	R ₁ =3.3 kΩ	e, C ₁ =39 pF	16	—	μs
CS Wait Time	t _{CSW}	-	_	250	—	ns
Data Processing Time	t _{DOFF}	R ₁ =3.3 kΩ	e, C ₁ =39 pF	8	—	μs
RESET Pulse Width	t _{WRES}		gnal is input from er etc. externally	250	_	ns
RESET Time	t _{RSON}		ınal is input from r etc. externally	250	_	ns
		R ₂ =1.0 kΩ	, C ₂ =0.1 μF	_	200	μs
DA Wait Time	t _{RSOFF}	-	_	250	—	ns
All Output Clow Data	t _R	0 100 - 5	t _R =20% to 80%	_	2.0	μs
All Output Slew Rate	t _F	C _I =100pF	t _F =80% to 20%		2.0	μs
V _{DD} Rise Time	t _{PRZ}	When mount	ed in the unit	_	100	μs
V _{DD} Off Time	t _{POF}	When mounted in	the unit, V _{DD} =0.0 V	5.0	_	ms


TIMING DIAGRAM

Symbol	V _{DD} =3.3V±10%	V _{DD} =5.0V±10%
V _{IH}	0.8 V _{DD}	0.7 V _{DD}
VIL	0.2 V _{DD}	0.3 V _{DD}


Data Timing


• Reset Timing

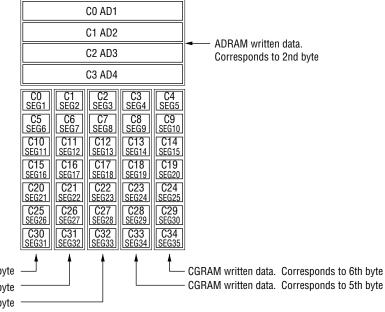
• Output Timing

• Digit Output Timing (for 16-digit display, at a duty of 15/16)

FUNCTIONAL DESCRIPTION

Commands List

	Command	LSB 1st byte							MSB	LSB	B 2nd byte				MSB			
	Command	B0	B1	B2	B3	B4	B5	B6	B7	B0	B1	B2	B3	B4	B5	B6	B7	
1	DCRAM data write	X0	X1	X2	X3	X4	1	0	0	CO	C1	C2	C3	C4	C5	C6	C7	
										C0	C5	C10	C15	C20	C25	C30	*	2nd byte
										C1	C6	C11	C16	C21	C26	C31	*	3rd byte
2	CGRAM data write	X0 X	X1	X2	X3	*	0	1	0	C2	C7	C12	C17	C22	C27	C32	*	4th byte
										C3	C8	C13	C18	C23	C28	C33	*	5th byte
										C4	C9	C14	C19	C24	C29	C34	*	6th byte
3	ADRAM data write	X0	X1	X2	Х3	X4	1	1	0	C0	C1	C2	C3	*	*	*	*	
4	General output port set	P1	P2	P3	P4	*	0	0	1	*	: D	on't c	are					
5	Display duty set	D0	D1	D2	*	*	1	0	1	Xn				cificati	on fo	r each	RAM	
6	Number of digits set	K0	K1	K2	K3	*	0	1	1	Cn	: C	naract	er co	de spe	ecifica	tion fo	or ead	h RAM
7	All lights ON/OFF	L	Н	*	*	*	1	1	1	Pn			•	•		us spe	ecifica	tion
	Test mode									Dn		isplay	-	•				
										^y Kn	. N	umpe		yns s	pecili	cation		


When data is written to RAM (DCRAM, CGRAM, ADRAM) continuously, addresses are internally incremented automatically.

Therefore it is not necessary to specify the 1st byte to write RAM data for the 2nd and later bytes.

