1N5817, 1N5818, 1 N5819

Axial Lead Rectifiers

...employing the Schottky Barrier principle in a large area metal-to-silicon power diode. State-of-the-art geometry features chrome barrier metal, epitaxial construction with oxide passivation and metal overlap contact. Ideally suited for use as rectifiers in low-voltage, high-frequency inverters, free wheeling diodes, and polarity protection diodes.

- Extremely Low V_{F}
- Low Stored Charge, Majority Carrier Conduction
- Low Power Loss/High Efficiency

Mechanical Characteristics

- Case: Epoxy, Molded
- Weight: 0.4 gram (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead and Mounting Surface Temperature for Soldering Purposes: $220^{\circ} \mathrm{C}$ Max. for 10 Seconds, $1 / 16^{\prime \prime}$ from case
- Shipped in plastic bags, 1000 per bag.
- Available Tape and Reeled, 5000 per reel, by adding a "RL" suffix to the part number
- Polarity: Cathode Indicated by Polarity Band
- Marking: 1N5817, 1N5818, 1N5819

MAXIMUM RATINGS

Please See the Table on the Following Page

ON Semiconductor ${ }^{\text {² }}$

http://onsemi.com

SCHOTTKY BARRIER
 RECTIFIERS
 1.0 AMPERE 20, 30 and 40 VOLTS

1N581x = Device Code
$x \quad=7,8$ or 9

ORDERING INFORMATION

Device	Package	Shipping
1N5817	Axial Lead	1000 Units/Bag
1N5817RL	Axial Lead	5000/Tape \& Reel
1N5818	Axial Lead	1000 Units/Bag
1N5818RL	Axial Lead	5000/Tape \& Reel
1N5819	Axial Lead	1000 Units/Bag
1N5819RL	Axial Lead	5000/Tape \& Reel

Preferred devices are recommended choices for future use and best overall value.

MAXIMUM RATINGS

Rating	Symbol	1N5817	1N5818	1N5819	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	$V_{\text {RRM }}$ $\mathrm{V}_{\mathrm{RWM}}$ V_{R}	20	30	40	V
Non-Repetitive Peak Reverse Voltage	$\mathrm{V}_{\text {RSM }}$	24	36	48	V
RMS Reverse Voltage	$\mathrm{V}_{\mathrm{R} \text { (RMS) }}$	14	21	28	V
Average Rectified Forward Current (Note 1) $\left(\mathrm{V}_{\mathrm{R} \text { (equiv) }} \leq 0.2 \mathrm{~V}_{\mathrm{R}}(\mathrm{dc}), \mathrm{T}_{\mathrm{L}}=90^{\circ} \mathrm{C}\right. \text {, }$ $R_{\text {日JA }}=80^{\circ} \mathrm{C} / \mathrm{W}$, P.C. Board Mounting, see Note 2, $\mathrm{T}_{\mathrm{A}}=55^{\circ} \mathrm{C}$)	Io		1.0		A
Ambient Temperature (Rated $\mathrm{V}_{\mathrm{R}}(\mathrm{dc}), \mathrm{P}_{\mathrm{F}(\mathrm{AV})}=0, \mathrm{R}_{\theta J \mathrm{~J}}=80^{\circ} \mathrm{C} / \mathrm{W}$)	$\mathrm{T}_{\text {A }}$	85	80	75	${ }^{\circ} \mathrm{C}$
Non-Repetitive Peak Surge Current (Surge applied at rated load conditions, half-wave, single phase 60 Hz , $\mathrm{T}_{\mathrm{L}}=70^{\circ} \mathrm{C}$)	$\mathrm{I}_{\text {FSM }}$	25 (for one cycle)			A
Operating and Storage Junction Temperature Range (Reverse Voltage applied)	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	-65 to +125			${ }^{\circ} \mathrm{C}$
Peak Operating Junction Temperature (Forward Current applied)	$\mathrm{T}_{\mathrm{J}(\mathrm{pk})}$	150			${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS (Note 1)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	$R_{\theta J A}$	80	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{L}}=25^{\circ} \mathrm{C}$ unless otherwise noted) (Note 1)

Characteristic	Symbol	1N5817	1N5818	1N5819	Unit
Maximum Instantaneous Forward Voltage (Note 2)	$\left(\mathrm{i}_{\mathrm{F}}=0.1 \mathrm{~A}\right)$	v_{F}	0.32	0.33	0.34
	$\left(\mathrm{i}_{\mathrm{F}}=1.0 \mathrm{~A}\right)$		V		
	$\left(\mathrm{i}_{\mathrm{F}}=3.0 \mathrm{~A}\right)$		0.45	0.55	0.6
Maximum Instantaneous Reverse Current @ Rated dc Voltage (Note 2)	$\left(\mathrm{T}_{\mathrm{L}}=25^{\circ} \mathrm{C}\right)$	I_{R}			
	$\left(\mathrm{T}_{\mathrm{L}}=100^{\circ} \mathrm{C}\right)$		1.0	1.0	1.0

1. Lead Temperature reference is cathode lead $1 / 32^{\prime \prime}$ from case.
2. Pulse Test: Pulse Width $=300 \mu \mathrm{~s}$, Duty Cycle $=2.0 \%$.

