SIEMENS

TV-Stereo-Surround Sound Interface IC

Preliminary Data

Bipolar IC

Features

The TDA 6811 contains $\mathrm{I}^{2} \mathrm{C}$ Bus controlled functions, which are required as a supplement to a Dolby surround sound audio system. The circuit is divided into two functional blocks:

High-Quality Sound Processing

- Fine-step stereo level control for adjustment of the Dolby ${ }^{\circledR}$ decoder
- Volume control for the rear channel

Control Circuit

- $I^{2} C$ Bus interface
- Control of AF sound processing
- Switch outputs (seven)

Type	Ordering Code	Package
TDA 6811	Q67000-A5145	P-DIP-18-1

Dolby ${ }^{\circledR}$ is a registered trademark of Dolby Laboratories Corporation.
Purchase of Siemens $\mathrm{I}^{2} \mathrm{C}$ components conveys a license under the Philips' $\mathrm{I}^{2} \mathrm{C}$ patent to use the components in the $I^{2} \mathrm{C}$ system provided the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ specifications defined by Philips.

Signal Circuit

The integrated circuit contains the components required for extending a conventional stereo sound system from a two-channel arrangement to a three-channel Dolby surround system with Dolby decoder.

The first component is a fine-step two-channel AF-level controller. It is used for adjusting the Dolby decoder. Its operating range is $\pm 3 \mathrm{~dB}$ with 0.2 dB steps. The left and right channels can be adjusted separately.
The second component, a mono volume control with a maximum gain of 10 dB , is used for the rear channel generated in the Dolby decoder. 56 steps of 1.25 dB each provide a control range of 68.75 dB .

A total of seven switch outputs are provided for controlling the Dolby decoder via the $\mathrm{I}^{2} \mathrm{C}$ Bus.

Control Circuit

An $I^{2} C$ Bus interface with listen/talk action controls all functions. The currently valid data are stored in a latch block.

The telegram structure is as follows:
Start condition - chip address - any number of data bytes - stop condition.
The following conditions apply to data bytes:
The actual data byte (containing the data information) must always be preceded by a subaddress byte.
Various subaddresses can be accessed within a message (ie. without new start condition).

Chip Address

	MSB	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	LSB
	1	0	0	1	0	0	1	0

Subaddress Bytes

	MSB	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	LSB
Fine adjust, left	X	X	X	X	0	0	0	0
Fine adjust, right	X	X	X	X	0	0	0	1
Volume control	X	X	X	X	0	0	1	0
Switch outputs	X	X	X	X	0	0	1	1

a) Volume Control

	MSB	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	LSB
Maximal volume	X	X	1	1	1	1	1	1
Max-1	X	X	1	1	1	1	1	0
Max-15								
	X	X	1	1	0	0	0	0
Max-55								
MUTE	X	X	0	0	1	0	0	0
Power ON	X	X	0	0	0	X	X	X

b) Fine Adjust Left/Right

	MSB	\cdot	\cdot	\cdot	\cdot	\cdot	\cdot	LSB
Maximal gain	X	X	X	1	1	1	1	1
Max-1	X	X	X	1	1	1	1	0
Gain 0 dB	X	X	X	1	0	0	0	0
Minimum gain	X	X	X	0	0	0	0	1
Minimum gain	X	X	X	0	0	0	0	X
Power ON	X	X	X	0	0	0	0	1

c) Switch Byte

			MSB		-					LSB
			P7	P6	P5	P4	P3	P2	P1	X
P1	=	0	Port 1 (open collector) low (low-impedance); power ON							
P1	=	1	Port 1 high (high-impedance)							
P2	=	0	Port 2 (open collector) low (low-impedance); power ON							
P2	=	1	Port 2 high (high-impedance)							
P3	=	0	Port 3 (open collector) low (low-impedance); power ON							
P3	=	1	Port 3 high (high-impedance)							
P4	=	0	Port 4 (open collector) low (low-impedance); power ON							
P4	=	1	Port 4 high (high-impedance)							
P5	=	0	Port 5 (open collector) low (low-impedance); power ON							
P5	=	1	Port 5 high (high-impedance)							
P6	=	0	Port 6 (open collector) low (low-impedance); power ON							
P6	=	1	Port 6 high (high-impedance)							
P7	=	0	Port 7 (open collector) low (low-impedance); power ON							
P7	$=$	1	Port 7 high (high-impedance)							