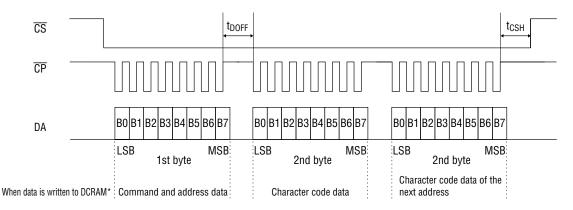
Note: The test mode is used for inspection before shipment. It is not a user function. H : All lights ON instruction

L : All lights OFF instruction

Positional Relationship Between SEGn and ADn (one digit)

CGRAM written data. Corresponds to 2nd byte CGRAM written data. Corresponds to 3rd byte CGRAM written data. Corresponds to 4th byte

Data Transfer Method and Command Write Method


Display control command and data are written by an 8-bit serial transfer. Write timing is shown in the figure below.

Setting the $\overline{\text{CS}}$ pin to "Low" level enables a data transfer.

Data is 8 bits and is sequentially input into the DA pin from LSB (LSB first). As shown in the figure below, data is read by the shift register at the rising edge of the shift clock, which is input into the \overline{CP} pin. If 8-bit data is input, internal load signals are automatically generated and data is written to each register and RAM.

Therefore it is not necessary to input load signals from the outside.

Setting the \overline{CS} pin to "High" disables data transfer. Data input from the point when the \overline{CS} pin changes from "High" to "Low" is recognized in 8-bit units.

* When data is written to RAM (DCRAM, ADRAM, CGRAM) continuously, addresses are internally incremented automatically.

Therefore it is not necessary to specify the 1st byte to write RAM data for the 2nd and later bytes.

Reset Function

Reset is executed when the **RESET** pin is set to "L", (when turning power on, for example) and initializes all functions.

Initial status is as follows:

- Address of each RAM address "00"H
- Data of each RAM All contents are undefined
- General output port All general output ports go "Low"
- Display digit 24 digits
- Brightness adjustment 8/16
- All display lights ON or OFF OFF mode
- Segment output All segment outputs go "Low"
- AD output All AD outputs go "Low"

Please set the functions again according to "Setting Flowchart" after reset.

Description of Commands and Functions

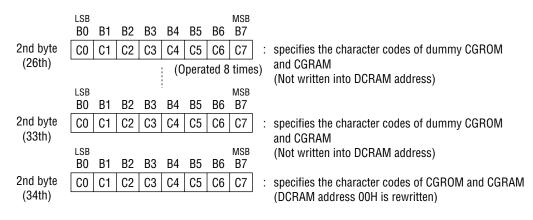
 DCRAM data write (Specifies the addresses 00H to 1FH of DCRAM and writes the character codes of CGROM and CGRAM.)

DCRAM (Data Control RAM) has a 5-bit address to store the character codes of CGROM and CGRAM.

The character code specified by DCRAM is converted to a 5×7 dot matrix character pattern via CGROM or CGRAM.

(The DCRAM can store 24 characters.)

LSB MSB B0 B1 B2 B3 B4 B5 B6 Β7 1st byte X0 | X1 X2 Х3 X4 1 0 0 : selects DCRAM data write mode and specifies DCRAM (1st) address (Ex: Specifies DCRAM address 00H.) LSB MSB BO B1 B2 B3 B4 B5 B6 B7 2nd byte C2 C3 C4 C7 C0 C1 C5 C6 : specifies the character codes of CGROM and CGRAM (2nd) (written into DCRAM address 00H)


To specify the character code of CGROM and CGRAM continuously to the next address, specify only character codes as follows.

The addresses of DCRAM are automatically incremented. Specification of an address is unnecessary.

	^{lsb} B0 B1 I	B2 B3 B4	B5 B6	msb B7	
2nd byte	C0 C1 (C2 C3 C4	C5 C6	C7 :	
(3rd)	LSB			MSB	(written into DCRAM address 01H)
	B0 B1 I	B2 B3 B4	B5 B6	B7	
2nd byte	C0 C1 (C2 C3 C4	C5 C6	C7 :	specifies the character codes of CGROM and CGRAM
(4th)	· · · ·				(written into DCRAM address 02H)
	LSB			MSB	
	B0 B1 I	B2 B3 B4	B5 B6	B7	
2nd byte	C0 C1 (C2 C3 C4	C5 C6	C7 :	specifies the character codes of CGROM and CGRAM
(25th)					(written into DCRAM address 17H)