NOTE 1. - DETERMINING MAXIMUM RATINGS

Reverse power dissipation and the possibility of thermal runaway must be considered when operating this rectifier at reverse voltages above $0.1 \mathrm{~V}_{\mathrm{RWM}}$. Proper derating may be accomplished by use of equation (1).

$$
\begin{align*}
\mathrm{T}_{\mathrm{A}(\max)}= & \mathrm{T}_{J(\max)}-\mathrm{R}_{\theta \mathrm{JJA}} \mathrm{P}_{\mathrm{F}(\mathrm{AV})}-\mathrm{R}_{\theta \mathrm{BA}} \mathrm{P}_{\mathrm{R}(\mathrm{AV})} \tag{1}\\
\text { where } \mathrm{T}_{\mathrm{A}(\max)}= & \text { Maximum allowable ambient temperature } \\
\mathrm{T}_{\mathrm{J}(\max)}= & \text { Maximum allowable junction temperature } \\
& \text { (125}{ }^{\circ} \mathrm{C} \text { or the temperature at which thermal } \\
& \text { runaway occurs, whichever is lowest) } \\
\mathrm{P}_{\mathrm{F}(\mathrm{AV})}= & \text { Average forward power dissipation } \\
\mathrm{P}_{\mathrm{R}(\mathrm{AV})}= & \text { Average reverse power dissipation } \\
\mathrm{R}_{\theta J A}= & \text { Junction-to-ambient thermal resistance }
\end{align*}
$$

igures 1, 2, and 3 permit easier use of equation (1) by taking reverse power dissipation and thermal runaway into consideration. The figures solve for a reference temperature as determined by equation (2).

$$
\begin{equation*}
\mathrm{T}_{\mathrm{R}}=\mathrm{T}_{\mathrm{J}(\max)}-\mathrm{R}_{\theta \mathrm{JA}} \mathrm{P}_{\mathrm{R}(\mathrm{AV})} \tag{2}
\end{equation*}
$$

Substituting equation (2) into equation (1) yields:

$$
\begin{equation*}
T_{A(\text { max })}=T_{R}-R_{\text {UJA }} P_{F(A V)} \tag{3}
\end{equation*}
$$

Inspection of equations (2) and (3) reveals that T_{R} is the ambient temperature at which thermal runaway occurs or where $\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$, when forward power is zero. The transition from one boundary condition to the other is evident on the curves of Figures 1, 2, and 3 as a difference in the rate of change of the slope in the vicinity of $115^{\circ} \mathrm{C}$. The data of Figures 1, 2, and 3 is based upon dc conditions. For use in common rectifier circuits, Table 1 indicates suggested factors for an equivalent dc voltage to use for conservative design, that is:

$$
\begin{equation*}
V_{R(\text { equiv })}=V_{\text {in }(\mathrm{PK})} \times F \tag{4}
\end{equation*}
$$

The factor F is derived by considering the properties of the various rectifier circuits and the reverse characteristics of Schottky diodes.

EXAMPLE: Find $\mathrm{T}_{\mathrm{A}(\max)}$ for 1 N 5818 operated in a 12 -volt dc supply using a bridge circuit with capacitive filter such that $\mathrm{I}_{\mathrm{DC}}=0.4 \mathrm{~A}\left(\mathrm{I}_{\mathrm{F}(\mathrm{AV})}=0.5 \mathrm{~A}\right), \mathrm{I}_{(\mathrm{FM})} / \mathrm{I}_{(\mathrm{AV})}=10$, Input Voltage $=10 \mathrm{~V}_{(\mathrm{rms})}, \mathrm{R}_{\theta \mathrm{JA}}=80^{\circ} \mathrm{C} / \mathrm{W}$.

Step 1. Find $V_{R(e q u i v) . ~ R e a d ~}^{F}=0.65$ from Table 1,

$$
\therefore \mathrm{V}_{\mathrm{R}(\text { equiv) })}=(1.41)(10)(0.65)=9.2 \mathrm{~V} \text {. }
$$

Step 2. Find T_{R} from Figure 2. Read $T_{R}=109^{\circ} \mathrm{C}$

$$
@ V_{R}=9.2 \mathrm{~V} \text { and } \mathrm{R}_{\theta \mathrm{JA}}=80^{\circ} \mathrm{C} / \mathrm{W}
$$

Step 3. Find $\mathrm{P}_{\mathrm{F}(\mathrm{AV})}$ from Figure 4. ${ }^{* *}$ Read $\mathrm{P}_{\mathrm{F}(\mathrm{AV})}=0.5 \mathrm{~W}$

$$
@ \frac{\mathrm{I}_{(\mathrm{FM})}}{\mathrm{I}_{(\mathrm{AV})}}=10 \text { and } \mathrm{IF}(\mathrm{AV})=0.5 \mathrm{~A} .
$$

Step 4. Find $\mathrm{T}_{\mathrm{A}(\max)}$ from equation (3).

$$
\mathrm{T}_{\mathrm{A}(\max)}=109-(80)(0.5)=69^{\circ} \mathrm{C}
$$

**Values given are for the 1 N5818. Power is slightly lower for the 1N5817 because of its lower forward voltage, and higher for the 1N5819.