Pin Configuration

(top view)

Pin Functions

Pin No.	Symbol	Function
1	FADIL	Fine adjust input left
2	Bias	Bias for AF operation
3	FADIR	Fine adjust input right
4	GND	Ground
5	SDA	I 2 C Bus SDA
6	SCL	I^{2} C Bus SCL
7	$V_{\text {S }}$	Supply voltage $+V_{\text {S }}$
8	VOL IN	Volume control input
9	VOL OUT	Volume control output
10	V_{7}	Switch output 7
11	V_{6}	Switch output 6
12	V_{5}	Switch output 5
13	V_{4}	Switch output 4
14	V_{3}	Switch output 3
15	V_{2}	Switch output 2
16	V_{1}	Switch output 1
17	FADOR	Fine adjust output right
18	FADOL	Fine adjust output left

Pin Description

UES04980

AF Inputs (Pin 1/3/8)

Bias for AF Operation Point (Pin 2)

$I^{2} \mathrm{C}$ Bus SDA (Pin 5)

$I^{2} \mathrm{C}$ Bus SCL (Pin 6)

Port Outputs (Pin 10-16)

UES04985

AF Outputs (Pin 9/17/18)

Absolute Maximum Ratings

$T_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$

Parameter	Symbol	Limit Values		Unit	Remarks
		min.	max.		
Supply voltage	V_{7}	0	14	V	
Max. DC voltage	V_{1}	0	V_{7}	V	
Max. DC voltage	V_{2}	0	V_{7}	V	
Max. DC voltage	V_{6}	0	V_{7}	V	
Max. DC voltage	V_{8}	0	V_{7}	V	
Max. DC current	I_{5}	0	3	mA	
Max. DC current	I_{9}	0	2	mA	
Max. DC current	I_{10}	0	3	mA	
Max. DC current	I_{11}	0	3	mA	
Max. DC current	I_{12}	0	3	mA	
Max. DC current	I_{13}	0	3	mA	
Max. DC current	I_{14}	0	3	mA	
Max. DC current	I_{15}	0	3	mA	
Max. DC current	I_{16}	0	3	mA	
Max. DC current	I_{17}	0	2	mA	
Max. DC current	I_{18}	0	2	mA	
ESD voltage	$V_{\text {ESD }}$	-2	2	kV	$\mathrm{HBM}(R=1.5 \mathrm{k} \Omega, C=100 \mathrm{pF})$
Junction temperature	T_{j}		150	${ }^{\circ} \mathrm{C}$	
Storage temperature	$T_{\text {stg }}$	-40	125	${ }^{\circ} \mathrm{C}$	
Termal resistance	$R_{\mathrm{th} \mathrm{SA}}$		68	$\mathrm{~K} / \mathrm{W}$	
system-air)					

Operating Range

Supply voltage	V_{S}	10	13.2	V
Ambient temperature	T_{A}	0	70	${ }^{\circ} \mathrm{C}$
Input frequency range	f_{I}	0.01	20	kHz

AC/DC Characteristics

$V_{\mathrm{S}}=12 \mathrm{~V} ; T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, in accordance with test circuit
$I^{2} \mathrm{C}$ Bus preset: start-92-00, $10-01,0-02,3 F-03, \mathrm{FE}$
Adr. Fine adjust lin., Vol. max, Ports high
The basic setting for each point in the specification is always preset; only settings which are deviate from this, are given in the test conditions. Detail in italics only provide explanation of the hexadecimal code and which switch bits on the setbytes are stated.
AF reference level $0 \mathrm{~dB}=300 \mathrm{mV}$, if not different defined. $f_{1} 20 \mathrm{~Hz}-20 \mathrm{kHz}$

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Current consumption	I_{7}		17		mA	