[Command format]

The character code setting of CGROM and CGRAM up to 24 digits is completed. To set a character code from DCRAM address 00H continuously. Specify a dummy charactor code between DCRAM addresses 18H and 1FH. (To increament the DCRAM address automatically and set it to 00H)

X0 (LSB) to X4 (MSB): DCRAM addresses (5 bits: 24 characters) C0 (LSB) to C7 (MSB): Character codes of CGROM and CGRAM (8 bits: 256 characters)

HEX	X0	X1	X2	ХЗ	X 4	COM position	HEX	X 0	X1	X2	ХЗ	X4	COM position
00	0	0	0	0	0	COM1	10	0	0	0	0	1	COM17
01	1	0	0	0	0	COM2	11	1	0	0	0	1	COM18
02	0	1	0	0	0	COM3	12	0	1	0	0	1	COM19
03	1	1	0	0	0	COM4	13	1	1	0	0	1	COM20
04	0	0	1	0	0	COM5	14	0	0	1	0	1	COM21
05	1	0	1	0	0	COM6	15	1	0	1	0	1	COM22
06	0	1	1	0	0	COM7	COM7 16 0 1 1 0 1		COM23				
07	1	1	1	0	0	COM8 17 1 1 1 0 1		COM24					
08	0	0	0	1	0	COM9	18	0	0	0	1	1	Not fixed
09	1	0	0	1	0	COM10	19	1	0	0	1	1	Not fixed
0A	0	1	0	1	0	COM11	1A	0	1	0	1	1	Not fixed
0B	1	1	0	1	0	COM12	1B	1	1	0	1	1	Not fixed
0C	0	0	1	1	0	COM13	10	0	0	1	1	1	Not fixed
0D	1	0	1	1	0	COM14	1D	1	0	1	1	1	Not fixed
0E	0	1	1	1	0	COM15	1E	0	1	1	1	1	Not fixed
0F	1	1	1	1	0	COM16	1F	1	1	1	1	1	Not fixed

[COM positions and set DCRAM addresses]

2. CGRAM data write

(Specifies the addresses of CGRAM and writes character pattern data.)

CGRAM (Character Generator RAM) has a 4-bit address to store 5×7 dot matrix character patterns.

A character pattern stored in CGRAM can be displayed by specifying the character code (address) by DCRAM.

The address of CGRAM is assigned to 00H to 0FH. (All the other addresses are the CGROM addresses.)

(The CGRAM can store 16 types of character patterns.)

[Command format]

	LSB MSB B0 B1 B2 B3 B4 B5 B6 B7	
1st byte	X0 X1 X2 X3 * 0 1 0 :	selects CGRAM data write mode and specifies
(1st)	LSB MSB	CGRAM address. (Ex: Specifies CGRAM address 00H.)
Out of the state	B0 B1 B2 B3 B4 B5 B6 B7	
2nd byte (2nd)	C0 C5 C10 C15 C20 C25 C30 * :	specifies 1st column data (written into CGRAM address 00H)
(2110)	LSB MSB BO B1 B2 B3 B4 B5 B6 B7	
3rd byte	C1 C6 C11 C16 C21 C26 C31 * :	specifies 2nd column data
(3rd)		(written into CGRAM address 00H)
	LSB MSB BO B1 B2 B3 B4 B5 B6 B7	
4th byte	C2 C7 C12 C17 C22 C27 C32 * :	specifies 3rd column data
(4th)		(written into CGRAM address 00H)
	LSB MSB B0 B1 B2 B3 B4 B5 B6 B7	
5th byte (5th)	C3 C8 C13 C18 C23 C28 C33 * :	specifies 4th column data (written into CGRAM address 00H)
	LSB MSB	· · · · · · · · · · · · · · · · · · ·
	B0 B1 B2 B3 B4 B5 B6 B7	
6th byte	C4 C9 C14 C19 C24 C29 C34 * :	specifies 5th column data
(6th)		(written into CGRAM address 00H)

To specify character pattern data continuously to the next address, specify only character pattern data as follows.