Figure 1. Maximum Reference Temperature 1N5817

Figure 2. Maximum Reference Temperature 1N5818

Figure 3. Maximum Reference Temperature 1N5819
Table 1. Values for Factor F

Circuit	Half Wave		Full Wave, Bridge		Full Wave, Center Tapped* \dagger	
Load	Resistive	Capacitive*	Resistive	Capacitive	Resistive	Capacitive
Sine Wave	0.5	1.3	0.5	0.65	1.0	1.3
Square Wave	0.75	1.5	0.75	0.75	1.5	1.5

${ }^{*}$ Note that $\mathrm{V}_{\mathbf{R}(\mathrm{PK})}=2.0 \mathrm{~V}_{\mathrm{in}(\mathrm{PK})} . \quad$ U Use line to center tap voltage for V_{in}.

1N5817, 1N5818, 1N5819

Figure 4. Steady-State Thermal Resistance

Figure 5. Forward Power Dissipation 1N5817-19

Figure 6. Thermal Response
NOTE 2. - MOUNTING DATA

Data shown for thermal resistance junction-to-ambient $\left(\mathrm{R}_{\theta \mathrm{JA}}\right)$ for the mountings shown is to be used as typical guideline values for preliminary engineering, or in case the tie point temperature cannot be measured.

TYPICAL VALUES FOR R $_{\theta \text { JA }}$ IN STILL AIR

Mounting Method	Lead Length, L (in)				$\mathbf{R}_{\theta J A}$
	$\mathbf{1 / 8}$	$\mathbf{1 / 4}$	$\mathbf{1 / 2}$	$\mathbf{3 / 4}$	
1	52	65	72	85	${ }^{\circ} \mathrm{C} / \mathrm{W}$
2	67	80	87	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
3	50				
${ }^{\circ} \mathrm{C} / \mathrm{W}$					

1N5817, 1N5818, 1N5819

NOTE 3. - THERMAL CIRCUIT MODEL
(For heat conduction through the leads)

Use of the above model permits junction to lead thermal resistance for any mounting configuration to be found. For a given total lead length, lowest values occur when one side of the rectifier is brought as close as possible to the heatsink. Terms in the model signify:
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature $\quad \mathrm{T}_{\mathrm{C}}=$ Case Temperature
$T_{L}=$ Lead Temperature $\quad T_{J}=$ Junction Temperature
$\mathrm{R}_{\theta \mathrm{S}}=$ Thermal Resistance, Heatsink to Ambient
$\mathrm{R}_{\theta \mathrm{L}}=$ Thermal Resistance, Lead to Heatsink
$\mathrm{R}_{\theta \mathrm{J}}=$ Thermal Resistance, Junction to Case
$P_{D}=$ Power Dissipation

Figure 7. Typical Forward Voltage
(Subscripts A and K refer to anode and cathode sides, respectively.) Values for thermal resistance components are:
$R_{\theta L}=100^{\circ} \mathrm{C} / \mathrm{W} /$ in typically and $120^{\circ} \mathrm{C} / \mathrm{W} /$ in maximum $R_{\theta J}=36^{\circ} \mathrm{C} / \mathrm{W}$ typically and $46^{\circ} \mathrm{C} / \mathrm{W}$ maximum.

Figure 8. Maximum Non-Repetitive Surge Current

Figure 9. Typical Reverse Current

NOTE 4. - HIGH FREQUENCY OPERATION

Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 10.)

Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 percent at 2.0 MHz , e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss: it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage.

Figure 10. Typical Capacitance

1N5817, 1N5818, 1N5819

PACKAGE DIMENSIONS

AXIAL LEAD, DO-41

CASE 59-10
ISSUE S

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH
2. 59-04 OBSOLETE, NEW STANDARD 59-09.
3. 59-04 OBSOLETE, NEW STANDARD 59-09.
4. 59-03 OBSOLETE, NEW STANDARD 59-10.
5. ALL RULES AND NOTES ASSOCIATED WITH JEDEC DO-41 OUTLINE SHALL APPLY
6. POLARITY DENOTED BY CATHODE BAND.
7. LEAD DIAMETER NOT CONTROLLED WITHIN F DIMENSION.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.161	0.205	4.10	5.20
B	0.079	0.106	2.00	2.70
D	0.028	0.034	0.71	0.86
F	---	0.050	---	1.27
K	1.000	---	25.40	---

1N5817, 1N5818, 1N5819

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center
2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051
Phone: 81-3-5773-3850
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

