TOSHIBA TA8025P/F

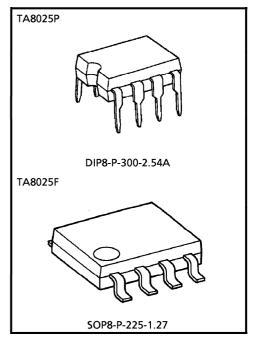
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA8025P, TA8025F

PICK UP SENSOR INTERFACE IC

The TA8025P TA8025F is an IC designed for making the output signal from electromagnetic pick up sensor and etc..., waveform-shaping. The Vth of input has hysteresis that is division value between peak voltage of input signal and 0V.

FEATURES


Input frequency : DC~50kHz

Input voltage V_{TH} : $0V \Leftrightarrow V_{peak} \times K$

: DIP 8pin (TA8025P) Small package

: SOP 8pin (TA8025F)

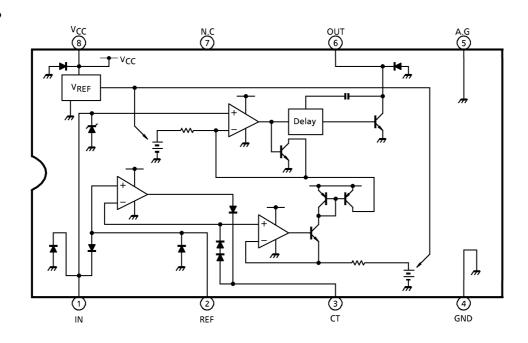
Separate GND line for output and logic control sections

Weight

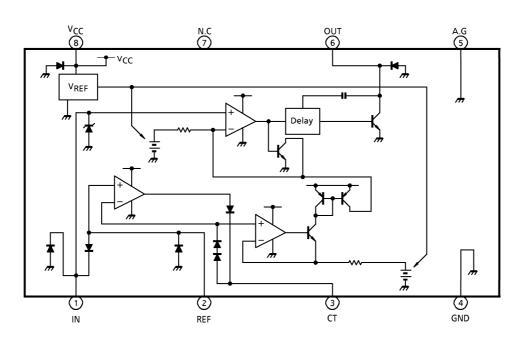
DIP8-P-300-2.54A : 0.45g (Typ.) : 0.08g (Typ.) SOP8-P-225-1.27

The products described in this document are subject to the foreign exchange and foreign trade laws.

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.


The information contained herein is subject to change without notice.

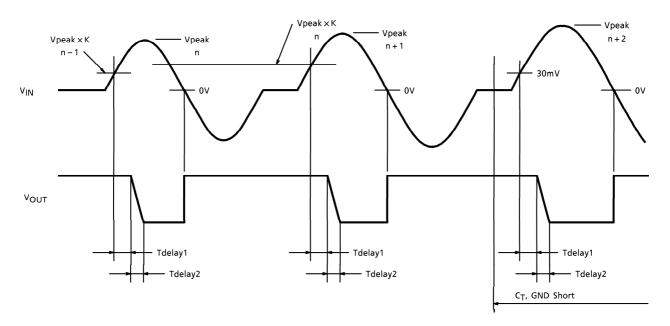
TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.


The products described in this document are subject to the foreign exchange and foreign trade laws.

BLOCK DIAGRAM AND PIN LAYOUT

TA8025P

TA8025F



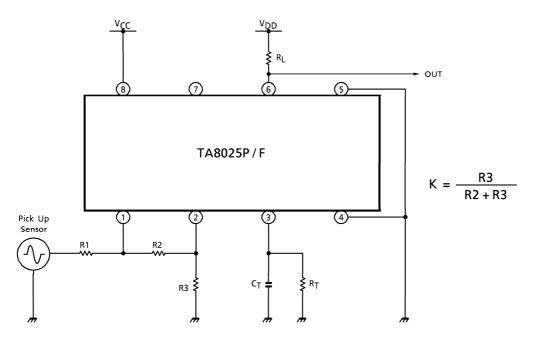
Note: The TA8025P and TA8025F are the same chip; only the packages are different.