The addresses of CGRAM are automatically incremented. Specification of an address is therefore unnecessary.

The 2nd to 6th byte (character pattern data) are regarded as one data item, so 300 ns is sufficient for t_{DOFF} time between bytes.

	LSB MSB BO B1 B2 B3 B4 B5 B6 B7	
2nd byte (7th)	C0 C5 C10 C15 C20 C25 C30 * :	specifies 1st column data
(711)	LSB MSB	(written into CGRAM address 01H)
	B0 B1 B2 B3 B4 B5 B6 B7	
6th byte (11th)	C4 C9 C14 C19 C24 C29 C34 * :	specifies 5th column data (written into CGRAM address 01H)
	LSB MSB	
2nd byte	B0 B1 B2 B3 B4 B5 B6 B7	enerifier fat erluner date
(12th)	C0 C5 C10 C15 C20 C25 C30 * :	specifies 1st column data (written into CGRAM address 02H)
	LSB MSB	
6th byte	B0 B1 B2 B3 B4 B5 B6 B7 C4 C9 C14 C19 C24 C29 C34 * :	specifies 5th column data
(16th)		(written into CGRAM address 02H)
	LSB MSB	
2nd byte	B0 B1 B2 B3 B4 B5 B6 B7 C0 C5 C10 C15 C20 C25 C30 * :	specifies 1st column data
(77th)		(written into CGRAM address 0FH)
	LSB MSB B0 B1 B2 B3 B4 B5 B6 B7	
6th byte	B0 B1 B2 B3 B4 B5 B6 B7 C4 C9 C14 C19 C24 C29 C34 * :	specifies 5th column data
(81th)		(written into CGRAM address 0FH)
	LSB MSB BO B1 B2 B3 B4 B5 B6 B7	
2nd byte	C0 C5 C10 C15 C20 C25 C30 * :	specifies 1st column data
(82th)		(CGRAM address 00H is written)
	LSB · MSB B0 B1 B2 B3 B4 B5 B6 B7	
6th byte	C4 C9 C14 C19 C24 C29 C34 * :	specifies 5th column data
(86th)		(CGRAM address 00H is written)
X0 (LSI	3) to X3 (MSB): CGRAM addresses	s (4 bits: 16 characters)

C0 (LSB) to C34 (MSB): CGRAM addresses (4 bits: 16 characters) C0 (LSB) to C34 (MSB): Character pattern data (35 bits: 35 outputs per digit) *: Don't care [CGROM addresses and set CGRAM addresses]

HEX	X0	X1	X2	Х3	CGROM address	HEX	X0	X1	X2	Х3	CGROM address
00	0	0	0	0	RAM00(0000000B)	08	0	0	0	1	RAM08(00001000B)
01	1	0	0	0	RAM01(00000001B)	09	1	0	0	1	RAM09(00001001B)
02	0	1	0	0	RAM02(00000010B)	0A	0	1	0	1	RAM0A(00001010B)
03	1	1	0	0	RAM03(00000011B)	0B	1	1	0	1	RAM0B(00001011B)
04	0	0	1	0	RAM04(00000100B)	00	0	0	1	1	RAM0C(00001100B)
05	1	0	1	0	RAM05(00000101B)	0D	1	0	1	1	RAM0D(00001101B)
06	0	1	1	0	RAM06(00000110B)	0E	0	1	1	1	RAM0E(00001110B)
07	1	1	1	0	RAM07(00000111B)	0F	1	1	1	1	RAM0F(00001111B)

Refer to ROMCODE table

area that corresponds to 2nd byte (1st column)

area that corresponds to 3rd byte (2nd column)

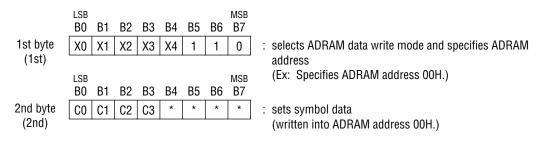
Positional relationship between the output area of CGROM and that of CGRAM