Signal Section

Volume control Max. gain Min. gain	$\begin{aligned} & G_{9.8} \\ & G_{9.8} \end{aligned}$		$\begin{array}{\|l\|} \hline 10 \\ -58.75 \end{array}$	55	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	02, 10, Vol 8
Volume step width	ΔG_{9}		1.25	2.5	dB	$\begin{aligned} & 02, X-02,(X \pm 1) \\ & \operatorname{Vol} X-\operatorname{Vol}(X \pm 1) \end{aligned}$
Max. input voltage	V_{8}	2			Vrms	$T H D_{9}<1 \%$
Max. output voltage	V_{9}	2.2			Vrms	$\begin{aligned} & T H D_{9}<1 \% ; 02, \mathrm{X} ; \\ & \text { any setting } \end{aligned}$
Distortion factor	THD ${ }_{9}$		0.01	0.05	\%	$V_{8}=300 \mathrm{Vrms}$
Unweighted signal/ noise ratio	$a_{\text {S/N9 }}$	90	97		dB	$V_{8}=600 \mathrm{mVrms}$
Noise voltage	$V_{\text {N9 }}$		15	30	$\mu \mathrm{V}$	02, 10, Vol 8
Attenuation MUTE	a_{9-8}	80			dB	02, 00, MUTE
DC jump $\Delta 1$ bit	ΔV_{9}			± 6	mV	$\begin{aligned} & 02, X-02,(X \pm 1) \\ & \operatorname{Vol} X-\operatorname{Vol}(X \pm 1) \end{aligned}$
Fine adjustment Max. gain Max. gain Max. gain Max. gain	$\begin{aligned} & G_{18-1} \\ & G_{17-3} \\ & G_{18-1} \\ & G_{17-3} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & -3.5 \\ & -3.5 \end{aligned}$	$\left\lvert\, \begin{aligned} & 3 \\ & 3 \\ & -3 \\ & -3 \end{aligned}\right.$	$\begin{aligned} & 3.5 \\ & 3.5 \\ & -2.5 \\ & -2.5 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$	00, 1 F, Adj, 31 01, 1 F, Adjı 31 00, 01, Adj, 1 01, 01, Adj $_{r} 1$
Adjust step width Adjust step width	$\begin{aligned} & \Delta G_{18} \\ & \Delta G_{17} \end{aligned}$			$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	dB dB	$\begin{aligned} & 00, X-00,(X \pm 1) \\ & \operatorname{Adj}_{l} X-\operatorname{Adj}_{b},(X \pm 1) \\ & 01, X-01,(X \pm 1) \\ & \operatorname{Adj}_{r} X-\operatorname{Adj}_{r},(X \pm 1) \end{aligned}$

AC/DC Characteristics (cont'd)
$V_{\mathrm{S}}=12 \mathrm{~V} ; T_{\mathrm{A}}=25^{\circ} \mathrm{C}$, in accordance with test circuit

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		
Max. input voltage Max. input voltage	$\begin{aligned} & V_{1} \\ & V_{3} \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$			Vrms Vrms	00, X; any setting 01, X; any setting
Max. output voltage Max. output voltage	$\begin{aligned} & V_{17} \\ & V_{18} \end{aligned}$	$\begin{aligned} & \hline 2 \\ & 2 \end{aligned}$			Vrms Vrms	01, X; any setting 00, X ; any setting
Distortion factor Distortion factor	$\begin{aligned} & \hline T H D_{17} \\ & T H D_{18} \\ & \hline \end{aligned}$		$\begin{aligned} & 0.01 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \end{aligned}$	$\begin{aligned} & \hline \% \\ & \% \end{aligned}$	$\begin{aligned} & V_{3}=300 \mathrm{mVrms} \\ & V_{1}=300 \mathrm{mVrms} \end{aligned}$
Unweighted signal/ noise ratio Unweighted signal/ noise ratio	$\begin{aligned} & a_{\mathrm{S} / \mathrm{N} 17} \\ & a_{\mathrm{S} / \mathrm{N} 18} \end{aligned}$		$\begin{aligned} & 97 \\ & 97 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$	$\begin{aligned} & V_{3}=600 \mathrm{mVrms} \\ & V_{1}=600 \mathrm{mVrms} \end{aligned}$
DC jump $\Delta 1$ bit DC jump $\Delta 1$ bit	$\begin{aligned} & \Delta V_{17} \\ & \Delta V_{18} \end{aligned}$			± 4	$\begin{aligned} & \mathrm{mV} \\ & \mathrm{mV} \end{aligned}$	$\begin{aligned} & 01, X-01,(X \pm 1) \\ & A d j_{r} X-A d j_{r},(X \pm 1) \\ & 00, X-00,(X \pm 1) \\ & \text { Adj }_{l} X-A d j_{b},(X \pm 1) \end{aligned}$
PSRR (Power Supply Ripple Rejection)	$\begin{aligned} & a_{\text {PSRR9 }} \\ & a_{\text {PSRR17 }} \\ & a_{\text {PSRR18 }} \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \\ & 70 \end{aligned}$		dB dB dB	$\begin{aligned} & V_{\text {linterf. }}=1 \mathrm{Vrms} \\ & f_{\text {linterf. }}=50 \mathrm{~Hz}-20 \mathrm{kHz} \\ & R_{\mathrm{G}}=220 \Omega \end{aligned}$ unweighted