PIN DESCRIPTION

PIN No.	SYMBOL	DESCRIPTION					
1	IN	Input pin for a signal from sensor.					
2	REF	V _{TH} setting pin. The V _{TH} value can be set according to divide the input signal with resistors.					
3	CT	This pin hold the peak value for input signal of REF pin.					
4	GND	Grounded.					
5	A.G	Grounded pin for REF.					
6	OUT	The output is an NPN open-collector output and the input signal which is made waveform-shaping is gone out. When the output goes down, it has a slope of $1V/\mu s$ in order to lose the influence for the input signal.					
7	N.C	Not connected. (Electrically, this pin is completely open.)					
8	V _{CC}	Power supply pin.					

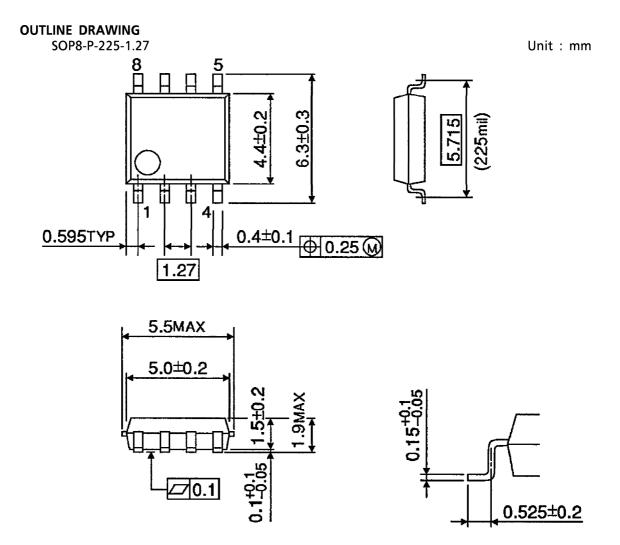
TIMING CHART

Note: See Electrical Characteristics for symbols in the timing chart.


MAXIMUM RATINGS (Ta = 25°C)

CHARACTERISTIC	SYMBOL	RATING	UNIT
Supply Voltage	Vcc	36	V
Input Voltage	VIN	36	V
Input Current	IN	± 20	mA
Output Current	lout	10	mA
Power Dissipation	PD	280	mW
Operating Voltage	V _{opr}	4.5~30	V
Operating Temperature	T _{opr}	- 40∼105	°C
Storage Temperature	T _{stg}	- 55∼150	°C
Lead Temperature · Time	T _{sol}	260 (10s)	°C

ELECTRICAL CHARACTERISTICS ($V_{CC} = 4.5 \sim 16V$, $T_{C} = -40 \sim 105$ °C)


CHARACTERISTIC	SYMBOL	PIN	TEST CIR- CUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Current	lcc	VCC		Output : OFF	_	3.0	5.0	mA
L Supply Current				Output : ON	_	4.5	8.0	
Innut Current	Ι.	I _Z	_	V _{IN} = 0V	-0.2	1	0.1	μΑ
Input Current	IN			$V_{IN} = V_{CC}$	- 0.1	1	0.1	
High-Side Minimum Threshold Voltage	V _{TH1}		_	V _{REF} = 0V	24	30	36	mA
Zero-Cross Threshold	V _{TH2}				- 20	_	20	
Voltage					24	20	36	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Zener Voltage	VZ		_	I _{IN} = 1mA	24	30	36	V
Input Current	1	REF	-	V _{IN} = 0V	- 0.2	_	0.1	μΑ
Impat Carrent	IN	NEF		$V_{IN} = V_{CC}$	- 0.1	_	0.1	
Output Voltage	V_{OL}	OUT	_	I _{OL} = 5mA	-	_	0.5	V
Output Leakage Current		OUT	_	V _{OH} = 5V	- 5.0	_	5.0	μΑ
Output Delay Time	Tdelay1	OUT	_	V _{CC} = 16V	_	7.5	20.0	
Output Delay Tille	Tdelay2	001	_	V _{DD} = 5V	_	5.0	10.0	μ s

EXAMPLE OF APPLICATION CIRCUIT

OUTLINE DRAWING DIP8-P-300-2.54A Unit : mm 10.1MAX 9.6±0.2 0.99TYP 2.54 1.2±0.1

Weight: 0.45g (Typ.)

Weight: 0.08g (Typ.)