C0	C1	C2	C3	C4
C5	C6	C7	C8	C9
C10	C11	C12	C13	C14
C15	C16	C17	C18	C19
C20	C21	C22	C23	C24
C25	C26	C27	C28	C29
C30	C31	C32	C33	C34
		1		<u> </u>

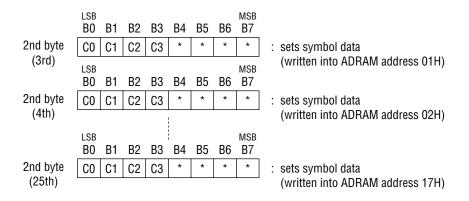
area that corresponds to 6th byte (5th column) area that corresponds to 5th byte (4th column) area that corresponds to 4th byte (3rd column)

Note: CGROM (Character Generator ROM) has an 8-bit address to generate 5×7 dot matrix character patterns.

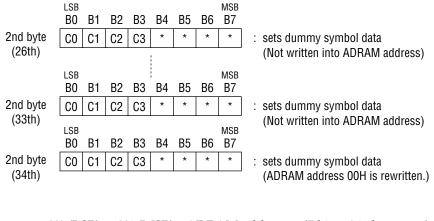
CGRAM can store 240 types of character patterns.


General-purpose code -01 is available and custom codes are provided on customer's request.

3. ADRAM data write


(Specifies the addresses 00H to 1FH of ADRAM and writes symbol data.)

ADRAM (Additional Data RAM) has a 5-bit address to store symbol data. Symbol data specified by ADRAM is directly output without CGROM and CGRAM. (The ADRAM can store 4 types of symbol patterns for each digit.) The terminal to which the contents of ADRAM are output can be used as a cursor.


[Command format]

To specify symbol data continuously to the next address, specify only symbol data as follows. The address of ADRAM is automatically incremented. Specification of addresses is therefore unnecessary.

The symbol data setting up to 24 digits is completed. To set symbol data from ADRAM address 00H continuously. Specify a dummy symbol data between ADRAM addresses 18H and 1FH. (To increment the ADRAM address automatically and set it to 00H)

X0 (LSB) to X4 (MSB): ADRAM addresses (5 bits: 24 characters) C0 (LSB) to C3 (MSB): Symbol data (4 bits: 4-symbol data per digit) *: Don't care

[COM positions and ADRAM addresses]

HEX	X0	X1	X2	Х3	X 4	COM position	HEX	X0	X1	X2	Х3	X 4	COM position
00	0	0	0	0	0	COM1	10	0	0	0	0	1	COM17
01	1	0	0	0	0	COM2	11	1	0	0	0	1	COM18
02	0	1	0	0	0	COM3	12	0	1	0	0	1	COM19
03	1	1	0	0	0	COM4	13	1	1	0	0	1	COM20
04	0	0	1	0	0	COM5	14	0	0	1	0	1	COM21
05	1	0	1	0	0	COM6	15	1	0	1	0	1	COM22
06	0	1	1	0	0	COM7	16	0	1	1	0	1	COM23
07	1	1	1	0	0	COM8	17	1	1	1	0	1	COM24
08	0	0	0	1	0	COM9	18	0	0	0	1	1	Not fixed
09	1	0	0	1	0	COM10	19	1	0	0	1	1	Not fixed
0A	0	1	0	1	0	COM11	1A	0	1	0	1	1	Not fixed
0B	1	1	0	1	0	COM12	1B	1	1	0	1	1	Not fixed
00	0	0	1	1	0	COM13	10	0	0	1	1	1	Not fixed
0D	1	0	1	1	0	COM14	1D	1	0	1	1	1	Not fixed
0E	0	1	1	1	0	COM15	1E	0	1	1	1	1	Not fixed
0F	1	1	1	1	0	COM16	1F	1	1	1	1	1	Not fixed

4. General output port set

(Specifies the general output port status.)

The general output port is an output for 4-bit static operation. It is used to control other I/O devices and turn on LED. (static operation) When at the "High" level, this output becomes the V_{DD} voltage, and when at the "Low" level, it becomes the ground potential. Therefore, the fluorescent display tube cannot be driven.