Design Hints

Input resistance	R_{1}	30			$\mathrm{k} \Omega$	
Input resistance	R_{3}	30			$\mathrm{k} \Omega$	
Input resistance	R_{8}	30			$\mathrm{k} \Omega$	
Output resistance	R_{9}			70	Ω	
Output resistance	R_{17}			70	Ω	
Output resistance	R_{18}			70	Ω	

AC/DC Characteristics (cont'd)

Parameter	Symbol	Limit Values			Unit	Test Condition
		min.	typ.	max.		

$\mathbf{I}^{2} \mathrm{C}$ Bus (SCL, SDA)

Pulse edges SCL, SDA Rise time Decay time	$\begin{array}{\|l} t_{\mathrm{R}} \\ t_{\mathrm{F}} \end{array}$		$\begin{aligned} & 1 \\ & 300 \end{aligned}$	$\begin{array}{\|l} \mu \mathrm{s} \\ \mathrm{~ns} \end{array}$	
Clock SCL Frequency H-pulse width L-pulse width	$f_{\text {SCL }}$ $t_{\text {HIGH }}$ $t_{\text {Low }}$	$\begin{aligned} & 0 \\ & 4 \\ & 4 \end{aligned}$	100	$\begin{array}{\|l\|l} \mathrm{kHz} \\ \mu \mathrm{~s} \\ \mu \mathrm{~s} \end{array}$	
Start Set-up time Hold time	$t_{\text {SUSTA }}$ $t_{\text {HDSTA }}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$	
Stop Set-up time Bus free	$t_{\text {SUSTO }}$ $t_{\text {BuF }}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$	
Data transfer Set-up time Hold time	$t_{\text {SUDAT }}$ $t_{\text {HDDA }}$	$\begin{aligned} & 1 \\ & 300 \end{aligned}$		$\begin{array}{\|l} \mu \mathrm{s} \\ \mathrm{~ns} \end{array}$	
Inputs SCL, SDA Input voltage Input current	$\left\lvert\, \begin{aligned} & V_{\mathrm{QH}} \\ & V_{\mathrm{QL}} \\ & \\ & I_{\mathrm{OH}} \\ & I_{\mathrm{QL}} \end{aligned}\right.$	3	$\begin{array}{\|l} 5.5 \\ 1,5 \\ 50 \\ 100 \end{array}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \end{aligned}$	
Output SDA (open collector) Output voltage Output voltage Port	$\begin{aligned} & V_{\mathrm{QH}} \\ & V_{\mathrm{QL}} \\ & V_{\mathrm{H}} \\ & V_{\mathrm{L}} \end{aligned}$	5.4	$\begin{aligned} & 0.4 \\ & \\ & V_{\mathrm{s}} \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & R_{\mathrm{L}}=2.5 \Omega \\ & I_{\mathrm{QL}}=3 \mathrm{~mA} \\ & \\ & R_{\mathrm{L}}=4 \Omega \\ & I_{\mathrm{QL}}=3 \mathrm{~mA} \end{aligned}$

UES04986

Test Circuit

UES04987

Application Circuit 1

Application Circuit 2

$I^{2} \mathbf{C}$ Bus Timing Diagram

$t_{\text {SUSTA }}$	Set-up time (start)
$t_{\text {HDSTA }}$	Hold time (start)
$t_{\text {HIGH }}$	HIGH pulse width (clock)
$t_{\text {LOW }}$	LOW pulse width (clock)
$t_{\text {SUDAT }}$	Set-up time (data transfer)
$t_{\text {HDDAT }}$	Hold time (data transfer)
$t_{\text {SUSTO }}$	Set-up time (stop)
$t_{\text {BUF }}$	Bus free time
t_{F}	Fall time
t_{R}	Rise time

All times are referenced to the V_{IH} and V_{L} values.

Plastic Package, P-DIP-18-1
(Plastic Dual-in-Line Package)

Sorts of Packing

Package outlines for tubes, trays ect. are contained in our Data Book "Package Information"

