OmROn

MOS FET Relays

G3VM-S5

Expanded Range of Analog-Switching
 MOS FET Relays in 200-V Load Voltage

Series.

- Ideal replacement for the dial-pulse relay or hook relay of each modem or facsimile machine.
- Ideal for application to the line interface blocks of PBX and telephone exchange systems.
- Can be applied to hybrid IC circuits and card-type modems conforming to PCMCIA standards.
- Peak load voltage of 200 V .

Note: The actual product is marked differently from the image shown here.

- Approved standards: UL1577 (File No. E80555)

Application Examples

- PBX subscriber interfaces
- Multi-functional telephones
- Card-type modems and fax modems
- Built-in modems in personal computers
- Measurement devices

List of Models

Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape
SPST-NO	Surface-mounting terminals	200 VAC	G3VM-S5	100	---
		G3VM-S5(TR)	---	2,500	

Dimensions

Note: All units are in millimeters unless otherwise indicated.

G3VM-S5

Note: The actual product is marked differently from the image shown here.

Weight: 0.1 g

-Terminal Arrangement/Internal Connections (Top View)

G3VM-S5

Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-S5

■ Absolute Maximum Ratings ($\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$)

Item		Symbol	Rating	Unit	Measurement Conditions
Input	LED forward current	I_{F}	50	mA	
	Repetitive peak LED forward current	$\mathrm{I}_{\text {FP }}$	1	A	100μ s pulses, 100 pps
	LED forward current reduction rate	$\Delta \mathrm{I}_{\mathrm{F}} /{ }^{\circ} \mathrm{C}$	-0.5	$\mathrm{mA}^{\prime}{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$
	LED reverse voltage	$V_{\text {R }}$	5	V	
	Connection temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$	
Output	Output dielectric strength	$\mathrm{V}_{\text {OFF }}$	200	V	
	Continuous load current	I_{0}	150	mA	
	ON current reduction rate	$\Delta \mathrm{ION}^{1 / \mathrm{C}}$	-1.5	$\mathrm{mA}^{\prime}{ }^{\circ} \mathrm{C}$	$\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$
	Connection temperature	T_{j}	125	${ }^{\circ} \mathrm{C}$	
Dielectric strength between input and output (See note 1.)		$\mathrm{V}_{\text {- }}$	1,500	Vrms	AC for 1 min
Operating temperature		T_{a}	-40 to +85	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Storage temperature		$\mathrm{T}_{\text {stg }}$	-55 to +100	${ }^{\circ} \mathrm{C}$	With no icing or condensation
Soldering temperature (10 s)		---	260	${ }^{\circ} \mathrm{C}$	10 s

Note: 1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

■Electrical Characteristics ($\mathbf{T a}=25^{\circ} \mathrm{C}$)

Item		Symbol	Minimum	Typical	Maximum	Unit	Measurement conditions
Input	LED forward voltage	V_{F}	1.0	1.15	1.3	V	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$
	Reverse current	I_{R}	---	---	10	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$
	Capacity between terminals	$\mathrm{C}_{\text {T }}$	---	30	---	pF	$\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$
	Trigger LED forward current	I_{FT}	---	1	3	mA	$\mathrm{I}_{\mathrm{O}}=150 \mathrm{~mA}$
Output	Maximum resistance with output ON	R_{ON}	---	5	8	Ω	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA} \end{aligned}$
	Current leakage when the relay is open	ILEAK	---	---	1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {OFF }}=200 \mathrm{~V}$
Capacity between I/O terminals		$\mathrm{Cl}_{\text {-O }}$	---	0.8	---	pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{Vs}=0 \mathrm{~V}$
Insulation resistance		$\mathrm{R}_{\mathrm{I}-\mathrm{O}}$	1,000	---	---	$\mathrm{M} \Omega$	$\begin{aligned} & \mathrm{V}_{1-\mathrm{O}}=500 \mathrm{VDC}, \\ & \mathrm{RoH} \leq 60 \% \end{aligned}$
Turn-ON time		tON	---	0.6	1.5	ms	$\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=200 \Omega$,
Turn-OFF time		tOFF	---	0.1	1.0	ms	$\mathrm{V}_{\mathrm{DD}}=20 \mathrm{~V}$ (See note 2.)

Note: 2. Turn-ON and Turn-OFF Times

Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Output dielectric strength	V_{DD}	--	150	200	V
Operating LED forward current	I_{F}	5	7.5	25	mA
Continuous load current	I_{O}	--	---	120	mA
Operating temperature	T_{a}	-20	---	65	${ }^{\circ} \mathrm{C}$

Engineering Data
Load Current vs. Ambient Temperature G3vM-S5