[Command format]

 LSB
 B0
 B1
 B2
 B3
 B4
 B5
 B6
 B7

 1st byte
 P1
 P2
 P3
 P4
 *
 0
 0
 1

: selects a general output port and specifies the output status

P1 to P4 : general output ports * : Don't care

[Set data and set state of general output port]

Pn	Display state of general output port	
0	Sets the output to Low	(The state when power is applied or when RESET is input.)
1	Sets the output to High	

5. Display duty set

(Writes a display duty value to the duty cycle register.)

Display duty adjusts brightness in 8 stages using 3-bit data.

When power is turned on or when the RESET signal is input, the duty cycle register value is "0". Always execute this instruction before turning the display on, then set a desired duty value.

[Command format]

D0 (LSB) to D2 (MSB) : display duty data (3 bits: 8 stages) * : Don't care

[Relation between setup data and controlled COM duty]

HEX	D0	D1	D2	COM duty
0	0	0	0	8/16
1	1	0	0	9/16
2	0	1	0	10/16
3	1	1	0	11/16
4	0	0	1	12/16
5	1	0	1	13/16
6	0	1	1	14/16
7	1	1	1	15/16

← (The state when power is turned on or when RESET signal is input.)

6. Number of digits set

(Writes the number of display digits to the display digit register.)

The number of digits set can display 9 to 24 digits using 4-bit data.

When power is turned on or when a RESET signal is input, the number of digit register value is "0". Always execute this instruction to change the number of digits before turning the dispaly on.

[Command format]

	lsb B0	B1	B2	B3	B4	B5	B6	msb B7	
1st byte	K0	K1	K2	K3	*	0	1	1	

: selects the number of digit set mode and specifies the number of digit value

K0 (LSB) to K3 (MSB) : number of digit data (4 bits: 16 digits) * : Don't care

[Relation between setup data and controlled COM]

	HEX	К0	K1	K2	К3	Number of digits	HEX	К0	K1	K2	КЗ	Number of digits
						of COM						of COM
_►	0	0	0	0	0	COM1 to 24	8	0	0	0	1	COM1 to 16
	1	1	0	0	0	COM1 to 9	9	1	0	0	1	COM1 to 17
	2	0	1	0	0	COM1 to 10	А	0	1	0	1	COM1 to 18
	3	1	1	0	0	COM1 to 11	В	1	1	0	1	COM1 to 19
	4	0	0	1	0	COM1 to 12	С	0	0	1	1	COM1 to 20
	5	1	0	1	0	COM1 to 13	D	1	0	1	1	COM1 to 21
	6	0	1	1	0	COM1 to 14	E	0	1	1	1	COM1 to 22
	7	1	1	1	0	COM1 to 15	F	1	1	1	1	COM1 to 23

* The state when power is turned on or when RESET signal is input.

7. All display lights ON/OFF set (Turns all dispaly lights ON or OFF.)

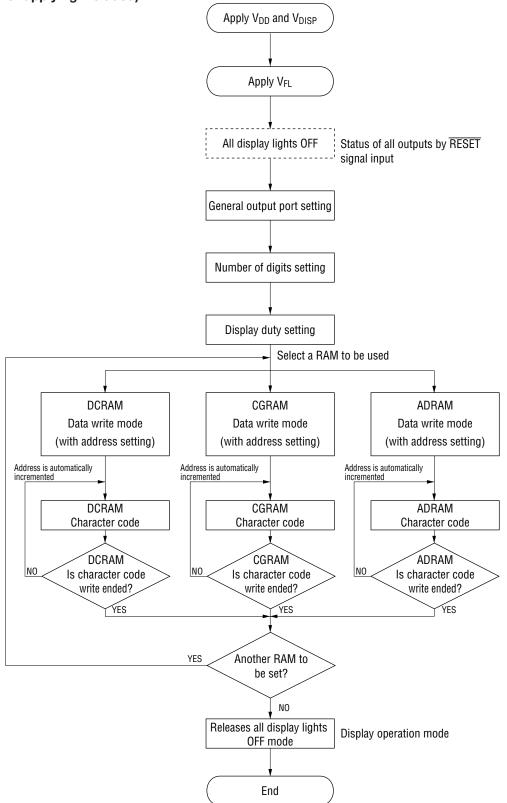
All display lights ON is used primarily for display testing. All display lights OFF is primarily used for display blink and to prevent malfunction when power is turned on. This command cannot control the general output port.

