OMRON MOS FET Relays

G3VM-81G1

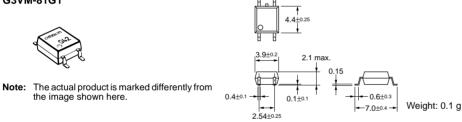
New Relay Incorporating a MOS FET Optically Coupled with an Infrared LED Has a 4-pin SOP Package and 80-V Load Voltage

- Continuous load current of 350 mA.
- Dielectric strength of 1,500 Vrms between I/O.

■ Application Examples

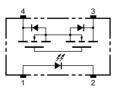
- Broadband systems
- Measurement devices
- Data loggers
- Amusement machines

■List of Models

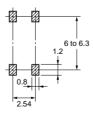

Note: The actual product is marked differently from the image shown here.

Contact form	Terminals	Load voltage (peak value)	Model	Number per stick	Number per tape
SPST-NO	Surface-mounting	80 VAC	G3VM-81G1	100	
terminals			G3VM-81G1(TR)		2,500

Dimensions


Note: All units are in millimeters unless otherwise indicated.

G3VM-81G1


■ Terminal Arrangement/Internal Connections (Top View)

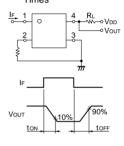
G3VM-81G1

■ Actual Mounting Pad Dimensions (Recommended Value, Top View)

G3VM-81G1

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rating	Unit	Measurement Conditions		
Input	LED forward current	I _F	50	mA			
	Repetitive peak LED forward current	I _{FP}	1	А	100 µs pulses, 100 pps		
	LED forward current reduction rate	$\Delta I_{F}^{\circ}C$	-0.5	mA/°C	Ta ≥ 25°C		
	LED reverse voltage	V _R	5	V			
	Connection temperature	Тј	125	°C			
Output	Output dielectric strength	V _{OFF}	80	V			
	Continuous load current	I _O	350	mA			
	ON current reduction rate	$\Delta I_{ON} / ^{\circ}C$	-3.5	mA/°C	$Ta \geq 25^{\circ}C$		
	Connection temperature	Тј	125	°C			
	ic strength between input and See note 1.)	V _{I-O}	1,500	Vrms	AC for 1 min		
Operating temperature		Ta	-40 to +85	°C	With no icing or condensation		
Storage temperature		T _{stg}	-55 to +125	°C	With no icing or condensation		
Soldering temperature (10 s)			260	°C	10 s		


Note:

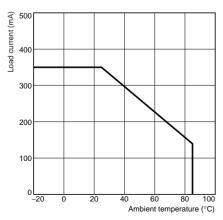
 The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

■ Electrical Characteristics (Ta = 25°C)

	Item	Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions	
Input	LED forward voltage	V _F	1.0	1.15	1.3	V	I _F = 10 mA	
	Reverse current	I _R			10	μA	V _R = 5 V	
	Capacity between terminals	CT		15		pF	V = 0, f = 1 MHz	
	Trigger LED forward current	I _{FT}		1.0	4.0	mA	I _O = 350 mA	
Output	Maximum resistance with output ON	R _{ON}		1.0	1.2	Ω	I _F = 5 mA, I _O = 350 mA	
	Current leakage when the relay is open	I _{LEAK}		0.2	1.0	nA	V _{OFF} = 30 V, Ta = 50°C	
Capacity	/ between I/O terminals	C _{I-O}		0.8		pF	f = 1 MHz, Vs = 0 V	
Insulation resistance		R _{I-O}	1,000			MΩ	$\label{eq:VI-O} \begin{split} V_{I\text{-}O} &= 500 \ \text{VDC}, \\ \text{RoH} \leq 60\% \end{split}$	
Turn-ON	Turn-ON time			0.3	0.5	ms	$I_F = 5 \text{ mA}, R_L = 200 \Omega$,	
Turn-OFF time		tOFF		0.3	0.5	ms	$V_{DD} = 20 V$ (See note 2.	

Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.


Item	Symbol	Minimum	Typical	Maximum	Unit
Output dielectric strength	V _{DD}			64	V
Operating LED forward current	I _F	5		30	mA
Continuous load current	I _O			350	mA
Operating temperature	T _a	25		60	°C

Engineering Data

Load Current vs. Ambient Temperature G3VM-81G1

■ Safety Precautions

Refer to page 6 for precautions common to all G3VM models.