[Command format]

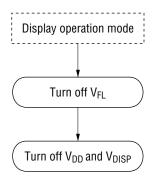
 LSB
 MSB

 B0
 B1
 B2
 B3
 B4
 B5
 B6
 B7

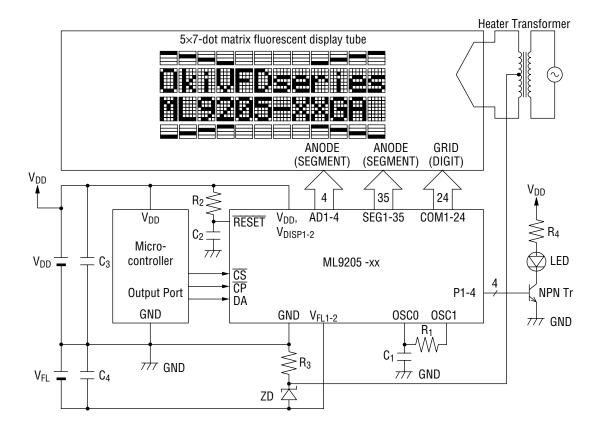
 1st byte
 L
 H
 *
 *
 1
 1
 1


 L and H: display operation data
 *: Don't care
 *:
 Don't care
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 *:
 <

: selects all display lights ON or OFF mode and specifies display operation

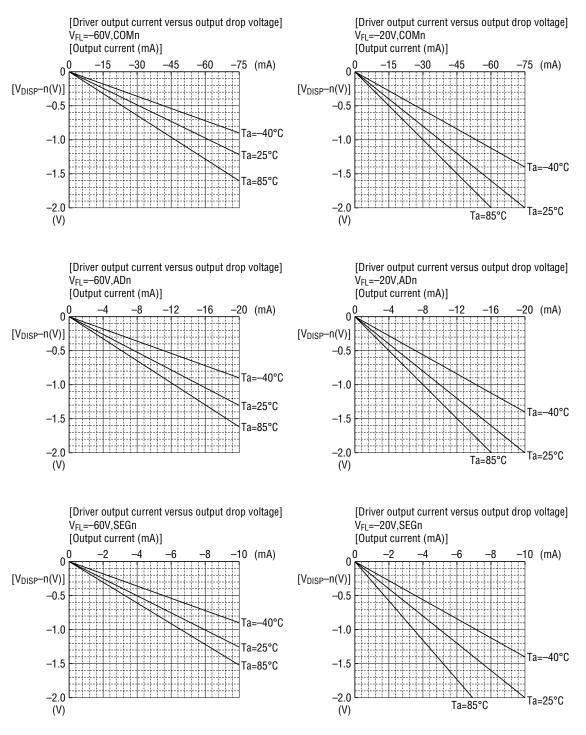

[Set data and display state of SEG and AD]

L	Н	Display state of SEG and AD						
0	0	Normal display						
1	0	Sets all outputs to Low	(The state when power is applied or when $\overline{\text{RESET}}$ is input.					
0	1	Sets all outputs to High						
1	1	Sets all outputs to High						


Setting Flowchart (Power applying included)

Power-off Flowchart

APPLICATION CIRCUIT

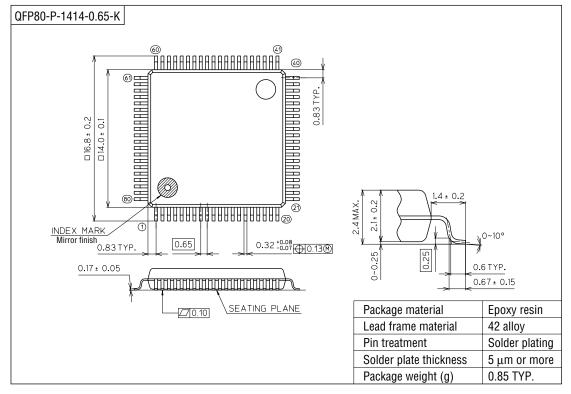


- Notes: 1. The V_{DD} value depends on the power supply voltage of the microcontroller used. Adjust the values of the constants R₁, R₂, R₄, C₁, and C₂ to the power supply voltage used.
 - 2. The V_{FL} value depends on the fluorescent display tube used. Adjust the values of the constants R_3 and ZD to the power supply voltage used.

REFERENCE DATA

Graphs illustrating the V_{FL} versus driver output current capability relationship are shown below.

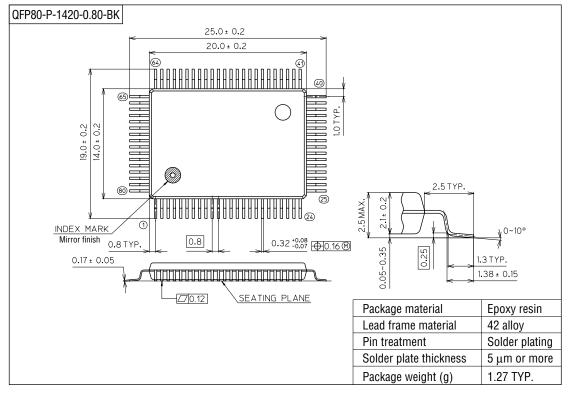
Care must be taken not to use the total power in excess of allowable power dissipation.


ML9205-01 ROM Code

00000000B (00H) to 00000111B (0FH) are the CGRAM addresses.

MSB																
LSB	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	RAM0															
0001	RAM1															
0010	RAM2															
0011	RAM3															
0100	RAM4															
0101	RAM5															
0110	RAM6															
0111	RAM7															
1000	RAM8															
1001	RAM9															
1010	RAMA															
1011	RAMB															
1100	RAMC															
1101	RAMD															
1110	RAME															
1111	RAMF															

PACKAGE DIMENSIONS


(Unit : mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, TQFP, LQFP, SOJ, QFJ (PLCC), SHP, and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact Oki's responsible sales person on the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

(Unit : mm)

Notes for Mounting the Surface Mount Type Package

The SOP, QFP, TSOP, TQFP, LQFP, SOJ, QFJ (PLCC), SHP, and BGA are surface mount type packages, which are very susceptible to heat in reflow mounting and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact Oki's responsible sales person on the product name, package name, pin number, package code and desired mounting conditions (reflow method, temperature and times).

NOTICE

- 1. The information contained herein can change without notice owing to product and/or technical improvements. Before using the product, please make sure that the information being referred to is up-to-date.
- 2. The outline of action and examples for application circuits described herein have been chosen as an explanation for the standard action and performance of the product. When planning to use the product, please ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.
- 3. When designing your product, please use our product below the specified maximum ratings and within the specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating temperature.
- 4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified maximum ratings or operation outside the specified operating range.
- 5. Neither indemnity against nor license of a third party's industrial and intellectual property right, etc. is granted by us in connection with the use of the product and/or the information and drawings contained herein. No responsibility is assumed by us for any infringement of a third party's right which may result from the use thereof.
- 6. The products listed in this document are intended for use in general electronics equipment for commercial applications (e.g., office automation, communication equipment, measurement equipment, consumer electronics, etc.). These products are not authorized for use in any system or application that requires special or enhanced quality and reliability characteristics nor in any system or application where the failure of such system or application may result in the loss or damage of property, or death or injury to humans. Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace equipment, nuclear power control, medical equipment, and life-support systems.
- 7. Certain products in this document may need government approval before they can be exported to particular countries. The purchaser assumes the responsibility of determining the legality of export of these products and will take appropriate and necessary steps at their own expense for these.
- 8. No part of the contents cotained herein may be reprinted or reproduced without our prior permission.
- 9. MS-DOS is a registered trademark of Microsoft Corporation.

Copyright 1999 Oki Electric Industry Co., Ltd.